Tag Archives: Patricia Holden

Soybeans and nanoparticles

They seem ubiquitous today but there was a time when hardly anyone living in Canada  knew much about soybeans.  There’s a good essay about soybeans and their cultivation in Canada by Erik Dorff for Statistics Canada, from Dorff’s soybean essay,

Until the mid-1970s, soybeans were restricted by climate primarily to southern Ontario. Intensive breeding programs have since opened up more widespread growing possibilities across Canada for this incredibly versatile crop: The 1.2 million hectares of soybeans reported on the Census of Agriculture in 2006 marked a near eightfold increase in area since 1976, the year the ground-breaking varieties that perform well in Canada’s shorter growing season were introduced.

Soybeans have earned their popularity, with the high-protein, high-oil beans finding use as food for human consumption, animal rations and edible oils as well as many industrial products. Moreover, soybeans, like all legumes, are able to “fix” the nitrogen the plants need from the air. This process of nitrogen fixation is a result of a symbiotic interaction between bacteria microbes that colonize the roots of the soy plant and are fed by the plant. In return, the microbes take nitrogen from the air and convert it into a form the plant can use to grow.

This means legumes require little in the way of purchased nitrogen fertilizers produced from expensive natural gas-a valuable property indeed.

Until reading Dorff’s essay, I hadn’t early soybeans had been introduced to the Canadian agricultural sector,

While soybeans arrived in Canada in the mid 1800s-with growing trials recorded in 1893 at the Ontario Agricultural College-they didn’t become a commercial oilseed crop in Canada until a crushing plant was built in southern Ontario in the 1920s, about the same time that the Department of Agriculture (now Agriculture and Agri-Food Canada) began evaluating soybean varieties suited for the region. For years, soybeans were being grown in Canada but it wasn’t until the Second World War that Statistics Canada began to collect data showing the significance of the soybean crop, with 4,400 hectares being reported in 1941. In fact, one year later the area had jumped nearly fourfold, to 17,000 hectares…

As fascinating as I find this history, this bit about soybeans and their international importance explain why research about soyboans and nanoparticles is of wide interest (from Dorff’s essay),

The soybean’s valuable characteristics have propelled it into the agricultural mix in many parts of the world. In 2004, soybeans accounted for approximately 35% of the total harvested area worldwide of annual and perennial oil crops according to the Food and Agriculture Organization of the United Nations (FAO) but only four countries accounted for nearly 90% of the production with Canada in seventh place at 1.3% (Table 2). Soymeal-the solid, high-protein material remaining after the oil has been extracted during crushing-accounts for over 60% of world vegetable and animal meal production, while soybean oil accounts for 20% of global vegetable oil production.

There’s been a recent study on the impact of nanoparticles on soybeans at the University of California at Santa Barbara (UC Santa Barbara) according to an Aug. 20, 2012 posting by Alan on the Science Business website, (h/t to Cientifica),

Researchers from University of California in Santa Barbara found manufactured nanoparticles disposed after manufacturing or customer use can end up in agricultural soil and eventually affect soybean crops. Findings of the team that includes academic, government, and corporate researchers from elsewhere in California, Texas, Iowa, New York, and Korea appear online today in the Proceedings of the National Academy of Sciences.

The research aimed to discover potential environmental implications of new industries that produce nanomaterials. Soybeans were chosen as test crops because their prominence in American agriculture — it is the second largest crop in the U.S. and the fifth largest crop worldwide — and its vulnerability to manufactured nanomaterials. The soybeans tested in this study were grown in greenhouses.

The Aug. 20, 2012 UC Santa Barbara press release has additional detail abut why the research was undertaken,

“Our society has become more environmentally aware in the last few decades, and that results in our government and scientists asking questions about the safety of new types of chemical ingredients,” said senior author Patricia Holden, a professor with the Bren School [UC Santa Barbara’s Bren School of Environmental Science & Management]. “That’s reflected by this type of research.”

Soybean was chosen for the study due to its importance as a food crop –– it is the fifth largest crop in global agricultural production and second in the U.S. –– and because it is vulnerable to MNMs [manufactured nanomaterials]. The findings showed that crop yield and quality are affected by the addition of MNMs to the soil.

The scientists studied the effects of two common nanoparticles, zinc oxide and cerium oxide, on soybeans grown in soil in greenhouses. Zinc oxide is used in cosmetics, lotions, and sunscreens. Cerium oxide is used as an ingredient in catalytic converters to minimize carbon monoxide production, and in fuel to increase fuel combustion. Cerium can enter soil through the atmosphere when fuel additives are released with diesel fuel combustion.

The zinc oxide nanoparticles may dissolve, or they may remain as a particle, or re-form as a particle, as they are processed through wastewater treatment. At the final stage of wastewater treatment there is a solid material, called biosolids, which is applied to soils in many parts of the U.S. This solid material fertilizes the soil, returning nitrogen and phosphorus that are captured during wastewater treatment. This is also a point at which zinc oxide and cerium oxide can enter the soil.

The scientists noted that the EPA requires pretreatment programs to limit direct industrial metal discharge into publicly owned wastewater treatment plants. However, the research team conveyed that “MNMs –– while measurable in the wastewater treatment plant systems –– are neither monitored nor regulated, have a high affinity for activated sludge bacteria, and thus concentrate in biosolids.”

