Tag Archives: CAR-T-cell therapy

Breakthrough with Alpaca nanobodies

Caption: Bryson and Sanchez, two alpacas who produce unusually small antibodies. These ‘nanobodies’ could help highly promising CAR T-cell therapies kill solid tumors, where right now they work only in blood cancers. Credit: Courtesy of Boston Children’s Hospital

Bryson and Sanchez are not the first camelids to grace this blog. ‘Llam’ me lend you some antibodies—antibody particles extracted from camels and llamas, a June 12, 2014 posting, and Llama-derived nanobodies are good for solving crystal structure, a December 14, 2017 posting, both feature news about medical breakthroughs with regard to the antibodies found in Llamas, camels, and other camelids (including alpacas) could enable.

The latest camelid-oriented medical research story is in an April 11, 2019 news item on phys.org (Note: A link has been removed),

In 1989, two undergraduate students at the Free University of Brussels were asked to test frozen blood serum from camels, and stumbled on a previously unknown kind of antibody. It was a miniaturized version of a human antibody, made up only of two heavy protein chains, rather than two light and two heavy chains. As they eventually reported, the antibodies’ presence was confirmed not only in camels, but also in llamas and alpacas.

Fast forward 30 years. In the journal PNAS [Proceedings of the National Academy of Science] this week [April 8 – 12, 2019], researchers at Boston Children’s Hospital and MIT [Massachusetts Institute of Technology] show that these mini-antibodies, shrunk further to create so-called nanobodies, may help solve a problem in the cancer field: making CAR T-cell therapies work in solid tumors.

An April 11, 2019 Boston Children’s Hospital news release on EurekAlert, which originated the news item, explores the technology,

Highly promising for blood cancers, chimeric antigen receptor (CAR) T-cell therapy genetically engineers a patient’s own T cells to make them better at attacking cancer cells. The Dana-Farber/Boston Children’s Cancer and Blood Disorders Center is currently using CAR T-cell therapy for relapsed acute lymphocytic leukemia (ALL), for example.

But CAR T cells haven’t been good at eliminating solid tumors. It’s been hard to find cancer-specific proteins on solid tumors that could serve as safe targets. Solid tumors are also protected by an extracellular matrix, a supportive web of proteins that acts as a barrier, as well as immunosuppressive molecules that weaken the T-cell attack.

Rethinking CAR T cells

That’s where nanobodies come in. For two decades, they largely remained in the hands of the Belgian team. But that changed after the patent expired in 2013. [emphases mine]

“A lot of people got into the game and began to appreciate nanobodies’ unique properties,” says Hidde Ploegh, PhD, an immunologist in the Program in Cellular and Molecular Medicine at Boston Children’s and senior investigator on the PNAS study.

One useful attribute is their enhanced targeting abilities. Ploegh and his team at Boston Children’s, in collaboration with Noo Jalikhani, PhD, and Richard Hynes, PhD at MIT’s Koch Institute for Integrative Cancer Research, have harnessed nanobodies to carry imaging agents, allowing precise visualization of metastatic cancers.

The Hynes team targeted the nanobodies to the tumors’ extracellular matrix, or ECM — aiming imaging agents not at the cancer cells themselves, but at the environment that surrounds them. Such markers are common to many tumors, but don’t typically appear on normal cells.

“Our lab and the Hynes lab are among the few actively pursuing this approach of targeting the tumor micro-environment,” says Ploegh. “Most labs are looking for tumor-specific antigens.”

Targeting tumor protectors

Ploegh’s lab took this idea to CAR T-cell therapy. His team, including members of the Hynes lab, took aim at the very factors that make solid tumors difficult to treat.

The CAR T cells they created were studded with nanobodies that recognize specific proteins in the tumor environment, bearing signals directing them to kill any cell they bound to. One protein, EIIIB, a variant of fibronectin, is found only on newly formed blood vessels that supply tumors with nutrients. Another, PD-L1, is an immunosuppressive protein that most cancers use to silence approaching T cells.

Biochemist Jessica Ingram, PhD of the Dana-Farber Cancer Institute, Ploegh’s partner and a coauthor on the paper, led the manufacturing pipeline. She would drive to Amherst, Mass., to gather T cells from two alpacas, Bryson and Sanchez, inject them with the antigen of interest and harvest their blood for further processing back in Boston to generate mini-antibodies.

Taking down melanoma and colon cancer

Tested in two separate melanoma mouse models, as well as a colon adenocarcinoma model in mice, the nanobody-based CAR T cells killed tumor cells, significantly slowed tumor growth and improved the animals’ survival, with no readily apparent side effects.

Ploegh thinks that the engineered T cells work through a combination of factors. They caused damage to tumor tissue, which tends to stimulate inflammatory immune responses. Targeting EIIIB may damage blood vessels in a way that decreases blood supply to tumors, while making them more permeable to cancer drugs.

“If you destroy the local blood supply and cause vascular leakage, you could perhaps improve the delivery of other things that might have a harder time getting in,” says Ploegh. “I think we should look at this as part of a combination therapy.”

Future directions

Ploegh thinks his team’s approach could be useful in many solid tumors. He’s particularly interested in testing nanobody-based CAR T cells in models of pancreatic cancer and cholangiocarcinoma, a bile duct cancer from which Ingram passed away in 2018.

The technology itself can be pushed even further, says Ploegh.

“Nanobodies could potentially carry a cytokine to boost the immune response to the tumor, toxic molecules that kill tumor and radioisotopes to irradiate the tumor at close range,” he says. “CAR T cells are the battering ram that would come in to open the door; the other elements would finish the job. In theory, you could equip a single T cell with multiple chimeric antigen receptors and achieve even more precision. That’s something we would like to pursue.”

