Tag Archives: Anya Kamenetz

Steering cockroaches in the lab and in your backyard—cutting edge neuroscience

In this piece I’m mashing together two items, both involving cockroaches and neuroscience and, in one case, disaster recovery. The first item concerns research at the North Carolina State University where video game techniques are being used to control cockroaches. From the June 25, 2013 news item on ScienceDaily,

North Carolina State University researchers are using video game technology to remotely control cockroaches on autopilot, with a computer steering the cockroach through a controlled environment. The researchers are using the technology to track how roaches respond to the remote control, with the goal of developing ways that roaches on autopilot can be used to map dynamic environments — such as collapsed buildings.

The researchers have incorporated Microsoft’s motion-sensing Kinect system into an electronic interface developed at NC State that can remotely control cockroaches. The researchers plug in a digitally plotted path for the roach, and use Kinect to identify and track the insect’s progress. The program then uses the Kinect tracking data to automatically steer the roach along the desired path.

The June 25, 2013 North Carolina State University news release, which originated the news item, reveals more details,

The program also uses Kinect to collect data on how the roaches respond to the electrical impulses from the remote-control interface. This data will help the researchers fine-tune the steering parameters needed to control the roaches more precisely.

“Our goal is to be able to guide these roaches as efficiently as possible, and our work with Kinect is helping us do that,” says Dr. Alper Bozkurt, an assistant professor of electrical and computer engineering at NC State and co-author of a paper on the work.

“We want to build on this program, incorporating mapping and radio frequency techniques that will allow us to use a small group of cockroaches to explore and map disaster sites,” Bozkurt says. “The autopilot program would control the roaches, sending them on the most efficient routes to provide rescuers with a comprehensive view of the situation.”

The roaches would also be equipped with sensors, such as microphones, to detect survivors in collapsed buildings or other disaster areas. “We may even be able to attach small speakers, which would allow rescuers to communicate with anyone who is trapped,” Bozkurt says.

Bozkurt’s team had previously developed the technology that would allow users to steer cockroaches remotely, but the use of Kinect to develop an autopilot program and track the precise response of roaches to electrical impulses is new.

The interface that controls the roach is wired to the roach’s antennae and cerci. The cerci are sensory organs on the roach’s abdomen, which are normally used to detect movement in the air that could indicate a predator is approaching – causing the roach to scurry away. But the researchers use the wires attached to the cerci to spur the roach into motion. The wires attached to the antennae send small charges that trick the roach into thinking the antennae are in contact with a barrier and steering them in the opposite direction.

Meanwhile for those of us without laboratories, there’s the RoboRoach Kickstarter project,

Our Roboroach is an innovative marriage of behavioral neuroscience and neural engineering. Cockroaches use the antennas on their head to navigate the world around them. When these antennas touch a wall, the cockroach turns away from the wall. The antenna of a cockroach contains neurons that are sensitive to touch and smell.

The backpack we invented communicates directly to the [cockroach’s] neurons via small electrical pulses. The cockroach undergoes a short surgery (under anesthesia) in which wires are placed inside the antenna. Once it recovers, a backpack is temporarily placed on its back.

When you send the command from your mobile phone, the backpack sends pulses to the antenna, which causes the neurons to fire, which causes the roach to think there is a wall on one side. The result? The roach turns! Microstimulation is the same neurotechnology that is used to treat Parkinson’s Disease and is also used in Cochlear Implants.

This product is not a toy, but a tool to learn about how our brains work. Using the RoboRoach, you will be able to discover a number of interesting things about nature:

Neural control of Behaviour: First and foremost you will see in real-time how the brain respondes to sensory stimuli.

Learning and Memory: After a few minutes the cockroach will stop responding to the RoboRaoch microstimulation. Why? The brain learns and adapts. That is what brains are designed to do. You can measure the time to adaptation for various stimulation frequencies.

Adaptation and Habituation: After placing the cockroach back in its homecage, how long does it take for him to respond again? Does he adapt to the stimuli more quickly?

Stimuli Selection: What range of frequencies works for causing neurons to fire? With this tool, you will be able to select the range of stimulation to see what works best for your prep. Is it the same that is used by medical doctors stimulating human neurons? You will find out.

