Tag Archives: Nicole Ticea

Feel good about Canadian youth and science—a couple of stories

I’ve got two items (h/t to Speaking for Canadian Science) which highlight exciting, recent news about Canadian youth and science. The first item concerns Intel’s International Science and Engineering Fair and the impact Canadian young scientists had on the 2015 edition of the fair. From a May 15, 2015 news item on CNN,

A Vancouver [Canada] high school student was awarded first place for engineering a new air inlet system for airplane cabins to improve air quality and curb disease transmission at this year’s Intel International Science and Engineering Fair, a program of Society for Science & the Public.

Raymond Wang, 17, invented a system that improves the availability of fresh air in the cabin by more than 190 percent while reducing pathogen inhalation concentrations by up to 55 times compared to conventional designs, and can be easily and economically incorporated in existing airplanes. Wang received the Gordon E. Moore Award of US$75,000, named in honor of the Intel co-founder and fellow scientist.

“Using high-fidelity computational fluid dynamics modeling and representative physical simulations, Raymond’s work has significantly enhanced our understanding of how disease-causing pathogens travel via circulating airflow in aircraft cabins, and has also helped him to develop multiple approaches for reducing disease transmission in these types of settings,” said Scott Clary, Ph.D., Intel International Science Engineering Fair 2015 engineering mechanics category co-chair and electromechanical engineering manager at Lockheed Martin Missiles and Fire Control.

Team Canada had a superior showing at this year’s fair with 11 students winning awards.

Nicole Ticea, 16, also of Vancouver, received one of two Intel Foundation Young Scientist Awards of US$50,000 for developing an inexpensive, easy-to-use testing device to combat the high rate of undiagnosed HIV infection in low-income communities. Her disposable, electricity-free device provides results in an hour and should cost less than US$5 to produce. Ticea has already founded her own company, which recently received a US$100,000 grant to continue developing her technology.

“With a focus on science, technology, education and math, key pillars of a competitive and robust Canadian economy, these students showcase how competitive Canadians can be on a global scale,” said Nancy Demerling, marketing manager, Intel Canada.

Additional awards were presented to the following Canadian students:

  • Candace Brooks-Da Silva (Windsor, ON): Second Award of $500, Society of Experimental Test Pilots; Top Award of $5,000, National Aeronautics and Space Administration; Alternate for CERN trip, European Organization for Nuclear Research-CERN; Second Award of $1,500, Engineering Mechanics
  • Emily Cross (Thunder Bay, ON): First Award of $1,000, American Geosciences Institute; Fourth Award of $500, Earth and Environmental Sciences
  • Benjamin Friesen (Grimsby, ON): Award of $5,000 for outstanding project in the systems software category, Oracle Academy
  • Ann Makosinski (Victoria): First Award of $500, Patent and Trademark Office Society; Fourth Award of $500, Energy: Physical
  • Daniel McInnis (Ottawa): Third Award of $1,000, Computational Biology and Informatics
  • Aditya Mohan (Ottawa): First Award of $2,000, American Association of Pharmaceutical Scientists; First Award of $3,000, Biomedical and Health Sciences
  • Janice Pang (Coquitlam, BC): Fourth Award of $500, Biomedical and Health Sciences
  • Amit Scheer (Ottawa): Second Award of $1,500, Biomedical and Health Sciences
  • Duncan Stothers (Vancouver): Sustainable Design In Transportation, First Award $2,500, Alcoa Foundation; Second Award of $1,500, Society for Experimental Mechanics, Inc.; Second Award of $1,500, Engineering Mechanics
  • Nicole Ticea (Vancouver): USAID Global Development Innovation award of $10,000, U.S. Agency for International Development; Award of $1,200, China Association for Science and Technology (CAST); Intel International Science and Engineering Fair Best of Category Award of $5,000, Biomedical and Health Sciences; First Award of $3,000, Biomedical and Health Sciences; Cultural and Scientific Visit to China Award, Intel Foundation Cultural and Scientific Visit to China Award $8,000
  • Raymond Wang (Vancouver): First Award of $1,000, Society of Experimental Test Pilots; Third Award of $1,000, National Aeronautics and Space Administration; Intel International Science and Engineering Fair Best of Category Award of $5,000, Engineering Mechanics; First Award of $3,000, Engineering Mechanics; Cultural and Scientific Visit to China Award, Intel Foundation Cultural and Scientific Visit to China Award $8,000

This year’s Intel International Science and Engineering Fair featured approximately 1,700 young scientists selected from 422 affiliate fairs in more than 75 countries, regions and territories.

