Tag Archives: buckyballs. C60

Analyzing a buckyball’s (buckminsterfullerene) quantum structure

The work was done jointly by the US National Institute of Standards and Technology (NIST) and JILA (Joint Institute for Laboratory Astrophysics), which is operated ‘jointly’ by NIST and the University of Colorado. On to buckyballs, a nickname for buckminsterfullerenes or C60.

From a January 28, 2019 news item on ScienceDaily,

JILA researchers have measured hundreds of individual quantum energy levels in the buckyball, a spherical cage of 60 carbon atoms. It’s the largest molecule that has ever been analyzed at this level of experimental detail in the history of quantum mechanics. Fully understanding and controlling this molecule’s quantum details could lead to new scientific fields and applications, such as an entire quantum computer contained in a single buckyball.

Caption: JILA researchers used frequency combs, or “rulers of light,” to observe individual quantum energy transitions in buckyballs. Credit: Steven Burrows/JILA

There are two types of spherical objects in the image: the smooth blue ones, which are not buckyballs, and the ones with ridged spheres, which are.

A January 28, 2019 NIST news release (also on EurekAlert), which originated the news item, describes the buckyball molecule and the research in more detail,

The buckyball, formally known as buckminsterfullerene, is extremely complex. Due to its enormous 60-atom size, the overall molecule has a staggeringly high number of ways to vibrate–at least 100,000,000,000,000,000,000,000,000 vibrational quantum states when the molecule is warm. That’s in addition to the many different energy states for the buckyball’s rotation and other properties.

As described in the January 4 [2019] issue of Science, the JILA team used an updated version of their frequency comb spectroscopy and cryogenic buffer gas cooling system to observe isolated, individual energy transitions among rotational and vibrational states in cold, gaseous buckyballs. This is the first time anyone has been able to prepare buckyballs in this form to analyze its rotations and vibrations at the quantum level.

JILA is jointly operated by the National Institute of Standards and Technology (NIST) and the University of Colorado Boulder.

Buckyballs, first discovered in 1984, have created great scientific excitement. But high-resolution spectroscopy, which can reveal the details of the molecule’s rotational and vibrational properties, didn’t work at ordinary room temperatures because the signals were too congested, NIST/JILA Fellow Jun Ye said. Low temperatures (about -138 degrees Celsius, which is -216 degrees Fahrenheit) enabled researchers to concentrate the molecules into a single rotational-vibrational quantum state at the lowest energy level and probe them with high-resolution spectroscopy.

The buckyball is the most symmetric molecule known, with a soccer-ball-like shape known as a modified icosahedron. It is small enough to be fully understood with basic quantum mechanics principles. Yet it is large enough to reveal insights into the extreme quantum complexity that emerges in huge systems.

As an example of practical applications, buckyballs could act as a pristine network of 60 atoms. The core of each atom possesses an identical property known as “nuclear spin,” which enables it to interact magnetically with its environment. Therefore, each spin could act as a magnetically controlled quantum bit or “qubit” in a quantum computer.

“If we had a buckyball made of pure isotopic carbon-13, each atom would have a nuclear spin of 1/2, and each buckyball could serve as a 60-qubit quantum computer,” Ye said. “Of course, we don’t have such capabilities yet; we would need to first capture these buckyballs in traps.”

A key part of the new quantum revolution, a quantum computer using qubits made of atoms or other materials could potentially solve important problems that are intractable using today’s machines. NIST has a major stake in quantum science

“There are also a lot of astrophysics connections,” Ye continued. “There are abundant buckyball signals coming from remote carbon stars,” so the new data will enable scientists to better understand the universe.

After they measured the quantum energy levels, the JILA researchers collected statistics on buckyballs’ nuclear spin values. They confirmed that all 60 atoms were indistinguishable, or virtually identical. Precise measurements of the buckyball’s transition energies between individual quantum states revealed its atoms interacted strongly with one another, providing insights into the complexities of its molecular structure and the forces between atoms.

For the experiments, an oven converted a solid sample of material into gaseous buckyballs. These hot molecules flowed into a cell (container) anchored to a cryogenic cold apparatus, such that the molecules were cooled by collisions with cold argon gas atoms. Then laser light at precise frequencies was aimed at the cold gas molecules, and researchers measured how much light was absorbed. The observed structure in the infrared spectrum encoded details of the quantum-mechanical energy-level structure.

