Tag Archives: art science

Brain data (neuroscience) crowdsourced at Toronto’s (Canada) 2013 Nuit Blanche event

The brain data was crowdsourced in 2013 in Toronto but only recently published according to a July 8, 2015 Baycrest Centre for Geriatric Care news release (also on EurekAlert),

Neuroscientists in Toronto have shown that crowdsourcing brain data with hundreds of adults in a short period of time could be a new frontier in neuroscience and lead to new insights about the brain.

More than 500 adults aged 18 and older participated in the experiment at the 2013 Scotiabank Nuit Blanche arts event in Toronto. Baycrest, in partnership with the University of Toronto and industry partners, created a large-scale art-science installation called My Virtual Dream. Festival-goers were invited to wear a Muse™ wireless electroencephalography (EEG) headband and participate in a brief collective neurofeedback experience in groups of 20 inside a 60-foot geodesic dome. The group’s collective EEG signals triggered a specific catalogue of artistic imagery displayed on the dome’s 360-degree interior, along with spontaneous musical interpretation by live musicians on stage.

The installation was one of the most popular at Nuit Blanche, with an average lineup wait time of two hours.

Studying brains in a social and multi-sensory environment is closer to real life and may help scientists to approach questions of complex real-life social cognition that otherwise are not accessible in traditional labs that study one person’s cognitive functions at a time.

“In traditional lab settings, the environment is so controlled that you can lose some of the fine points of real-time brain activity that occur in a social life setting,” said Dr. Kovacevic, creative producer of My Virtual Dream and program manager of the Centre for Integrative Brain Dynamics at Baycrest’s Rotman Research Institute.

“What we’ve done is taken the lab to the public. We collaborated with multi-media artists, made this experiment incredibly engaging, attracted highly motivated subjects which is not easy to do in the traditional lab setting, and collected useful scientific data from their experience.”

Results from the experiment not only demonstrated the scientific viability of collective neurofeedback as a potential new avenue of neuroscience research that takes into account individuality, complexity and sociability of the human mind, but yielded new evidence that neurofeedback learning can have an effect on the brain almost immediately.

Neurofeedback learning supports mindful awareness and joins a growing market for wearable biofeedback devices. The device used in this study, Muse™, is a clinical-grade EEG brain computer interface (BCI) headband that helps individuals to be more aware of their brain states (relaxed versus focused versus distracted) and learn self-regulation of brain function to fit their personal goals.

A total of 523 adults (209 males, 314 females), ranging in age from 18 to 89, with an average age of 31, contributed their EEG brain data for the study. Each session involved 20 participants being seated in a semicircle in front of a stage and divided into four groups (“pods”) of five. They played a collective neurofeedback computer game where they were required to manipulate their mental states of relaxation and concentration. The neurofeedback training lasted 6.5 minutes, which is much shorter than typical neurofeedback training experiments.

The massive amount of EEG data collected in one night yielded an interesting and statistically relevant finding – that subtle brain activity changes were taking place within approximately one minute of the neurofeedback learning exercise – unprecedented speed of learning changes that have not been demonstrated before.

“These results really open up a whole new domain of neuroscience study that actively engages the public to advance our understanding of the brain,” said Dr. Randy McIntosh, director of the Rotman Research Institute and vice-president of Research at Baycrest. He is a senior author on the paper.

The idea for the Nuit Blanche art -science experiment was inspired by Baycrest’s ongoing international project to build the world’s first functional, virtual brain – a research and diagnostic tool that could one day revolutionize brain healthcare.

Baycrest cognitive neuroscientists collaborated with artists and gaming and wearable technology industry partners for over a year to create the My Virtual Dream installation. Partners included the University of Toronto, Scotiabank Nuit Blanche, Muse™ and Uken Games.

Here’s a link to and a citation for the paper,

‘My Virtual Dream’: Collective Neurofeedback in an Immersive Art Environment by Natasha Kovacevic, Petra Ritter, William Tays, Sylvain Moreno, and Anthony Randal McIntosh. DOI: 10.1371/journal.pone.0130129 PLOS Published: July 8, 2015

This is an open access paper.

