Tag Archives: Connie Lin

Should robots have rights? Confucianism offers some ideas

Fascinating although I’m not sure I entirely understand his argument,

This May 24, 2023 Carnegie Mellon University (CMU) news release (also on EurekAlert but published May 25, 2023) has Professor Tae Wan Kim’s clarification, Note: Links have been removed,

Philosophers and legal scholars have explored significant aspects of the moral and legal status of robots, with some advocating for giving robots rights. As robots assume more roles in the world, a new analysis reviewed research on robot rights, concluding that granting rights to robots is a bad idea. Instead, the article looks to Confucianism to offer an alternative.

The analysis, by a researcher at Carnegie Mellon University (CMU), appears in Communications of the ACM, published by the Association for Computing Machinery.

“People are worried about the risks of granting rights to robots,” notes Tae Wan Kim, Associate Professor of Business Ethics at CMU’s Tepper School of Business, who conducted the analysis. “Granting rights is not the only way to address the moral status of robots: Envisioning robots as rites bearers—not a rights bearers—could work better.”

Although many believe that respecting robots should lead to granting them rights, Kim argues for a different approach. Confucianism, an ancient Chinese belief system, focuses on the social value of achieving harmony; individuals are made distinctively human by their ability to conceive of interests not purely in terms of personal self-interest, but in terms that include a relational and a communal self. This, in turn, requires a unique perspective on rites, with people enhancing themselves morally by participating in proper rituals.

When considering robots, Kim suggests that the Confucian alternative of assigning rites—or what he calls role obligations—to robots is more appropriate than giving robots rights. The concept of rights is often adversarial and competitive, and potential conflict between humans and robots is concerning.

“Assigning role obligations to robots encourages teamwork, which triggers an understanding that fulfilling those obligations should be done harmoniously,” explains Kim. “Artificial intelligence (AI) imitates human intelligence, so for robots to develop as rites bearers, they must be powered by a type of AI that can imitate humans’ capacity to recognize and execute team activities—and a machine can learn that ability in various ways.”

Kim acknowledges that some will question why robots should be treated respectfully in the first place. “To the extent that we make robots in our image, if we don’t treat them well, as entities capable of participating in rites, we degrade ourselves,” he suggests.

Various non-natural entities—such as corporations—are considered people and even assume some Constitutional rights. In addition, humans are not the only species with moral and legal status; in most developed societies, moral and legal considerations preclude researchers from gratuitously using animals for lab experiments.

Here’s a link to and a citation for the paper,

Should Robots Have Rights or Rites? by Tae Wan Kim, Alan Strudler. Communications of the ACM, June 2023, Vol. 66 No. 6, Pages 78-85 DOI: 10.1145/3571721

This work is licensed under a http://creativecommons.org/licenses/by/4.0/ In other words, this paper is open access.

The paper is quite readable, as academic papers go, (Note: Links have been removed),

Boston Dynamics recently released a video introducing Atlas, a six-foot bipedal humanoid robot capable of search and rescue missions. Part of the video contained employees apparently abusing Atlas (for example, kicking, hitting it with a hockey stick, pushing it with a heavy ball). The video quickly raised a public and academic debate regarding how humans should treat robots. A robot, in some sense, is nothing more than software embedded in hardware, much like a laptop computer. If it is your property and kicking it harms no one nor infringes on anyone’s rights, it’s okay to kick it, although that would be a stupid thing to do. Likewise, there seems to be no significant reason that kicking a robot should be deemed as a moral or legal wrong. However, the question—”What do we owe to robots?”—is not that simple. Philosophers and legal scholars have seriously explored and defended some significant aspects of the moral and legal status of robots—and their rights.3,6,15,16,24,29,36 In fact, various non-natural entities—for example, corporations—are treated as persons and even enjoy some constitutional rights.a In addition, humans are not the only species that get moral and legal status. In most developed societies, for example, moral and legal considerations preclude researchers from gratuitously using animals for lab experiments. The fact that corporations are treated as persons and animals are recognized as having some rights does not entail that robots should be treated analogously.

Connie Lin’s May 26, 2023 article for Fast Company “Confucianism for robots? Ethicist says that’s better than giving them full rights” offers a brief overview and more comments from Kim. For the curious, you find out more about Boston Dynamics and Atlas here.

US Food and Drug Administration (FDA) gives first authorization for CRISPR (clustered regularly interspersed short palindromic repeats) use in COVID-19 crisis

Clustered regularly interspersed short palindromic repeats (CRISPR) gene editing has been largely confined to laboratory use or tested in agricultural trials. I believe that is true worldwide excepting the CRISPR twin scandal. (There are numerous postings about the CRISPR twins here including a Nov. 28, 2018 post, a May 17, 2019 post, and a June 20, 2019 post. Update: It was reported (3rd. para.) in December 2019 that He had been sentenced to three years jail time.)

Connie Lin in a May 7, 2020 article for Fast Company reports on this surprising decision by the US Food and Drug Administration (FDA), Note: A link has been removed),

The U.S. Food and Drug Administration has granted Emergency Use Authorization to a COVID-19 test that uses controversial gene-editing technology CRISPR.

This marks the first time CRISPR has been authorized by the FDA, although only for the purpose of detecting the coronavirus, and not for its far more contentious applications. The new test kit, developed by Cambridge, Massachusetts-based Sherlock Biosciences, will be deployed in laboratories certified to carry out high-complexity procedures and is “rapid,” returning results in about an hour as opposed to those that rely on the standard polymerase chain reaction method, which typically requires six hours.

The announcement was made in the FDA’s Coronavirus (COVID-19) Update: May 7, 2020 Daily Roundup (4th item in the bulleted list), Or, you can read the May 6, 2020 letter (PDF) sent to John Vozella of Sherlock Biosciences by the FDA.