The laser light was produced by an optical frequency comb, or “ruler of light,” and aimed into an optical cavity surrounding the cold cell to enhance the absorption signals. The comb contained about 1000 “teeth” at optical frequencies spanning the full band of buckyball vibrations. The comb light was generated from a single fiber laser.

Here’s a link to and a citation for the paper,

Rovibrational quantum state resolution of the C60 fullerene by P. Bryan Changala, Marissa L. Weichman, Kevin F. Lee, Martin E. Fermann, Jun Ye1. Science 04 Jan 2019: Vol. 363, Issue 6422, pp. 49-54 DOI: 10.1126/science.aav2616

This paper appears to be open access.

Carbon sequestration and buckyballs (aka C60 or buckminsterfullerenes)

Sometime in the last few years I was asked about carbon sequestration (or carbon capture) and nanotechnology and had no answer for the question until now (drat!). A July 13, 2015 Rice University (Texas, US) news release (also on EurekAlert) describes some research into buckyballs and the possibility they could be used to confine greenhouse gases,

Rice University scientists are forging toward tunable carbon-capture materials with a new study that shows how chemical changes affect the abilities of enhanced buckyballs to confine greenhouse gases.

The lab of Rice chemist Andrew Barron found last year that carbon-60 molecules (aka buckyballs, discovered at Rice in the 1980s) gain the ability to sequester carbon dioxide when combined with a polymer known as polyethyleneimine (PEI).

Two critical questions – how and how well – are addressed in a new paper in the American Chemical Society journal Energy and Fuels.

The news release expands on the theme,

The amine-rich combination of C60 and PEI showed its potential in the previous study to capture emissions of carbon dioxide, a greenhouse gas, from such sources as industrial flue gases and natural-gas wells.

In the new study, the researchers found pyrolyzing the material – heating it in an oxygen-free environment – changes its chemical composition in ways that may someday be used to tune what the scientists call PEI-C60 for specific carbon-capture applications.

“One of the things we wanted to see is at what point, chemically, it converts from being something that absorbed best at high temperature to something that absorbed best at low temperature,” Barron said. “In other words, at what point does the chemistry change from one to the other?”

Lead author Enrico Andreoli pyrolyzed PEI-C60 in argon at various temperatures from 100 to 1,000 degrees Celsius (212 to 1,832 degrees Fahrenheit) and then evaluated each batch for carbon uptake.

He discovered the existence of a transition point at 200 C, a boundary between the material’s ability to soak in carbon dioxide through chemical means as opposed to physical absorption.

The material that was pyrolyzed at low temperatures became gooey and failed at pulling in carbon from high-temperature sources by chemical means. The opposite was true for PEI-C60 pyrolyzed at high heat. The now-porous, brittle material became better in low-temperature environments, physically soaking up carbon dioxide molecules.

At 200 C, they found the heat treatment breaks the polymer’s carbon-nitrogen bonds, leading to a drastic decrease in carbon capture by any means.

“One of the goals was to see if can we make this a little less gooey and still have chemical uptake, and the answer is, not really,” Barron said. “It flips from one process to the other. But this does give us a nice continuum of how to get from one to the other.”

Andreoli found that at its peak, untreated PEI-C60 absorbed more than a 10th of its weight in carbon dioxide at high temperatures (0.13 grams per gram of material at 90 C). Pyrolyzed PEI-C60 did nearly as well at low temperatures (0.12 grams at 25 C).

The researchers, with an eye on potential environmental benefits, continue to refine their process. “This has definitely pointed us in the right direction,” Barron said.

Here’s a link to and a citation for the paper,

Correlating Carbon Dioxide Capture and Chemical Changes in Pyrolyzed Polyethylenimine-C60 by Enrico Andreoli and Andrew R. Barron. Energy Fuels, Article ASAP DOI: 10.1021/acs.energyfuels.5b00778 Publication Date (Web): July 2, 2015

Copyright © 2015 American Chemical Society

This paper is behind a paywall.