The Intel International Science and Engineering Fair 2015 is funded jointly by Intel and the Intel Foundation with additional awards and support from dozens of other corporate, academic, governmental and science-focused organizations. This year, approximately US$4 million was awarded.

Two provinces seem to have dominated the Canadian field, Ontario and British Columbia. The lack of representation at the award-winning level from the other provinces may signify a lack of awareness in the Prairies, Québec, the North, and the Maritimes, about the festival and, consequently, fewer entries from those provinces and territories. On a whim, I searched for an Intel Canada presence and there is one, in British Columbia. Interesting but not conclusive. In any event, congratulations to all the students who won and those who participated!

There was another science fair, this one, the Canada Wide Science Fair (CWSF), took place in Fredericton, New Brunswick (Maritimes). From a May 12, 2015 news item on the CBC (Canadian Broadcasting Corporation) news website,

Almost 500 provincial science fair winners are competing for more than $1 million in prizes, scholarships and awards this week in the Canada Wide Science Fair in Fredericton.

The Currie Center at the University of New Brunswick is packed with booths in neat rows with topics ranging from preventing ice drownings to better ways to carry a kayak.

Paransa Subedi, a Winnipeg student, is studying how much sugar gets into your blood stream from breakfast cereal.

“We know that Rice Krispies have very little added sugar, but the thing is its all starches, so over time it has a high glycemic response,” she says, as she cuts up a cereal box to add to her display.

Judging is happening all day on Tuesday. Four judges will look at each project and they will reach a consensus to determine the winner.

Judith Soon, a national judge, says 50 per cent of the mark is for the “creative spark.”

“The most important part is being creative and original and it has to be their idea,” she said.

A May 15, 2015 CWSF news item by Dominic Tremblay for the Youth Science Canada (the CWSF’s parent organization) website lists the 2015 winners of the top prizes,

The Best Project Award went to:

Austin Wang from Vancouver, BC, for his project: A Novel Method to Identify Genes in Electron Transfer of Exoelectrogens. Austin’s project identified genes in bacteria that are responsible for generating power in a microbial fuel cell. His work is making an incredible impact on understanding the biology of how these systems work.

Platinum Awards of $1,000 were awarded to: 

Rebecca Baron from Vancouver, BC, for her project: Root Microbiomics: The Next Big Thing? Her project looked at using a common household plant to remove toxins from the air. She found that the microbes in the root of a particular plant are highly successful in removing airborne formaldehyde. Her work has the potential to make an impact on bioremediation of indoor air quality.

Marcus Deans from Windsor, Ontario for his project: NOGOS: A Novel Nano-Oligosaccharide Doped Graphene Sand Composite Water. For his project he created a filter out of sugar and sand that can successfully clean water to commercial standards, all with materials under $20 total. He hopes that his work can go a long way to providing cheap and effective water filters for the developing world.

Congratulations to the top prize winners, winners, and all the participants!

You can find the full list of 2015 award recipients here. where you will find several other provinces also well represented.

2014 Sanofi BioGENEius Challenge Canada (SBCC) national winners announced

Last week on May 23, 2014, the Sanofi BioGENEius Challenge Canada (SBCC) National winners were announced in Ottawa. (A Feb. 20, 2013 posting recounts the organization’s history and accomplishments on its 20th anniversary). Here’s more about the 2014 national winners from a May 23, 2014 Sanofi BioGENEius Challenge Canada news release,

A novel method of HIV detection for newborns under the age of 18 months and for adults before three months post-transmission earned a grade 10, British Columbia student top national honours today [May 23, 2014] in the 2014 “Sanofi BioGENEius Challenge Canada” (SBCC).

Nicole Ticea, 15, from York House School in Burnaby, BC was awarded the top prize of $5,000 by a panel of eminent Canadian scientists assembled at the Ottawa headquarters of the National Research Council of Canada (NRC).

Her impressive research project, mentored at Simon Fraser University by associate professor, Dr. Mark Brockman, is the first test capable of analyzing HIV viral nucleic acids in a point-of-care, low-resource setting.Nicole’s research, was deemed an incredibly innovative solution to a global challenge according to the judges led by Dr. Julie Ducharme, General Manager, Human Health Therapeutics, NRC.

See a full project description below and online here: http://sanofibiogeneiuschallenge.ca/2014/05/23/

Ten brilliant young scientists from nine Canadian regions, all just 15 to 18 years old, took part in the national finals. They had placed first at earlier regional SBCC competitions, conducted between March 27 and May 22, 2014.

