Tag Archives: entropy

Investigate thermodynamics by getting a grasp entropy with a hands-on model!

Using dice and buttons for understanding entropy? Apparently, filling the boxes in the image below with everyday objects helps students to better understand entropy and thermodynamics,

Caption: This hands-on model leverages known conditions of a simple system of hard particles to demonstrate how entropy is related to the number of accessible microstates by observing the degrees of freedom available to each particle. Credit: T. Ryan Rogers

A September 6, 2023 news item on ScienceDaily describes a new approach to teaching entropy,

Though a cornerstone of thermodynamics, entropy remains one of the most vexing concepts to teach budding physicists in the classroom. As a result, many people oversimplify the concept as the amount of disorder in the universe, neglecting its underlying quantitative nature.

In The Physics Teacher, co-published by AIP [American Institute of Physics] Publishing and the American Association of Physics Teachers, researcher T. Ryan Rogers designed a hand-held model to demonstrate the concept of entropy for students. Using everyday materials, Rogers’ approach allows students to confront the topic with new intuition — one that takes specific aim at the confusion between entropy and disorder.

A September 6, 2023 AIP news release (also on EurekAlert), which originated the news item, provides more detail,

“It’s a huge conceptual roadblock,” Rogers said. “The good news is that we’ve found that it’s something you can correct relatively easily early on. The bad news is that this misunderstanding gets taught so early on.”

While many classes opt for the imperfect, qualitative shorthand of calling entropy “disorder,” it’s defined mathematically as the number of ways energy can be distributed in a system. Such a definition merely requires students to understand how particles store energy, formally known as “degrees of freedom.”  

To tackle the problem, Rogers developed a model in which small objects such as dice and buttons are poured into a box, replicating a simple thermodynamic system. Some particles in the densely filled box are packed in place, meaning they have fewer degrees of freedom, leading to an overall low-entropy system.

As students shake the box, they introduce energy into the system, which loosens up locked-in particles. This increases the overall number of ways energy can be distributed within the box.

“You essentially zoom in on entropy so students can say, ‘Aha! There is where I saw the entropy increase,’” Rogers said.

As students shake further, the particles settle into a configuration that more evenly portions out the energy among them. The catch: at this point of high entropy, the particles fall into an orderly alignment. 

“Even though it looks more orientationally ordered, there’s actually higher entropy,” Rogers said.

All the students who participated in the lesson were able to reason to the correct definition of entropy after the experiment.

Next, Rogers plans to extend the reach of the model by starting a conversation about entropy with other educators and creating a broader activity guide for ways to use the kits for kindergarten through college. He hopes his work inspires others to clarify the distinction in their classrooms, even if by DIY means.

“Grapes and Cheez-It crackers are very effective, as well,” Rogers said.

Here’s a link to and a citation for the paper,

Hands-on Model for Investigating Entropy and Disorder in the Classroom by T. Ryan Rogers. Phys. Teach. 61, 439–443 (2023) DOI: https://doi.org/10.1119/5.0089761 Published online September 1, 2023

This paper is open access.

I prefer this image of the teaching tool,

Common materials for handheld entropy demonstration. (a) Small, hard, rectangular, clear box with lid. (b) Octahedral dice serving as hard particles. (c) Sewing buttons serving as hard disks. (d) Wooden dowels cut to equal lengths serving as hard rods. [downloaded from https://pubs.aip.org/aapt/pte/article/61/6/439/2908340/Hands-on-Model-for-Investigating-Entropy-and]

Turning my world upside down: a new view on entropy

Entropy as a state of increasing disorder (or everything falls apart) is a concept introduced to me during a high school chemistry class. I think the teacher was having a bad day because the concept was couched in the most depressive terms possible. However, that may the reason a very strong impression was made, so news that entropy may lead to organization definitely piqued my interest. From the July 26, 2012 news item on Nanowerk (Note: I have removed a link),

Researchers trying to herd tiny particles into useful ordered formations have found an unlikely ally: entropy, a tendency generally described as “disorder.”

Computer simulations by University of Michigan scientists and engineers show that the property can nudge particles to form organized structures. By analyzing the shapes of the particles beforehand, they can even predict what kinds of structures will form.

The findings, published in this week’s edition of Science (“Predictive Self-Assembly of Polyhedra into Complex Structures”), help lay the ground rules for making designer materials with wild capabilities such as shape-shifting skins to camouflage a vehicle or optimize its aerodynamics.

More information can be found in the University of Michigan July 26, 2012 news release by Nicole Casal Moore,

One of the major challenges is persuading the nanoparticles to create the intended structures, but recent studies by Glotzer’s [professor Sharon Glotzer] group and others showed that some simple particle shapes do so spontaneously as the particles are crowded together. The team wondered if other particle shapes could do the same.

“We studied 145 different shapes, and that gave us more data than anyone has ever had on these types of potential crystal-formers,” Glotzer SAID. “With so much information, we could begin to see just how many structures are possible from particle shape alone, and look for trends.”

Using computer code written by chemical engineering research investigator Michael Engel, applied physics graduate student Pablo Damasceno ran thousands of virtual experiments, exploring how each shape behaved under different levels of crowding. The program could handle any polyhedral shape, such as dice with any number of sides.

Left to their own devices, drifting particles find the arrangements with the highest entropy. That arrangement matches the idea that entropy is a disorder if the particles have enough space: they disperse, pointed in random directions. But crowded tightly, the particles began forming crystal structures like atoms do—even though they couldn’t make bonds. These ordered crystals had to be the high-entropy arrangements, too.

However, this isn’t a simple reversal of the  entropy concept at the nanoscale (from the Moore news release),

Glotzer explains that this isn’t really disorder creating order—entropy needs its image updated. Instead, she describes it as a measure of possibilities. If you could turn off gravity and empty a bag full of dice into a jar, the floating dice would point every which way. However, if you keep adding dice, eventually space becomes so limited that the dice have more options to align face-to-face. The same thing happens to the nanoparticles, which are so small that they feel entropy’s influence more strongly than gravity’s.

“It’s all about options. In this case, ordered arrangements produce the most possibilities, the most options. It’s counterintuitive, to be sure,” Glotzer said.

The simulation results showed that nearly 70 percent of the shapes tested produced crystal-like structures under entropy alone. But the shocker was how complicated some of these structures were, with up to 52 particles involved in the pattern that repeated throughout the crystal.

Here’s an illustration the scientists have provided,

Shapes can arrange themselves into crystal structures through entropy alone, new research from the University of Michigan shows. Image credit: P. Damasceno, M. Engel, S. Glotzer

This excerpt includes a bit more about the crystals and two of the remaining mysteries (from the Moore news release),

The particle shapes produced three crystal types: regular crystals like salt, liquid crystals as found in some flat-screen TVs and plastic crystals in which particles can spin in place. By analyzing the shape of the particle and how groups of them behave before they crystallize, Damasceno said that it is possible to predict which type of crystal the particles would make.

“The geometry of the particles themselves holds the secret for their assembly behavior,” he said.

Why the other 30 percent never formed crystal structures, remaining as disordered glasses, is a mystery.

“These may still want to form crystals but got stuck. What’s neat is that for any particle that gets stuck, we had other, awfully similar shapes forming crystals,” Glotzer said.

In addition to finding out more about how to coax nanoparticles into structures, her team will also try to discover why some shapes resist order.