Tag Archives: Royal Institute of Technology (Sweden)

NanoCelluComp; a European Commission-funded nanocellulose project

It was a bit of a surprise to find out there’s yet another nanocellulose fibre project but here it is in a Mar. 7, 2013 news item on Nanowerk,

The overall aim of the NanoCelluComp project is to develop a technology to utilise the high mechanical performance of cellulose nanofibres, obtained from food processing waste streams, combined with bioderived matrix materials, for the manufacture of 100% bio-derived high performance composite materials that will replace randomly oriented and unidirectional glass and carbon fibre reinforced plastics in a range of applications including transportation, wind turbines, biomedical, sport and consumer goods. More specifically, the project aims to develop a manufacturing process to form a 100% bio-composites with controlled alignment of the native modified cellulose nanofibres and evaluate these process with regard to the physical and mechanical performance of produced materials and suitability for use by industry via existing composite processing technologies. The project will also study the sustainability of the process and materials (nanocellulose bio-composites) in terms of environmental impacts and cost compared to existing materials, namely, carbon fibre reinforced plastics and glass fibre reinforced plastics.

It’s a project funded by the European Commission’s 7th Framework Programme whose funding runs out in Feb. 2014. Their fourth newsletter (PDF) is available for viewing. The most interesting bit of news in the publication (for me) is the announcement of a fifth meeting. From the 4th newsletter,

The consortium will next meet on the 14th and 15th of March at the facilities of KTH in Stockholm for its fifth meeting. The Project Technical Adviser, Prof Maria Tomoaia-Cotisel will also be in attendance. (p. 1)

The NanoCelluComp consortium is an amalgam of academic, government, and business agencies, from the NanoCelluComp website’s Consortium page,

Institute of Nanotechnology

The Institute of Nanotechnology (IoN) is one of the global leaders in providing nanotechnology information. It supplies industry and governments with intelligence on nanotechnology and its applications and has produced several important milestone publications. …

CelluComp

CelluComp is a composite materials technology company founded in 2004 by two expert materials scientists, Dr David Hepworth and Dr Eric Whale. …

University of Strathclyde

The University of Strathclyde (USTRATH) will be represented by the research group of Dr Simon Shilton. Dr Shilton’s group at Strathclyde has pioneered the use of rheological factors in hollow fibre membrane spinning. …

University of Copenhagen

The University of Copenhagen team (UCPH) comprises of research groups from the Department of Plant Biology and Biotechnology, the Department of Agriculture and Ecology and the Department of Food science at the Faculty of Life Sciences representing the complete repertoire of expertise and analytical methods required for the project. Prof. Peter Ulvskov will lead the team. …

Royal Institute of Technology (Sweden)

The Royal Institute of Technology (KTH) team is represented in the project by the cellulose-based nanomaterials group of the Division of Glycoscience led by Prof. Qi Zhou. The current research program of the group is centred on the construction of self-assembled composite materials with multi-functionalities and well-defined architectures using cellulose nanofibers, native and modified carbohydrate polymers.  …

University of Reading

The University of Reading team (UREAD) is represented by researchers from the department of Chemistry led by Dr Fred Davis. …

SweTree Technologies

SweTree Technologies (STT) is a plant and forest biotechnology company providing products and technologies to improve the productivity and performance properties of plants, wood and fibre for forestry, pulp & paper, packaging, hygiene, textile and other fibre related industries. …

AL.P.A.S. S.r.l.

AL.P.A.S. S.r.l. (ALPAS) is a manufacturer of Epoxy Resin, Polyurethane, PVC and other adhesive systems based in Northern Italy. The company has over 30 years experience in supplying these products to the Automotive, Electric/Electronics, Marble, Building and other industries. …

Swiss Federal Laboratories for Materials Science and Technology (EMPA)

Swiss Federal Laboratories for Materials Science and Technology (EMPA) is a materials science and technology research institution. …

Novozymes

Novozymes (NZ) is a world leader in bioinnovation and the world’s largest producer of industrial enzymes, with a market share of approximately 45%. …

Biovelop

Biovelop (BV) is an innovative Life Science company with production facilites in Kimstad, Sweden. The company specializes in the development and scaling up of cornerstone technologies in the area of extraction of functional ingredients from cereal grains and brans. …

I wish there was a bit more information in the fourth newsletter about what has been accomplished, from  the newsletter,

Work packages 1 and 2 are now completed (with feasibility studies on alternative vegetable waste streams performed, and methods for liberating and stabilizing nanocellulose achieved).

Work package 3 will conclude shortly with a better understanding of how to improve the mechanical properties of the liberated nanocelulose.

Activities in work package 4 are also nearing completion, with novel production processes achieved and resultant fibres now being tested.

Work package 5 activities to integrate all project research results have been slightly delayed, however initial test composites have been made. Following successful testing of these, the process will be scaled up to industrially relevant amounts.

Work package 6 has produced a report describing environment, health and safety (EHS) aspects and initial findings on end- user acceptability criteria for the developed composites. (p. 3)

Perhaps there’ll be something more in their mid-term report, assuming it gets published.