Effect of Randomness: For the first time ever… we will be adding a “random” mode to our stimulus patterns. We, as humans, can adapt easily to periodic noises (the hum a refrigerator can be ignored, for example). So perhaps the reason for adaptation is our stimulus is periodic. Now you can select random mode and see if the RoboRoach adapts as quickly.. or at all!

Backyard Brains (mentioned here in my March 28, 2012 posting* about neurons, dance, and do-it-yourself neuroscience; another mashup), the organization initiating this Kickstarter campaign, has 13 days left to make its goal  of $10,000 (as of today, June 26, 2013 at 10:00 am PDT, the project has received $9,774 in pledges).

Pledges can range from $5 to $500 with incentives ranging from a mention on their website to delivery of RoboRoach Kits (complete with cockroaches, only within US borders).

This particular version of the RoboRoach project was introduced by Greg Gage at TEDGlobal 2103. Here’s what Karen Eng had to say about the presentation in her June 12, 2013 posting on the TED [technology, entertainment, design] blog,

Talking as fast and fervently as a circus busker, TED Fellow Greg Gage introduces the world to RoboRoach — a kit that allows you create a cockroach cyborg and control its movements via an iPhone app and “the world’s first commercially available cyborg in the history of mankind.”

“I’m a neuroscientist,” says Gage, “and that means I had to go to grad school for five years just to ask questions about the brain.” This is because the equipment involved is so expensive and complex that it’s only available in university research labs, accessible to PhD candidates and researchers. But other branches of science don’t have this problem — “You don’t have to get a PhD in astronomy to get a telescope and study the sky.”

Yet one in five of us will be diagnosed with a neurological disorder — for which we have no cures. We need more people educated in neuroscience to investigate these diseases. That’s why Gage and his partners at Backyard Brains are developing affordable tools that allow educators to teach electrophysiology from university down to the fifth grade level.

As he speaks, he and his partner, Tim Marzullo, release a large South American cockroach wearing an electronic backpack — which sends an electrical current directly into the cockroach’s antenna nerves — onto the table on stage. A line of green spikes appear, accompanied by a sound like rain on a tent or popcorn popping. “The common currency of the brain are the spikes in the neurons,” Gage explains. “These are the neurons that are inside of the antenna, but that’s also what your brain sounds like. Your thoughts, your hopes, your dreams, all encoded into these spikes. People, this is reality right here — the spikes are everything you know!” As Greg’s partner swipes his finger across his iPhone, the RoboRoach swerves left and right, sometimes erratically going in a full confused circle.

So why do this? “This is the exact same technology that’s used to treat Parkinson’s disease and make cochlear implants for deaf people. If we can get these tools into hands of kids, we can start the neurological revolution.”

After Gage’s talk, Chris Anderson asks about the ethics of using the cockroaches for these purposes. Gage explains that this is microstimulation, not a pain response — the evidence is that the roach adapts quickly to the stimulation. (In fact, some high school students have discovered that they can control the rate of adaptation in an unusual way — by playing music to the roaches over their iPods.) After the experiment, he says, the cockroaches are released to go back to do what cockroaches normally do. So don’t worry — no animals were irretrievably harmed in the making of this TED talk.

Anya Kamenetz in her June 7, 2013 article for Fast Company about the then upcoming presentation also mentions insect welfare,

Attaching the electronic “backpack” to an unwitting arthropod is not for the squeamish. You must sand down the top of the critter’s head in order to attach a plug, “Exactly like the Matrix,” says Backyard Brains cofounder Greg Gage. Once installed, the system relays electrical impulses over a Bluetooth connection from your phone to the cockroach’s brain, via its antennae. …

Gage claims that he has scientific proof that neither the surgery nor the stimulation hurts the roaches. The proof, according to Gage, is that the stimulation stops working after a little while as the roaches apparently decide to ignore it.

Kamenetz goes on to note that this project has already led to a discovery. High school students in New York City found that cockroaches did not habituate to randomized electrical signals as quickly as they did to steady signals. This discovery could have implications for treatment of diseases such as Parkinson’s.

The issue of animal use/welfare vis à vis scientific experiments is not an easy one and I can understand why Gage might be eager to dismiss any suggestions that the cockroaches are being hurt.  Given how hard it is to ignore pain, I am willing to accept Gage’s dismissal of the issue until such time as he is proven wrong. (BTW, I am curious as to how one would know if a cockroach is experiencing pain.)