A few final words, I last wrote about MUSE (a Canadian technology company) in a March 6, 2015 posting. Uken Games , also a Canadian company, is new to this blog.

Science for your imagination

David Bruggeman over on his Pasco Phronesis has two postings which highlight different approaches to communicating about science. His Aug. 31, 2014 posting features audio plays (Note: Links have been removed),

L.A. Theatre Works makes a large number of their works available via audio. Its Relativity series (H/T Scirens) is a collection of (at this writing) 25 plays with science and technology either as themes and/or as forces driving the action of the play. You’re certainly familiar with War of the Worlds, and you may have heard of the plays Arcadia and Copenhagen. The science covered in these plays is from a number of different fields, and some works will try to engage the audience on the social implications of how science is conducted. The casts have many familiar faces as well. …

You can find the Relativity Series website here where the home page features these (amongst others),

COMPLETENESS

Jason Ritter and Mandy Siegfried star in a new play about love between gun-shy young scientists.

BREAKING THE CODE

The story of Alan Turing, an early pioneer in computer science, and his struggle to live authentically while serving his country.

THE DOCTOR’S DILEMMA

A respected physician must choose between the lives of two terminally ill men in George Bernard Shaw’s sharp-tongued satire of the medical profession.

THE EXPLORERS CLUB

It’s London, 1879, and the members of the Explorers Club must confront their most lethal threat yet: the admission of a woman into their scientific ranks.

THE GREAT TENNESSEE MONKEY TRIAL

The Scopes Monkey Trial of 1925 comes to life as William Jennings Bryan and Clarence Darrow square off over human evolution and the divide between faith and science.

PHOTOGRAPH 51

Miriam Margolyes stars as Rosalind Franklin, whose work led directly to the discovery of the DNA “double helix.”

DOCTOR CERBERUS

A teenage misfit is coming of age in the comforting glow of late-night horror movies. But when reality begins to intrude on his fantasy world, he realizes that hiding in the closet is no longer an option.

David’s Aug. 26, 2014 posting features Hieroglyph, a project from Arizona State University’s (ASU) Center for Science and the Imagination (Note: A link has been removed),

Next month [Sept. 2014] William Morrow will release Hieroglyph, a collection of science fiction short stories edited by the Director of the Center for Science and the Imagination at Arizona State University.  The name of the collection is taken from a theory advanced by science fiction writer Neil [Neal] Stephenson, and a larger writing project of which this book is a part.  The Hieroglyph Theory describes the kind of science fiction that can motivate scientists and engineers to create a future.  A Hieroglyph story provides a complete picture of the future, with a compelling innovation as part of that future.  An example would be the Asimov model of robotics.

Heiroglyph was first mentioned here in a May 7, 2013 posting,

The item which moved me to publish today (May 7, 2013), Can Science Fiction Writers Inspire The World To Save Itself?, by Ariel Schwartz concerns the Hieroglyph project at Arizona State University,

Humanity’s lack of a positive vision for the future can be blamed in part on an engineering culture that’s more focused on incrementalism (and VC funding) than big ideas. But maybe science fiction writers should share some of the blame. That’s the idea that came out of a conversation in 2011 between science fiction author Neal Stephenson and Michael Crow, the president of Arizona State University.

If science fiction inspires scientists and engineers to create new things–Stephenson believes it can–then more visionary, realistic sci-fi stories can help create a better future. Hence the Hieroglyph experiment, launched this month as a collaborative website for researchers and writers. Many of the stories created on the platform will go into a HarperCollins anthology of fiction and non-fiction, set to be published in 2014.

