Tag Archives: Sungkyunkwan University (SKKU)

Future cosmetics could contain fish guts

A September 6, 2024 news item on ScienceDaily features information that might be considered disconcerting,

There are some pretty strange ingredients in cosmetics and skin care products. One example is snail mucin — also known as snail slime — which is used for its moisturizing and antioxidant properties [emphasis mine]. But researchers reporting in ACS [American Chemical Society] Omega might have found something even weirder to put on your face: molecules made by fish gut bacteria. In cultured cells, the compounds had skin-brightening and anti-wrinkle properties, making them potential ingredients for your future skin care routine.

Snail slime? Well, if you’re going to use snail slime, then why not use fish guts? This September 5, 2024 ACS (American Chemical Society) news release (also on EurekAlert), which originated the news item, explains the reasoning behind using fish guts in cosmetics and provides a few technical details, Note: A link has been removed,

Though fish guts might seem like the absolute last place to look for cosmetic compounds, it’s not a completely far-fetched idea. Many important drugs have been found in bizarre places — famously, penicillin’s antibiotic properties were discovered after a failed experiment got moldy. More recently, the brain cancer drug candidate Marizomib was derived from microbes unearthed in marine sediments at the bottom of the ocean. Two potentially untapped sources of new compounds could be the gut microbes of the red seabream and the blackhead seabream, fish found in the western Pacific Ocean. Although these microbes were first identified in 1992 and 2016, respectively, no studies have been performed on the compounds they make. So, Hyo-Jong Lee and Chung Sub Kim wanted to see if these bacteria produce any metabolite compounds that could have cosmetic benefits.

The team identified 22 molecules made by the gut bacteria of the red seabream and blackhead seabream. They then evaluated each compound’s ability to inhibit tyrosinase and collagenase enzymes in lab-grown mouse cells. (Tyrosinase is involved in melanin production, which causes hyperpigmentation in aging skin. Collagenase breaks down the structural protein collagen, causing wrinkles.) Three molecules from the red seabream bacteria inhibited both enzymes the best without damaging the cells, making them promising anti-wrinkle and skin-brightening agents for future cosmetic products.

The authors acknowledge funding from the Marine Biotechnology Program of the Ministry of Oceans and Fisheries, the National Research Foundation of Korea, the Technology Development Program of the Ministry of Small and Medium Enterprises and Startups, Sungkyunkwan University and the BK21 FOUR program of the Ministry of Education of Korea.

Here’s a link to and a citation for the paper,

Collagenase and Tyrosinase Inhibitory Compounds from Fish Gut Bacteria Ruegeria atlantica and Pseudoalteromonas neustonica by Jonghwan Kim, Su Jung Hwang, Gyu Sung Lee, Ju Ryeong Lee, Hye In An, Hong Sik Im, Minji Kim, Sang-Seob Lee, Hyo Jong Lee and Chung Sub Kim. ACS Omega Vol 9/Issue 32 34259 DOI: 10.1021/acsomega.3c09585 Published: July 29, 2024 Copyright © 2024 The Authors. Published by American Chemical Society.

This paper is open access. This publication is licensed under CC-BY-NC-ND 4.0 .

Textiles fight back bacteria with electronics

These textiles according to an April 24, 2023 news item on SpaceDaily do a little more than fight off bacteria (as impressive as that is),

Scientists from around the world have developed a simple metallic coating treatment for clothing or wearable textiles which can repair itself, repel dangerous bacteria from the wearer and even monitor a person’s electrocardiogram (ECG) heart signals.

Researchers from North Carolina State University [US], Flinders University [Australia] and South Korea [Sungkyunkwan University (SKKU] say the conductive circuits created by liquid metal (LM) particles can transform wearable electronics and open doors for further development of human-machine interfaces, including soft robotics and health monitoring systems.

An April 25, 2023 Flinders University press release (also on EurekAlert but published April 26, 2023), which originated the news item, provides more technical details about the conductive, self-healing textiles, Note: Links have been removed,

The ‘breathable’ electronic textiles have special connectivity powers to ‘autonomously heal’ itself even when cut, says the US team led by international expert in the field, Professor Michael Dickey.  

When the coated textiles are pressed with significant force, the particles merge into a conductive path, which enables the creation of circuits that can maintain conductivity when stretched, researchers say.   

“The conductive patterns autonomously heal when cut by forming new conductive paths along the edge of the cut, providing a self-healing feature which makes these textiles useful as circuit interconnects, Joule heaters and flexible electrodes to measure ECG signals,” says Flinders University medical biotechnology researcher Dr Khanh Truong, senior co-author in a new article in Advanced Materials Technologies. 

The technique involves dip-coating fabric into a suspension of LM particles at room temperature.  

“Evenly coated textiles remain electrically insulating due to the native oxide that forms on the LM particles. However, the insulating effect can be removed by compressing the textile to rupture the oxide and thereby allow the particles to percolate.  

“This enables the creation of conductive circuits by compressing the textile with a patterned mold. The electrical conductivity of the circuits increases by coating more particles on the textile.”  

As well the LM-coated textiles offer effective antimicrobial protection against Pseudomonas aeruginosa and Staphylococcus aureus.  

This germ repellent ability not only gives the treated fabric protective qualities but prevents the porous material from becoming contaminated if worn for and extended time, or put in contact with other people.    

The particles of gallium-based liquid metals have low melting point, metallic electrical conductivity, high thermal conductivity, effectively zero vapor pressure, low toxicity and antimicrobial properties.  

LMs have both fluidic and metallic properties so show great promise in applications such as microfluidics, soft composites, sensors, thermal switches and microelectronics.  

One of the advantages of LM is that it can be deposited and patterned at room temperature onto surfaces in unconventional ways that are not possible with solid metals. 

Here’s a link to and a citation for the paper,

Liquid Metal Coated Textiles with Autonomous Electrical Healing and Antibacterial Properties (2023) by Jiayi Yang, Praneshnandan Nithyanandam, Shreyas Kanetkar, Ki Yoon Kwon, Jinwoo Ma, Sooik Im, Ji-Hyun Oh, Mohammad Shamsi, Mike Wilkins, Michael Daniele Tae-il Kim, Huu Ngoc Nguyen, Vi Khanh Truong and Michael D Dickey. Advanced Materials Technologies Online Version of Record before inclusion in an issue 2202183 DOI: 10.1002/admt.202202183 First published: 02 April 2023 [2nd DOI:] https://doi.org/10.1002/admt.202202183 

This paper is open access.