As well, there’s the May 7, 2020 Sherlock BioSciences news release (the most informative of the lot),

Sherlock Biosciences, an Engineering Biology company dedicated to making diagnostic testing better, faster and more affordable, today announced the company has received Emergency Use Authorization (EUA) from the U.S. Food and Drug Administration (FDA) for its Sherlock™ CRISPR SARS-CoV-2 kit for the detection of the virus that causes COVID-19, providing results in approximately one hour.

“While it has only been a little over a year since the launch of Sherlock Biosciences, today we have made history with the very first FDA-authorized use of CRISPR technology, which will be used to rapidly identify the virus that causes COVID-19,” said Rahul Dhanda, co-founder, president and CEO of Sherlock Biosciences. “We are committed to providing this initial wave of testing kits to physicians, laboratory experts and researchers worldwide to enable them to assist frontline workers leading the charge against this pandemic.”

The Sherlock™ CRISPR SARS-CoV-2 test kit is designed for use in laboratories certified under the Clinical Laboratory Improvement Amendments of 1988 (CLIA), 42 U.S.C. §263a, to perform high complexity tests. Based on the SHERLOCK method, which stands for Specific High-sensitivity Enzymatic Reporter unLOCKing, the kit works by programming a CRISPR molecule to detect the presence of a specific genetic signature – in this case, the genetic signature for SARS-CoV-2 – in a nasal swab, nasopharyngeal swab, oropharyngeal swab or bronchoalveolar lavage (BAL) specimen. When the signature is found, the CRISPR enzyme is activated and releases a detectable signal. In addition to SHERLOCK, the company is also developing its INSPECTR™ platform to create an instrument-free, handheld test – similar to that of an at-home pregnancy test – that utilizes Sherlock Biosciences’ Synthetic Biology platform to provide rapid detection of a genetic match of the SARS-CoV-2 virus.

“When our lab collaborated with Dr. Feng Zhang’s team to develop SHERLOCK, we believed that this CRISPR-based diagnostic method would have a significant impact on global health,” said James J. Collins, co-founder and board member of Sherlock Biosciences and Termeer Professor of Medical Engineering and Science for MIT’s Institute for Medical Engineering and Science (IMES) and Department of Biological Engineering. “During what is a major healthcare crisis across the globe, we are heartened that the first FDA-authorized use of CRISPR will aid in the fight against this global COVID-19 pandemic.”

Access to rapid diagnostics is critical for combating this pandemic and is a primary focus for Sherlock Biosciences co-founder and board member, David R. Walt, Ph.D., who co-leads the Mass [Massachusetts] General Brigham Center for COVID Innovation.

“SHERLOCK enables rapid identification of a single alteration in a DNA or RNA sequence in a single molecule,” said Dr. Walt. “That precision, coupled with its capability to be deployed to multiplex over 100 targets or as a simple point-of-care system, will make it a critical addition to the arsenal of rapid diagnostics already being used to detect COVID-19.”

This development is particularly interesting since there was a major intellectual property dispute over CRISPR between the Broad Institute (a Harvard University and Massachusetts Institute of Technology [MIT] joint initiative), and the University of California at Berkeley (UC Berkeley). The Broad Institute mostly won in the first round of the patent fight, as I noted in a March 15, 2017 post but, as far as I’m aware, UC Berkeley is still disputing that decision.

In the period before receiving authorization, it appears that Sherlock Biosciences was doing a little public relations and ‘consciousness raising’ work. Here’s a sample from a May 5, 2020 article by Sharon Begley for STAT (Note: Links have been removed),

The revolutionary genetic technique better known for its potential to cure thousands of inherited diseases could also solve the challenge of Covid-19 diagnostic testing, scientists announced on Tuesday. A team headed by biologist Feng Zhang of the McGovern Institute at MIT and the Broad Institute has repurposed the genome-editing tool CRISPR into a test able to quickly detect as few as 100 coronavirus particles in a swab or saliva sample.

Crucially, the technique, dubbed a “one pot” protocol, works in a single test tube and does not require the many specialty chemicals, or reagents, whose shortage has hampered the rollout of widespread Covid-19 testing in the U.S. It takes about an hour to get results, requires minimal handling, and in preliminary studies has been highly accurate, Zhang told STAT. He and his colleagues, led by the McGovern’s Jonathan Gootenberg and Omar Abudayyeh, released the protocol on their STOPCovid.science website.

Because the test has not been approved by the Food and Drug Administration, it is only for research purposes for now. But minutes before speaking to STAT on Monday, Zhang and his colleagues were on a conference call with FDA officials about what they needed to do to receive an “emergency use authorization” that would allow clinical use of the test. The FDA has used EUAs to fast-track Covid-19 diagnostics as well as experimental therapies, including remdesivir, after less extensive testing than usually required.

For an EUA, the agency will require the scientists to validate the test, which they call STOPCovid, on dozens to hundreds of samples. Although “it is still early in the process,” Zhang said, he and his colleagues are confident enough in its accuracy that they are conferring with potential commercial partners who could turn the test into a cartridge-like device, similar to a pregnancy test, enabling Covid-19 testing at doctor offices and other point-of-care sites.

“It could potentially even be used at home or at workplaces,” Zhang said. “It’s inexpensive, does not require a lab, and can return results within an hour using a paper strip, not unlike a pregnancy test. This helps address the urgent need for widespread, accurate, inexpensive, and accessible Covid-19 testing.” Public health experts say the availability of such a test is one of the keys to safely reopening society, which will require widespread testing, and then tracing and possibly isolating the contacts of those who test positive.

If you have time, do read Begley’s in full.