So, the Belgian researchers have a patent for two decades and, after it expires, more researchers could help to take the work further. Hmm …

Moving on, here’s a link to and a citation for the paper,

Nanobody-based CAR T cells that target the tumor microenvironment inhibit the growth of solid tumors in immunocompetent mice by Yushu Joy Xie, Michael Dougan, Noor Jailkhani, Jessica Ingram, Tao Fang, Laura Kummer, Noor Momin, Novalia Pishesha, Steffen Rickelt, Richard O. Hynes, and Hidde Ploegh. PNAS DOI: https://doi.org/10.1073/pnas.1817147116
First published April 1, 2019

This paper is behind a paywall

Biodegradable nanoparticles to program immune cells for cancer treatments

The Fred Hutchinson Cancer Research Centre in Seattle, Washington has announced a proposed cancer treatment using nanoparticle-programmed T cells according to an April 12, 2017 news release (received via email; also on EurekAlert), Note: A link has been removed,

Researchers at Fred Hutchinson Cancer Research Center have developed biodegradable nanoparticles that can be used to genetically program immune cells to recognize and destroy cancer cells — while the immune cells are still inside the body.

In a proof-of-principle study to be published April 17 [2017] in Nature Nanotechnology, the team showed that nanoparticle-programmed immune cells, known as T cells, can rapidly clear or slow the progression of leukemia in a mouse model.

“Our technology is the first that we know of to quickly program tumor-recognizing capabilities into T cells without extracting them for laboratory manipulation,” said Fred Hutch’s Dr. Matthias Stephan, the study’s senior author. “The reprogrammed cells begin to work within 24 to 48 hours and continue to produce these receptors for weeks. This suggests that our technology has the potential to allow the immune system to quickly mount a strong enough response to destroy cancerous cells before the disease becomes fatal.”

Cellular immunotherapies have shown promise in clinical trials, but challenges remain to making them more widely available and to being able to deploy them quickly. At present, it typically takes a couple of weeks to prepare these treatments: the T cells must be removed from the patient and genetically engineered and grown in special cell processing facilities before they are infused back into the patient. These new nanoparticles could eliminate the need for such expensive and time consuming steps.

Although his T-cell programming method is still several steps away from the clinic, Stephan imagines a future in which nanoparticles transform cell-based immunotherapies — whether for cancer or infectious disease — into an easily administered, off-the-shelf treatment that’s available anywhere.

“I’ve never had cancer, but if I did get a cancer diagnosis I would want to start treatment right away,” Stephan said. “I want to make cellular immunotherapy a treatment option the day of diagnosis and have it able to be done in an outpatient setting near where people live.”

The body as a genetic engineering lab

Stephan created his T-cell homing nanoparticles as a way to bring the power of cellular cancer immunotherapy to more people.

In his method, the laborious, time-consuming T-cell programming steps all take place within the body, creating a potential army of “serial killers” within days.

As reported in the new study, Stephan and his team developed biodegradable nanoparticles that turned T cells into CAR T cells, a particular type of cellular immunotherapy that has delivered promising results against leukemia in clinical trials.

The researchers designed the nanoparticles to carry genes that encode for chimeric antigen receptors, or CARs, that target and eliminate cancer. They also tagged the nanoparticles with molecules that make them stick like burrs to T cells, which engulf the nanoparticles. The cell’s internal traffic system then directs the nanoparticle to the nucleus, and it dissolves.

The study provides proof-of-principle that the nanoparticles can educate the immune system to target cancer cells. Stephan and his team designed the new CAR genes to integrate into chromosomes housed in the nucleus, making it possible for T cells to begin decoding the new genes and producing CARs within just one or two days.

Once the team determined that their CAR-carrying nanoparticles reprogrammed a noticeable percent of T cells, they tested their efficacy. Using a preclinical mouse model of leukemia, Stephan and his colleagues compared their nanoparticle-programming strategy against chemotherapy followed by an infusion of T cells programmed in the lab to express CARs, which mimics current CAR-T-cell therapy.

The nanoparticle-programmed CAR-T cells held their own against the infused CAR-T cells. Treatment with nanoparticles or infused CAR-T cells improved survival 58 days on average, up from a median survival of about two weeks.

The study was funded by Fred Hutch’s Immunotherapy Initiative, the Leukemia & Lymphoma Society, the Phi Beta Psi Sorority, the National Science Foundation and the National Cancer Institute.

Next steps and other applications

Stephan’s nanoparticles still have to clear several hurdles before they get close to human trials. He’s pursuing new strategies to make the gene-delivery-and-expression system safe in people and working with companies that have the capacity to produce clinical-grade nanoparticles. Additionally, Stephan has turned his sights to treating solid tumors and is collaborating to this end with several research groups at Fred Hutch.

And, he said, immunotherapy may be just the beginning. In theory, nanoparticles could be modified to serve the needs of patients whose immune systems need a boost, but who cannot wait for several months for a conventional vaccine to kick in.

“We hope that this can be used for infectious diseases like hepatitis or HIV,” Stephan said. This method may be a way to “provide patients with receptors they don’t have in their own body,” he explained. “You just need a tiny number of programmed T cells to protect against a virus.”

Here’s a link to and a citation for the paper,

In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers by Tyrel T. Smith, Sirkka B. Stephan, Howell F. Moffett, Laura E. McKnight, Weihang Ji, Diana Reiman, Emmy Bonagofski, Martin E. Wohlfahrt, Smitha P. S. Pillai, & Matthias T. Stephan. Nature Nanotechnology (2017) doi:10.1038/nnano.2017.57 Published online 17 April 2017

This paper is behind a paywall.