I have one more thought for the road. I wonder whether the researchers at North Carolina State University are aware of the RoboRoach work and are able to integrate some of those findings into their own research (and vice versa).

*’March 28, 2013′ corrected to ‘March 28, 2012’ on Oct. 9, 2017.

Plants that glow in the dark; Kickstarter campaign or public relations campaign?

Synthetic biologists have set up a Kickstarter campaign, Glowing Plants: Natural Lighting with no Electricity, designed to raise funds for a specific project and enthusiasm for  synthetic biology in the form of plants that glow in the dark. As of this morning (May 7, 2013, 9:50 am PDT), the campaign has raised $248, 600. They’ve met their initial goal of $60,000 and are now working towards their stretch goal of $400,000 with 30 days left.

Glowing Arabidopsis

Glowing Arabidopsis

Ariel Schwartz in her May 7, 2013 article for Fast Company describes the project this way,

Based on research from the University of Cambridge and the State University of New York, the Glowing Plants campaign promises backers that they’ll receive seeds to grow their own glowing Arabidopsis plants at home. If the campaign reaches its $400,000 stretch goal, glowing rose plants will also become available.

“We wanted to test the idea of whether there is demand for synthetic biology projects,” explains project co-founder Antony Evans. …

Kickstarter backers will get seeds created using particle bombardment. Gold nano-particles coated with a DNA construct developed by the team are fired at plant cells at a high-velocity. A small number of those particles make it into the Arabidopsis plant cells, where they’re absorbed into the plant chromosomes.

Arabidopsis was chosen for a number of reasons: it’s not native to the U.S., so there is little risk of cross-pollination; it doesn’t survive well in the wild (again, reducing risk of cross-pollination), it self-pollinates, and up until recently, it was thought to have the shortest genome of any plant. That means the protocols for Arabidopsis plant transformation work are well-established. Roses (the stretch goal plant) have also been studied extensively, and they carry little risk of cross-pollination, according to Evans.

As Schwartz notes, the project has potential for future applications,

In the meantime, Evans and his team plan on spending the next year on the campaign. Eventually, Evans imagines that the Glowing Plants creators will work on bigger glowing plant species, so one day they could even be used for street lighting.

Here’s more about the team behind this Kickstarter campaign (from the project page, click on Antony Evans),

Omri Amirav-Drory, PhD, is the founder and CEO of Genome Compiler, a synthetic biology venture. Prior to starting his company, Omri was a Fulbright postdoctoral research fellow at Stanford University School of Medicine and HHMI, performing neuroscience research using structural and synthetic biology methods. Omri received his PhD in biochemistry from Tel-Aviv University for biochemical and structural studies of membrane protein complexes involved in bio-energetics.

Antony Evans has an MBA with Distinction from INSEAD, an MA in Maths from the University of Cambridge and is a graduate of Singularity University’s GSP program. He is both a Louis Frank and Oppidan scholar and worked for six years as a management consultant and project manager at Oliver Wyman and Bain & Company. Prior to this project he co-founded the world’s first pure mobile microfinance bank in the Philippines and launched a mobile app in partnership with Harvard Medical School.

Kyle Taylor was born and raised in the great state of Kansas, where his love of plants evolved out of an interest in the agriculture all around him. This lead him to major in Agriculture Biochemistry and minor in Agronomy at Iowa State University and then pursue a PhD in Cell and Molecular Biology at Stanford University. Not too bad for a rural country boy! Since a lot of people helped him get to this point, he’s driven to share his passion and excitement by making what he does more accessible. Kyle teaches Introduction to Molecular Cell Biology at Biocurious and is our resident plant expert.

This project reminded me of artist Eduardo Kac (pronounced Katz) and his transgenic bunny, Alba. She glows/ed green in the dark. Here’s more from Kac’s ‘transgenic bunny’ webpage,

My transgenic artwork “GFP Bunny” comprises the creation of a green fluorescent rabbit, the public dialogue generated by the project, and the social integration of the rabbit. GFP stands for green fluorescent protein. “GFP Bunny” was realized in 2000 and first presented publicly in Avignon, France. Transgenic art, I proposed elsewhere [1], is a new art form based on the use of genetic engineering to transfer natural or synthetic genes to an organism, to create unique living beings. This must be done with great care, with acknowledgment of the complex issues thus raised and, above all, with a commitment to respect, nurture, and love the life thus created.

