Tag Archives: Hynix

CeNSE (Central Nervous System of the Earth) and billions of tiny sensors from HP plus a memristor update

Mike Thacker’s Feb. 1, 2013 (?) post features an HP Labs video trumpeting what is described as their most progressive work, from the official HP Labs blog,

… HP Labs in Palo Alto, for example, which is using nanotechnology capabilities to create low-cost censors that act as a central nervous system for the earth. The technology can be used to closely monitor — and quickly respond to — changes in agriculture, food supply and architectural infrastructure around the world.

CeNSE (Central Nervous System of the Earth) sounds like something new, eh? Almost three years ago, Greg Lindsay wrote about CeNSE and its first customer, Shell Oil, in a Feb. 12, 2010 article for Fast Company (Note: Links have been removed),

Just days after Cisco signaled it will horn into IBM’s turf by rewiring an aging city in Massachusetts, Hewlett Packard announced this morning the first commercial application of its own holistic blueprint–the torturously acronymed “CeNSE” (short for Central Nervous System for the Earth). Much like IBM’s “Smarter Planet” campaign, HP proposes sticking billions of sensors on everything in sight and boiling down the resulting flood of data into insights for making the world a better, greener place. But what sets HP apart from its rivals is its determination to create a smarter planet almost entirely within house, from sensors of its own design and manufacture to servers to software to the consultants who will tie it all together. And its first customer could not be less green: Shell Oil.

The Shell deal also unintentionally explodes the myth that a smarter planet is necessarily a greener one. HP’s bleeding-edge accelerometers are being deployed for the least green thing you can think of: sucking every last drop of oil out of the ground. While absolutely necessary for the current trajectory of our way of life (and buying us more time to develop alternatives), it’s hard to argue that technology for more efficiently recovering fossil fuels is in any way sustainable. (Although Wacker [Jeff Wacker, the leader of services innovation at HP and the head of its efforts to commercialize CeNSE] gamely argues the same technology is needed for finding empty pockets suitable for carbon sequestration.) While corporate-sponsored smarter cities can, in fact, be greener ones, their charter is the same as it ever was: profit. [emphasis mine]

Lindsay’s article echoes some of what I noted in the context of the Carbon Management Canada (CMC) network (government- and industry-funded) in my Feb. 4, 2013 posting about ultra-sensitive nanosensors and attempts to reduce carbon emissions in the Alberta oil sands. While the industry may work to reduce emissions, its raison d’être is profit and that can lead to complex situations with conflicting agendas.

As for what these billions and billions of tiny sensors might do for us, it seems there might be alternatives to at least one of the capabilities claimed by HP Labs and its sensors, ‘sensing changes in architectural infrastructures’. My Jan. 3, 2013 post, Signal danger with smart paint, mentioned a much more modest effort,

An innovative low-cost smart paint that can detect microscopic faults in wind turbines, mines and bridges before structural damage occurs is being developed by researchers at the University of Strathclyde in Glasgow, Scotland. [emphasis mine]

The environmentally-friendly paint uses nanotechnology to detect movement in large structures, and could shape the future of safety monitoring.

I digress slightly. The reference to the ‘central nervous system of the earth’ and Stanley Williams’ presence in the video reminded me of the memristor and an announcement (mentioned in my April 19, 2012 posting) that HP Labs would be rolling out some memristor-enabled products in 2013. Sadly, later in the year I missed this announcement, from a July 9, 2012 posting by Chris Mellor for TheRegister.co.uk,

Previously he (Stanley Williams) has said that HP and fab partner Hynix would launch a memristor product in the summer of 2013. At the Kavli do [Kavli Foundation Roundtable, June 2012], Williams said: “In terms of commercialisation, we’ll have something technologically viable by the end of next year.”

But that doesn’t mean a commercial product launch, and Hynix’s concerns about memristor device effect on flash are relevant: “Our partner, Hynix, is a major producer of flash memory, and memristors will cannibalise its existing business by replacing some flash memory with a different technology. So the way we time the introduction of memristors turns out to be important. There’s a lot more money being spent on understanding and modeling the market than on any of the research,” said Williams. [emphasis mine]

We might see a memristor product by summer 2014 but it could be later, as Hynix balances memristor device revenues, starting from zero, cutting into flash revenues in the millions of dollars.

I think the reason innovation is often introduced by outsiders is that they have no vested interest in maintaining the status quo as per the situation with Hynix and HP Labs, i.e., not wanting to cannibalize a current and profitable product line by introducing something new and, one gathers, an improvement.

Memristor update

HP Labs is making memristor news again. From a news item on physorg.ocm,

HP is partnering with Korean memory chip maker Hynix Semiconductor Inc. to make chips that contain memristors. Memristors are a newly discovered building block of electrical circuits.

HP built one in 2008 that confirmed what scientists had suspected for nearly 40 years but hadn’t been able to prove: that circuits have a weird, natural ability to remember things even when they’re turned off.

I don’t remember the story quite that way, i.e.,  “confirmed what scientists had suspected for nearly 40 years” as I recall the theory that R. Stanley William (the HP Labs team leader) cites  is from Dr. Leon Chua circa 1971 and was almost forgotten. (Unbeknownst to Dr. Chua, there was a previous theorist in the 1960s who posited a similar notion which he called a memistor. See Memistors, Memristors, and the Rise of Strong Artificial Intelligence, an article by Blaise Mouttet, for a more complete history. ETA: There’s additional material from Blaise at http://www.neurdon.com/)

There’s more about HP Labs and its new partner at BBC News in an article by Jason Palmer,

Electronics giant HP has joined the world’s second-largest memory chip maker Hynix to manufacture a novel member of the electronics family.

The deal will see “memristors” – first demonstrated by HP in 2006 [I believe it was 2008] – mass produced for the first time.

Memristors promise significantly greater memory storage requiring less energy and space, and may eventually also be employed in processors.

HP says the first memristors should be widely available in about three years.

If you follow the link to the story, there’s also a brief BBC video interview with Stanley Williams.

My first 2010 story on the memristor is here and later, there’s an interview I had with Forrest H Bennet III who argues that the memristor is not a fourth element (in addition to the capacitor, resistor, and inductor) but is in fact part of an infinite table of circuit elements.

ETA: I have some additional information from the news release on the HP Labs website,

HP today announced that it has entered into a joint development agreement with Hynix Semiconductor Inc., a world leader in the manufacture of computer memory, to bring memristor technology to market.

Memristors represent a fourth basic passive circuit element. They existed only in theory until 2006 – when researchers in HP Labs’ Information and Quantum Systems Laboratory (IQSL) first intentionally demonstrated their existence.

Memory chips created with memristor technology have the potential to run considerably faster and use much less energy than Flash memory technologies, says Dr. Stanley Williams, HP Senior Fellow and IQSL founding Director.

“We believe that the memristor is a universal memory that over time could replace Flash, DRAM, and even hard drives,” he says.

Uniting HP’s world-class research and IP with a first-rate memory manufacturer will allow high-quality, memristor-based memory to be developed quickly and on a mass scale, Williams adds.

Also, the video interview with Dr. Williams is on youtube and is not a BBC video as I believed. So here’s the interview,