The authors pointed out that soybean crops are farmed with equipment powered by fossil fuels, and thus MNMs can also be deposited into the soil through exhaust.

The study showed that soybean plants grown in soil that contained zinc oxide bioaccumulated zinc; they absorbed it into the stems, leaves, and beans. Food quality was affected, although it may not be harmful to humans to eat the soybeans if the zinc is in the form of ions or salts, in the plants, according to Holden.

In the case of cerium oxide, the nanoparticles did not bioaccumulate, but plant growth was stunted. Changes occurred in the root nodules, where symbiotic bacteria normally accumulate and convert atmospheric nitrogen into ammonium, which fertilizes the plant. The changes in the root nodules indicate that greater use of synthetic fertilizers might be necessary with the buildup of MNMs in the soil.

At this point, the researchers don’t know how zinc oxide nanoparticles and cerium oxide nanoparticles currently used in consumer products and elsewhere are likely to affect agricultural lands. The only certainty is that these nanoparticles are used in consumer goods and, according to Holden, they are entering agricultural soil.

The citation for the article,

Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption by John H. Priester, Yuan Ge, Randall E. Mielke, Allison M. Horst Shelly Cole Moritz, Katherine Espinosa, Jeff Gelb, Sharon L. Walker, Roger M. Nisbet, Youn-Joo An, Joshua P. Schimel, Reid G. Palmer, Jose A. Hernandez-Viezcas, Lijuan Zhao, Jorge L. Gardea-Torresdey, Patricia A. Holden. Published online [Proceedings of the National Academy of Sciences {PNAS}] before print August 20, 2012, doi: 10.1073/pnas.1205431109

The article is open access and available here.

 

Cadmium nanomaterials and biomagnification in the food chain

Given the recent uproar over cadmium in our local (British Columbia) oysters, this new study about nanoparticles formed from cadmium selenide and their possible absorption into the aquatic food chain caught my attention. From the Dec. 20, 2010 news item on physorg.com,

“We already knew that the bacteria were internalizing these nanoparticles from our previous study,” Holden [Patricia] said. “And we also knew that Ed (Orias) and Rebecca (Werlin) were working with a protozoan called Tetrahymena and nanoparticles. So we approached them and asked if they would be interested in a collaboration to evaluate how the protozoan predator is affected by the accumulated nanoparticles inside a bacterial prey.” Orias and Werlin credit their interest in nanoparticle toxicity to earlier funding from and participation in the University of California Toxic Substance Research & Training Program.

The scientists repeated the growth of the bacteria with quantum dots in the new study and and coupled it to a trophic transfer study –– the study of the transfer of a compound from a lower to a higher level in a food chain by predation. “We looked at the difference to the predator as it was growing at the expense of different prey types –– ‘control’ prey without any metals, prey that had been grown with a dissolved cadmium salt, and prey that had been grown with cadmium selenide quantum dots,” Holden said.

What they found was that the concentration of cadmium increased in the transfer from bacteria to protozoa and, in the process of increasing concentration, the nanoparticles were substantially intact, with very little degradation. “We were able to measure the ratio of the cadmium to the selenium in particles that were inside the protozoa and see that it was substantially the same as in the original nanoparticles that had been used to feed the bacteria,” Orias said.

The fact that the ratio of cadmium and selenide was preserved throughout the course of the study indicates that the nanoparticles were themselves biomagnified. “Biomagnification –– the increase in concentration of cadmium as the tracer for nanoparticles from prey into predator –– this is the first time this has been reported for nanomaterials in an aquatic environment, and furthermore involving microscopic life forms, which comprise the base of all food webs,” Holden said.

The scientists involved with the study are also associated with the University of California Center for Environmental Implications of Nanotechnology (UC CEIN).

As for the local oyster/cadmium situation (from a Dec. 14, 2010 article by Larry Pynn, Postmedia News on Canada.com),

Bendell [Leah Bendell, professor specializing in ecotoxicology at Simon Fraser University, BC] said the Canadian consumption advice barely meets international standards and does not take into account that cadmium levels are higher in “hot spots” in popular B.C. oyster-growing areas such as Baynes Sound near Denman Island, Desolation Sound north of Powell River, and Effingham Inlet at Barkley Sound.

One study in 2000 found B.C. oysters reached levels as high as 4.9 parts per million, while a 2004-05 study found levels of up to 3.57 parts per million. A workshop sponsored by Simon Fraser University in May estimated current cadmium levels in B.C. oysters at one to four parts per million.

Europe does not allow the importation of oysters containing more than one part per million of cadmium; Hong Kong’s limit is two parts per million.

The BC Centre for Disease Control states that “levels of cadmium are much lower in oysters elsewhere in the world.”

They are advising local oyster lovers to exercise moderation with regard to eating them.

As for biomagnification and cadmium nanoparticles, here’s what the lead scientist suggested,

“In this context, one might argue that if you could ‘design out’ whatever property of the quantum dots causes them to enter bacteria, then we could avoid this potential consequence,” Holden said. “That would be a positive way of viewing a study like this. Now scientists can look back and say, ‘How do we prevent this from happening?’ ” [emphasis mine]