Samsung ‘GROs’ graphene-based micro-antennas and a brief bit about the business of nanotechnology

A Feb. 22, 2013 news item on Nanowerk highlights a Samsung university grant (GRO) programme which announced funding for graphene-based micro-antennas,

The Graphene-Enabled Wireless Communication project, one of the award-winning proposals under the Samsung Global Research Outreach (GRO) programme, aims to use graphene antennas to implement wireless communication over very short distances (no more than a centimetre) with high-capacity information transmission (tens or hundreds of gigabits per second). Antennas made ??of [sic] graphene could radiate electromagnetic waves in the terahertz band and would allow for high-speed information transmission. Thanks to the unique properties of this nanomaterial, the new graphene-based antenna technology would also make it possible to manufacture antennas a thousand times smaller than those currently used.

The GRO programme—an annual call for research proposals by the Samsung Advanced Institute of Technology (Seoul, South Korea)—has provided the UPC-led project with US$120,000 in financial support.

The Graphene-Enabled Wireless Communication project is a joint project (from the news item; Note: A link has been removed),

“Graphene-Enabled Wireless Communications” – a proposal submitted by an interdepartmental team based at the Universitat Politècnica de Catalunya, BarcelonaTech (UPC) and the Georgia Institute of Technology (Georgia Tech)—will receive US$120,000 to develop micrometre-scale graphene antennas capable of transmitting information at a high speed over very short distances. The project will be carried out in the coming months.

The Graphene-Enabled Wireless Communication project, one of the award-winning proposals under the Samsung Global Research Outreach (GRO) programme, aims to use graphene antennas to implement wireless communication over very short distances (no more than a centimetre) with high-capacity information transmission (tens or hundreds of gigabits per second). Antennas made ??of graphene could radiate electromagnetic waves in the terahertz band and would allow for high-speed information transmission. Thanks to the unique properties of this nanomaterial, the new graphene-based antenna technology would also make it possible to manufacture antennas a thousand times smaller than those currently used.

There’s more about the Graphene-Enabled Wireless Communication project here,

 A remarkably promising application of graphene is that of Graphene-enabled Wireless Communications (GWC). GWC advocate for the use of graphene-based plasmonic antennas –graphennas, see Fig. 1- whose plasmonic effects allow them to radiate EM waves in the terahertz band (0.1 – 10 THz). Moreover, preliminary results sustain that this frequency band is up to two orders of magnitude below the optical frequencies at which metallic antennas of the same size resonate, thereby enhancing the transmission range of graphene-based antennas and lowering the requirements on the corresponding transceivers. In short, graphene enables the implementation of nano-antennas just a few micrometers in size that are not doable with traditional metallic materials.

Thanks to both the reduced size and unique radiation capabilities of ZZ, GWC may represent a breakthrough in the ultra-short range communications research area. In this project we will study the application of GWC within the scenario of off-chip communication, which includes communication between different chips of a given device, e.g. a cell phone.

A new term, graphenna, appears to be have been coined. The news item goes on to offer more detail about the project and about the number of collaborating institutions,

The first stage of the project, launched in October 2012, focuses on the theoretical foundations of wireless communications over short distances using graphene antennas. In particular, the group is analysing the behaviour of electromagnetic waves in the terahertz band for very short distances, and investigating how coding and modulation schemes can be adapted to achieve high transmission rates while maintaining low power consumption.

The group believes the main benefits of the project in the medium term will derive from its application for internal communication in multicore processors. Processors of this type have a number of sub-processors that share and execute tasks in parallel. The application of wireless communication in this area will make it possible to integrate thousands of sub-processors within a single processor, which is not feasible with current communication systems.

The results of the project will lead to an increase in the computational performance of these devices. This improvement would allow large amounts of data to be processed at very high speed, which would be very useful for streamlining data management at processing centres (“big data”) used, for example, in systems like Facebook and Google. The project, which builds on previous results obtained with the collaboration of the University of Wuppertal in Germany, the Royal Institute of Technology (KTH) in Sweden, and Georgia Tech in the United States, is expected to yield its first results in April 2013.

The project is being carried out by the NaNoNetworking Centre in Catalonia (N3Cat), a network formed at the initiative of researchers with the UPC’s departments of Electronic Engineering and Computer Architecture, together with colleagues at Georgia Tech.

Anyone interested in  Samsung’s GRO programme can find more here,

The SAMSUNG Global Research Outreach (GRO) program, open to leading universities around the world, is Samsung Electronics, Co., Ltd. & related Samsung companies (SAMSUNG)’s annual call for research proposals.

As this Samsung-funded research project is being announced, Dexter Johnson details the business failure of NanoInk in a Feb. 22, 2013 posting on his Nanoclast blog (on the IEEE [International Institute of Electrical and Electronics Engineers] website), Note: Links have been removed,

One of the United State’s first nanotechnology companies, NanoInk, has gone belly up, joining a host of high-profile nanotechnology-based companies that have shuttered their doors in the last 12 months: Konarka, A123 Systems and Ener1.

These other three companies were all tied to the energy markets (solar in the case of Konarka and batteries for both A123 and Ener1), which are typically volatile, with a fair number of shuttered businesses dotting their landscapes. But NanoInk is a venerable old company in comparison to these other three and is more in what could be characterized as the “picks-and-shovels” side of the nanotechnology business, microscopy tools.

Dexter goes on to provide an  analysis of the NanoInk situation which makes for some very interesting reading along with the comments—some feisty, some not—his posting has provoked.

I am juxtaposing the Samsung funding announcement with this mention of Dexter’s piece regarding a  ‘nanotechnology’ business failure in an effort to provide some balance between enthusiasm for the research and the realities of developing businesses and products based on that research.