Alba, the fluorescent bunny. Photo: Chrystelle Fontaine

Alba, the fluorescent bunny. Photo: Chrystelle Fontaine

She never looks quite real to me. Under a standard light, she’s a white rabbit but glows when illuminated by a blue  light.  From Kac’s transgenic bunny page,

She was created with EGFP, an enhanced version (i.e., a synthetic mutation) of the original wild-type green fluorescent gene found in the jellyfish Aequorea Victoria. EGFP gives about two orders of magnitude greater fluorescence in mammalian cells (including human cells) than the original jellyfish gene

I don’t know if she still lives but Kac was creating work based on her up until 2011. You can find more here.

ETA June 12, 2013:  Anya Kamenetz has written a followup June 12, 2013 article for Fast Company about this Kickstarter project (Note: A link has been removed),

Though the project is technically legal, its sheer hubris has kickstarted some serious from scientists and environmental groups that object to the release of these seeds to the public, with the chance that the DNA will get into the natural gene pool with unknown consequences. An anti-synthetic bio group called ETC has started a fundraising drive of their own, dubbed a “Kickstopper.”

There’s also an online petition according to Kamenetz. One comment, her description of ‘ETC’ as an anti-synthetic bio group doesn’t quite convey the group’s scope or depth. It’s name is the ETC Group (Action group on Erosion, Technology and Concentration) and its tag line is ‘monitoring power, tracking technology, strengthening diversity.

ETA August 16, 2017: I have an update for the Kickstarter project and additional information about Alba in an Aug. 16, 201 posting.

University of British Columbia (Canada) boards the Coursera train

The last time I featured an online education story was in my Aug. 9, 2011 posting about Stanford University and a free, Artificial Intelligence online course. It was a hugely successful effort and seems to have, at least partially, inspired a whole new institutional approach to offering education.

Universities still want to make money but instead of charging for the courses, they’ll be charging for the certification in these new online education ventures. That’s the theory behind Coursera, founded by Daphne Koller and Andrew Ng at Stanford University (California).

Today, Sept. 19 2012,  Coursera announced that the number of participating educational institutions has doubled. From the Sept. 19, 2012 article by Anya Kamenetz for Fast Company,

Having already teamed up with more colleges than any of its rivals, Coursera adds 17 new global universities to its roster.

Since its debut earlier this year, 1.3 million people have signed up for a free six- to ten-week Coursera class, which includes videos, exercises, embedded assessment and a social component delivered through message boards.

Although still exploring business models, the venture-funded company plans to eventually make money through certifications (a path competitor Udacity is already pursuing). The addition of these new partners will give Coursera an advantage in what’s become an increasingly crowded online education market.

Kamenetz’s article provides more detail about Coursera’s competitors and course offerings. I’m going to concentrate on one of the new universities to team up with the company, the University of British Columbia (from my home province). From the University of British Columbia (UBC) Sept. 19, 2012 media release,

The University of British Columbia is joining forces with the U.S.-based company Coursera to provide high quality, non-credit courses free of charge to a worldwide audience – bringing the university’s expertise within reach of anyone with Internet access.

Starting spring 2013, UBC will pilot three non-credit courses taught by renowned UBC faculty and researchers through Coursera’s online learning platform.

“Our partnership with Coursera will enable us to reach people around the world, and to evaluate an exciting new teaching and learning technology,” says Simon Peacock, Dean of the Faculty of Science, where two of the three UBC Coursera courses will be housed. “Ultimately, I believe all UBC students will benefit from our exploration of this rapidly evolving online space.”

UBC’s Coursera offerings are “Useful Genetics” with Prof. Rosie Redfield [emphasis mine], “Computer Science Problem Design” with Prof. Gregor Kiczales and “Climate Literacy: Navigating Climate Conversations” with Sarah Burch and Tom-Pierre Frappé-Sénéclauze, instructors for the UBC Continuing Studies Centre for Sustainability.

Coursera courses typically consist of videos or voice-over PowerPoint presentations, with student-led discussion forums, interactive activities, quizzes and assignments set at regular intervals.

(Rosie Redfield has been mentioned here before in the context of the ‘arsenic life’ controversy in a Dec. 8, 2010 posting where I apologized for having gotten caught up in the excitement and discuss the controversy at some length.)