As it turns out, William Morrow Books is a a HarperCollins imprint. You can read a bit more about the book and preview some of the contents from the Scribd.com Hieroglyph webpage which includes this table of contents (much better looking in the Scribd version),

CONTENTS
FOREWORD—
LAWRENCE M. KRAUSS vii
PREFACE: INNOVATION STARVATION—NEAL STEPHENSON xiii
ACKNOWLEDGMENTS xxi
INTRODUCTION: A BLUEPRINT FOR BETTER DREAMS—ED FINN AND KATHRYN CRAMER xxiii
ATMOSPHÆRA INCOGNITA—NEAL STEPHENSON 1
GIRL IN WAVE : WAVE IN GIRL—KATHLEEN ANN GOONAN 38
BY THE TIME WE GET TO ARIZONA—MADELINE ASHBY 74
THE MAN WHO SOLD THE MOON—CORY DOCTOROW 98
JOHNNY APPLEDRONE VS. THE FAA—LEE KONSTANTINOU 182
DEGREES OF FREEDOM—KARL SCHROEDER 206
TWO SCENARIOS FOR THE FUTURE OF SOLAR ENERGY—ANNALEE NEWITZ 243
A HOTEL IN ANTARCTICA—GEOFFREY A. LANDIS 254
PERIAPSIS—JAMES L. CAMBIAS 283
THE MAN WHO SOLD THE STARS—GREGORY BENFORD 307
ENTANGLEMENT—VANDANA SINGH 352
ELEPHANT ANGELS—BRENDA COOPER 398
COVENANT—ELIZABETH BEAR 421
QUANTUM TELEPATHY—RUDY RUCKER 436
TRANSITION GENERATION—DAVID BRIN 466
THE DAY IT ALL ENDED—CHARLIE JANE ANDERS 477
TALL TOWER—BRUCE STERLING 489
SCIENCE AND SCIENCE FICTION: AN INTERVIEW WITH PAUL DAVIES 515
ABOUT THE EDITORS 526
ABOUT THE CONTRIBUTORS 527

Good on the organizers for being able to follow through on their promise to have something published by HarperCollins in 2014.

This book is not ASU’s Center for Science and the Imagination’s only activity. In November 2014, Margaret Atwood, an internationally known Canadian novelist, will visit the center (from the center’s home page),

Internationally renowned novelist and environmental activist Margaret Atwood will visit Arizona State University this November to discuss the relationship between art and science, and the importance of creative writing and imagination for addressing social and environmental challenges.

Atwood’s visit will mark the launch of the Imagination and Climate Futures Initiative, a new collaborative venture at ASU among the Rob and Melani Walton Sustainability Solutions Initiatives, the Center for Science and the Imagination and the Virginia G. Piper Center for Creative Writing. Atwood, author of the MaddAddam trilogy of novels that have become central to the emerging literary genre of climate fiction, or “CliFi,” will offer the inaugural lecture for the initiative on Nov. 5.

“We are proud to welcome Margaret Atwood, one of the world’s most celebrated living writers, to ASU and engage her in these discussions around climate, science and creative writing,” said Jewell Parker Rhodes, founding artistic director for the Virginia G. Piper Center for Creative Writing and the Piper Endowed Chair at Arizona State University. “A poet, novelist, literary critic and essayist, Ms. Atwood epitomizes the creative and professional excellence our students aspire to achieve.”

Focusing in particular on CliFi, the Imagination and Climate Futures Initiative will explore how imaginative skills can be harnessed to create solutions to climate challenges, and question whether and how creative writing can affect political decisions and behavior by influencing our social, political and scientific imagination.

“ASU is a leader in exploring how creativity and the imagination drive the arts, sciences, engineering and humanities,” said Ed Finn, director of the Center for Science and the Imagination. “The Imagination and Climate Futures Initiative will use the thriving CliFi genre to ask the hard questions about our cultural relationship to climate change and offer compelling visions for sustainable futures.”

The multidisciplinary Initiative will bring together researchers, artists, writers, decision-makers and the public to engage in research projects, teaching activities and events at ASU and beyond. The three ASU programs behind the Imagination and Climate Futures Initiative have a track record for academic and public engagement around innovative programs, including the Sustainability Solutions Festival; Emerge; and the Desert Nights, Rising Stars Writers Conference.

“Imagining how the future could unfold in a climatically changing world is key to making good policy and governance decisions today,” said Manjana Milkoreit, a postdoctoral fellow with the Walton Sustainability Solutions Initiatives. “We need to know more about the nature of imagination, its relationship to scientific knowledge and the effect of cultural phenomena such as CliFi on our imaginative capabilities and, ultimately, our collective ability to create a safe and prosperous future.”

