Electronic tattoos

Yes, you can temporarily apply electronics that look like tattoos to your skin. From the August 11, 2011 news item on physorg.com,

Engineers have developed a device platform that combines electronic components for sensing, medical diagnostics, communications and human-machine interfaces, all on an ultrathin skin-like patch that mounts directly onto the skin with the ease, flexibility and comfort of a temporary tattoo.

The team led by professor John Rogers at the University of Illinois has create wearable electronics.

The patches are initially mounted on a thin sheet of water-soluble plastic, then laminated to the skin with water – just like applying a temporary tattoo. Alternately, the electronic components can be applied directly to a temporary tattoo itself, providing concealment for the electronics.

Here’s a video released by the University of Illinois featuring Rogers and his colleague, lead author Dae-Hyeong Kim, describing their work,
http://www.youtube.com/watch?v=tOk7OWZ-Lck

(ETA April 7, 2014: This link leads to a notice that the video is no long available.)

Possible applications for this technology include (from the news item on physorg.com),

In addition to gathering data, skin-mounted electronics could provide the wearers with added capabilities. For example, patients with muscular or neurological disorders, such as ALS, could use them to communicate or to interface with computers. The researchers found that, when applied to the skin of the throat, the sensors could distinguish muscle movement for simple speech. The researchers have even used the electronic patches to control a video game, demonstrating the potential for human-computer interfacing.

The August 11, 2011 news item about this research on Nanwerk features some technical details [Note: The news item on physorg.com also offers technical information but the Nanowerk item from the National Science Foundation offered some additional details.],

The researchers have created a new class of micro-electronics with a technology that they call an epidermal electronic system (EES). They have incorporated miniature sensors, light-emitting diodes, tiny transmitters and receivers, and networks of carefully crafted wire filaments into their initial designs.

The technology is presented—along with initial measurements that researchers captured using the EES—in a paper by lead author Dae-Hyeong Kim of the University of Illinois and colleagues in the August 12, 2011, issue of Science (“Epidermal Electronics “).

While existing technologies accurately measure heart rate, brain waves and muscle activity, EES devices offer the opportunity to seamlessly apply sensors that have almost no weight, no external wires and require negligible power.

Because of the small power requirements, the devices can draw power from stray (or transmitted) electromagnetic radiation through the process of induction and can harvest a portion of their energy requirements from miniature solar collectors.

The EES designs yield flat devices that are less than 50-microns thick—thinner than the diameter of a human hair—which are integrated onto the polyester backing familiar from stick-on tattoos.

The devices are so thin that close-contact forces called van der Waals interactions dominate the adhesion at the molecular level, so the electronic tattoos adhere to the skin without any glues and stay in place for hours. The recent study demonstrated device lifetimes of up to 24 hours under ideal conditions.

In light of today’s earlier posting on surveillance, I’m torn between appreciating the technological advance with its attendant possibilities and my concerns over increased monitoring.

Adding to my disconcertment is this comment from one of Rogers’ other colleagues (from the news item on physorg.com),

“The blurring of electronics and biology is really the key point here,” Huang [Northwestern University engineering professor Yonggang Huang] said. “All established forms of electronics are hard, rigid. Biology is soft, elastic. It’s two different worlds. This is a way to truly integrate them.”

Engineers never talk about the social implications of these concepts (integrating biology and electronics) which can be quite frightening and upsetting to some folks depending on how they are introduced to the concept.

While existing technologies accurately measure heart rate, brain waves and muscle activity, EES devices offer the opportunity to seamlessly apply sensors that have almost no weight, no external wires and require negligible power.
Because of the small power requirements, the devices can draw power from stray (or transmitted) electromagnetic radiation through the process of induction and can harvest a portion of their energy requirements from miniature solar collectors.
The EES designs yield flat devices that are less than 50-microns thick—thinner than the diameter of a human hair—which are integrated onto the polyester backing familiar from stick-on tattoos.
The devices are so thin that close-contact forces called van der Waals interactions dominate the adhesion at the molecular level, so the electronic tattoos adhere to the skin without any glues and stay in place for hours. The recent study demonstrated device lifetimes of up to 24 hours under ideal conditions.

2 thoughts on “Electronic tattoos

  1. Pingback: Skin as art and as haptic device « FrogHeart

  2. Pingback: Surgery at your fingertips « FrogHeart

Leave a Reply

Your email address will not be published. Required fields are marked *