Coursera‘s offerings are heavily weighted towards the sciences and mathematics but those are more easily quantifiable than the humanities and I imagine that makes them easier to mark. I understand from Kamenetz’s article, Coursera is testing a peer grading scheme. The website is easy to navigate as is signing up for a course. I do have a couple of  provisos. (1)  I was not able to find out the minimum technical requirement for a potential student’s computer. (2) At this point, they are offering certificates of completion, nothing else. You’re not going to be getting a degree or other professional certification from Stanford or Brown or UBC or any of the others.

On another note, I have a mild quibble with the UBC media release,

• UBC is building upon its leadership in continuing and distance education to enhance the student learning experience. The Coursera partnership will provide evidence-based findings for UBC to design and support quality learning interactions for online, face-to-face and other classroom delivery modes.

I’m not sure I’d call ‘jumping on the train’ with a bunch of other institutions leadership. As for the plan to extract data and mine the Coursera relationship so UBC can design and offer competitive (?) programmes in future, I think that must have been an interesting negotiation. As well, I appreciate the importance of building on someone else’s work as UBC is planning but I’m not sure I’d call that leadership either.

Entrepreneurial scientists: there’s a new fund for you

The San Francisco-based Thiel Foundation announced today that it will be offering funds to entrepreneurial-minded scientists for early stage science and technology research via Breakout Labs. From the Oct. 25, 2011 article by Anya Kamenetz for Fast Company,

Last seen paying kids to drop out of college and starting his own private island nation, PayPal founder Peter Thiel has announced a new philanthropic venture that sounds a little more reasonable. Breakout Labs, Thiel said at a speech at Stanford, would grant $50,000 to $350,000 in funding to “entrepreneurial” scientists–those completely independent of typical research institutions–for very early projects that may even be pre-proof of concept. Some of the money must be paid forward through revenue-sharing agreements with Breakout Labs, and the scientists must pursue patents or publish their findings in open-access journals like PLoS [Public Library of Science], Creative Commons-style.

There’s more information in the Oct. 25, 2011 media release on the Thiel Foundation website,

Calling for more rapid innovation in science and technology, Peter Thiel today launched a new program of the Thiel Foundation, Breakout Labs. Speaking at Stanford to an event organized by the Business Association of Stanford Entrepreneurial Students, Thiel announced that Breakout Labs will use a revolving fund to improve the way early-stage science and technology research is funded by helping independent scientists and early-stage companies develop their most radical ideas.

“Some of the world’s most important technologies were created by independent minds working long nights in garage labs,” said Thiel. “But when their ideas are too new, unproven, or unpopular, these visionaries can find it difficult to obtain support. Through Breakout Labs, we’re going to create opportunities for revolutionary science by cultivating an entrepreneurial research model that prizes extreme creativity and bold thinking.”

With venture capital shifting to later and later stages of development and commercialization, and with ever shorter investment time horizons, there are few available means of support for independent early-stage development of science and technology. But many of these technologies are ripe for the same kind of innovations that began in computing during the 1970s, when small, visionary start-ups began to take on industry giants who wielded much bigger research and development budgets. Breakout Labs will accelerate this trend.

“Venture capital firms look for research that can be brought to market within five to seven years, and major funders like the National Institutes of Health have a low tolerance for radical ideas,” said Breakout Labs founder and executive director Lindy Fishburne. “At Breakout Labs, we’re looking for ideas that are too ahead of their time for traditional funding sources, but represent the first step toward something that, if successful, would be groundbreaking.”

Then there’s the Programs page of the Breakout Lab’s website,

Breakout Labs is a bold re-envisioning of the way early-stage science gets funded, allowing independent researchers and early-stage companies to test their most radical ideas. We invite individuals, teams of individuals, and early stage companies from around the world to apply for funding of a specific project that would push the limits of science and technology.

It’s unusual to see a funding program that isn’t constrained by nationality or country of residence. Another unusual feature is that  revenue sharing is being built into relationship,

Breakout Labs offers two types of revenue sharing agreements:

  • Funded companies retain IP that arises from the project and commit a modest royalty stream and an option for a small investment in their company to Breakout Labs.
  • Funded researchers assign project IP to Breakout Labs in exchange for a substantial royalty stream from any future revenue generated by successful commercialization of the IP.

Key to support from Breakout Labs is an agreement that maximizes the dissemination of the resulting innovations, either through publication or intellectual property development.

Good luck to all the entrepeneurial scientists out there!