Kind of odd they don’t mention Atwood’s Canadian, eh?

There’s lots more on the page which features news bits and articles, as well as, event information. Coincidentally, another Canuck (assuming he retains his citizenship after several years in the US) visited the center on June 7, 2014 to participate in an event billed as ‘An evening with Nathan Fillion and friends;; serenity [Joss Whedon’s tv series and movie], softwire, and science of science fiction’. A June 21, 2014 piece (on the center home page) by Joey Eschrich describes the night in some detail,

Nathan Fillion may very well be the friendliest, most unpretentious spaceship captain, mystery-solving author and science fiction heartthrob in the known universe. The “ruggedly handsome” star of TV’s “Castle” was the delight of fans as he headlined a fundraiser on the Arizona State University campus in Tempe, June 7 [2014].

The “Serenity, Softwire, and the Science of Science Fiction” event, benefiting the ASU Department of English and advertised as an “intimate evening for a small group of 50 people,” included considerable face-time with Fillion, who in-person proved surprisingly similar to the witty, charming and compassionate characters he plays on television and in film.

Starring with Fillion in the ASU evening’s festivities were science fiction author PJ Haarsma (a close friend of Fillion’s) along with ASU professors Ed Finn, director of the Center for Science and the Imagination; Peter Goggin, a literacy expert in the Department of English and senior scholar with the Global Institute of Sustainability; and School of Earth and Space Exploration faculty Jim Bell, an astronomer, and Sara Imari Walker, an astrobiologist. In addition to the Department of English, sponsors included ASU’s College of Liberal Arts and Sciences and Center for Science and the Imagination.

The event began with each panelist explaining how he or she arrived at his or her respective careers, and whether science or science fiction played a role in that journey. All panelists pointed to reading and imagining as formational to their senses of themselves and their places in life.

A number of big questions were posed to the panelists: “What is the likelihood of life on other planets?” and “What is the physical practicality of traveling to other planets?” ASU scientists Bell and Walker deftly fielded these complex planetary inquiries, while Goggin and Finn explained how the intersection of science and humanities – embodied in science fiction books and film – encouraged children and scholars alike to think creatively about the future. Attendees reported that they found the conversation “intellectually stimulating and thought-provoking as well as fun and entertaining.”

During the ensuing discussion, Haarsma and Fillion bantered back and forth comically, as we are told they often do in real life, at one point raising the group’s awareness of the mission they have shared for many years: promoting reading in the lives of young people. The two founded the Kids Need to Read Foundation, which provides books to underserved schools and libraries. Fillion, the son of retired English teachers, attended Concordia University of Alberta*, where he was a member of the Kappa Alpha Society, an organization that emphasizes literature and debate. His brother, Jeff, is a highly respected school principal. Fillion’s story about the importance of books and reading in his childhood home was a rare moment of seriousness for the actor.

The most delightful aspect of the evening, according to guests, was the good nature of Fillion himself, who arrived with Haarsma earlier than expected and stayed later than scheduled. Fillion spent several minutes with each individual or group of friends, laughing with them, using their phone cameras to snap group “selfies” and showing a genuine interest in getting to know them.

Audience members each received copies of science fiction books: Haarsma’s teen novel, “Softwire: Virus on Orbis I,” and the Tomorrow Project science fiction anthology “Cautions, Dreams & Curiosities,” which was co-produced by the Center for Science and the Imagination with Intel and the Society for Science & the Public. Guests presented their new books and assorted other items to Fillion and Haarsma for autographing and a bit more conversation before the evening came to a close. It was then time for Fillion to head back downtown to his hotel, but not before one cadre of friends “asked him to take one last group shot of us at the end of the night, to which he replied with a smile, ‘I thought you’d never ask.’”

*Corrected on February 4, 2020: I originally stated that “Concordia University is in the province of Québec not Alberta which is home to the University of Calgary and the University of Alberta.” That is not entirely correct. There is a Concordia University in Alberta as well as in Québec. However, the Concordia in Alberta is properly referred to as Concordia University of Edmonton (its Wikipedia entry proudly lists Nathan Filion as one of its notable alumni).*

The evening with Nathan Fillion and friends was a fundraiser, participants were charged $250 each for one of 50 seats at the event, which means they raised $12,500 minus any expenses incurred. Good for them!

For anyone unfamiliar with P.J. Haarsma’s oeuvre, there’s this Wikipedia entry for The Softwire.

Jackson Pollock’s physics

Take a mathematician (L. Mahadevan), a physicist (Andrzej Herczynski), and an art historian (Claude Cernuschi) and you’re liable to get a different perspective on Jackson Pollock*, a major figure in abstract expressionism, art. (I’m pretty sure there’s a joke in there of the: “There was mathematician and a physicist in a bar when an art historian came in …” ilk. I just can’t come up with it. If you can, please do leave it in the comments.)

Let’s start with a picture (image downloaded from the Wikipedia essay about Jackson Pollock’s No. 5, 1948),

No. 5, 1948 (Jackson Pollock, downloaded from Wikipedia essay about No. 5, 1948)

In a recent paper published in Physics Today (Painting with drops, jets, and sheets, which is behind a paywall), Mahadevan, Herczynski, and Cernuschi speculate about Pollock’s intuitive understanding of physics, in this case, fluid dynamics. From the June 28, 2011 news item on physorg.com,

A quantitative analysis of Pollock’s streams, drips, and coils, by Harvard mathematician L. Mahadevan and collaborators at Boston College, reveals, however, that the artist had to be slow—he had to be deliberate—to exploit fluid dynamics in the way that he did.

The finding, published in Physics Today, represents a rare collision between mathematics, physics, and art history, providing new insight into the artist’s method and techniques—as well as his appreciation for the beauty of natural phenomena.

“My own interest,” says Mahadevan, “is in the tension between the medium—the dynamics of the fluid, and the way it is applied (written, brushed, poured…)—and the message. While the latter will eventually transcend the former, the medium can be sometimes limiting and sometimes liberating.”

Pollock’s signature style involved laying a canvas on the floor and pouring paint onto it in continuous, curving streams. Rather than pouring straight from the can, he applied paint from a stick or a trowel, waving his hand back and forth above the canvas and adjusting the height and angle of the trowel to make the stream of paint wider or thinner.

Simultaneously restricted and inspired by the laws of nature, Pollock took on the role of experimentalist, ceding a certain amount of control to physics in order to create new aesthetic effects.

The artist, of course, must have discovered the effects he could create through experimentation with various motions and types of paint, and perhaps some intuition and luck. But that, says Mahadevan, is the essence of science: “We are all students of nature, and so was Pollock. Often, artists and artisans are far ahead, as they push boundaries in ways that are quite similar to, and yet different from, how scientists and engineers do the same.”

There’s more about this study on the physorg.com site including a video illustrating fluid dynamics. You can also find a June 29, 2011 news item on Science Daily and a June 29, 2011 article in Harvard Magazine about the study. From the Harvard news article,

MODERN ART WAS NEVER more famously lampooned than when Tom Stoppard [playwright and screenwriter] said, “Skill without imagination is craftsmanship and gives us many useful objects such as wickerwork picnic baskets. Imagination without skill gives us modern art.”

The article by expanding on Mahadevan’s research gives the lie to Stoppard’s quote. (I wonder if Stoppard will write a play about physics and art in the light of this new thinking about Pollock’s work?)

This all brought to mind, Richard Jackson’s work which was featured in 2010 at the Rennie Collection in Vancouver (my most substantive comments about Jackson’s work are in my May 11, 2010 posting). Trained as both an artist and an engineer, he too works with paint and its vicosity. I still remember the piece in the gallery basement that featured three (as I recall) cans of paint apparently caught in the act of being poured. In retrospect, one of the things I liked best about the show is that a lot of Jackson’s work is very much about the physical act of painting and the physicality of the materials.

One final note, the L. in Mahadevan’s name stands for Lakshinarayan.

*’Pollock’s’ corrected to Pollock on April 27, 2017.