High school and CEGEP students from Victoria to Saskatoon to St. John’s, focused on biotechnology fields of discovery and study, submitted more than 200 proposals. Working closely with mentors, these students conducted research in diverse areas such as telomeres, diabetes, stress management, Alzheimer’s, autism and pulp production. Since its inauguration in 1994, more than 4,700 young Canadians have competed in SBCC, with the majority of competitors going on to pursue careers in science and biotechnology.

1st place winner, Nicole Ticea will compete for Canada on June 22-25 at the International BioGENEius Challenge, conducted at the annual BIO conference in San Diego, CA.

2nd place, $4,000 – Ontario: Varsha Jayasankar, 17, grade 12, Sir Winston Churchill Secondary School, St. Catherines won with research into how an extract created from mango ginger can be used to inhibit the growth of multiple antibiotic-resistant bacteria. Project description: http://sanofibiogeneiuschallenge.ca/2014/05/23/

3rd place, $3,000 – Ontario: Anoop Manjunath, 17, grade 11, University of Toronto Schools, Toronto investigated image processing techniques for the analysis of ultrasound stimulated bubble interactions with fibrin clots.Project description: http://sanofibiogeneiuschallenge.ca/2014/05/23/

There were a couple of other projects (one for its ‘nano’ focus and the other for its ‘wheat’ focus), which caught my attention, from the SBCC 2014 National Competitor Project Descriptions page by Anne Ramsay,

Amit Scheer, Grade 10

Colonel By Secondary School, Ottawa, ON

“Development of a Novel Quantum Dot-Aptamer Bioconjugate Targeted Cancer Therapy for Precision Nanomedicine Applications”

A novel nanoparticle for targeted cancer therapeutics is described. This research was effectuated to create a theranostic bioconjugate with an optimal effective therapeutic index, achieved by biomarker-specific targeting. Estimates show that over 14 million new cases of cancer are diagnosed annually worldwide. Aptamer-quantum dot (APT-QD) bioconjugates were synthesized by conjugating cadmium-telluride quantum dots (QDs, semiconductor nanoparticles) to aptamers (nucleic-acid based ligands), by amide crosslinking. Aptamers targeted mucin-1 (MUC1), a glycosylated surface protein overexpressed on many cancers, including MCF7 breast cancer cells, and only minimally expressed in MCF-10A non-cancerous cells. The bioconjugate and unmodified QD treatments (the control) were tested for cellular uptake and cytotoxicity in MCF7 (cancerous) and MCF-10A (comparison) cell cultures. MTT assays, which quantify cellular viability by assessing mitochondrial activity, were used for dose-response analysis at several treatment concentrations. APT-QDs caused a statistically significant decrease in viability specifically in MUC1-overexpressing cultures, suggesting cell-specific internalization by receptor-mediated endocytosis. Apoptosis and necrosis were quantified using immunofluorescence assays; bioconjugate-treated cells were early apoptotic after 4 hours, proving effective initiation of programmed cell death. Finally, confocal microscopy was used for aptamer-dependent nanoparticle internalization analysis, demonstrating that APT-QDs accumulate outside of nuclei. A fluorochrome-modified DNA complement to the aptamer was synthesized for co-localization of aptamers and QDs, proving effective endosomal escape for both components. The bioconjugate has applications in combination and theranostic treatments for cancer, and in precision medicine to diversify targeting based on patient-specific panomics analyses. The researcher created a novel bioconjugate nanoparticle and has proven numerous viable applications in cancer therapeutics.

Wenyu Ruan, Grade 9, & Amy Yu Ruiyun Wang, Grade 10

Walter Murray Collegiate Institute, Saskatoon, SK

“Identification of Leaf Rust Resistance in Wheat”

Leaf rust is the most common disease in wheat, a crop which contributes $11B annually to Canada’s economy. The most effective strategy to control leaf rust has been to grow resistant varieties. There are two general types of resistance genes found in wheat: Race-specific genes confer a high-level of resistance to specific strains of leaf rust but can be easily overcome by genetic mutation in pathogen populations, while slow rusting (APR) resistance provides partial resistance to a broad spectrum of races, but is typically effective only at the adult stage of plant growth. A three-phase experiment was conducted on a doubled-haploid population derived from the cross RL4452/AC Domain to determine if the resistance of a recently discovered gene (Lr2BS) worked with other resistance genes to synergistically enhance resistance to leaf rust. Linkage and quantitative trait loci (QTL) mapping were performed by combining our new genotypic data with a previously generated genetic map for this population, then adding rust disease data from our experiment to identify genomic regions associated with leaf rust resistance. In addition, a fluorescent microscope was used to examine host-pathogen interaction on a cellular level. These experiments showed that lines carrying Lr2BS alone, and in combination with other APR genes were susceptible at the seedling stage, which suggests that Lr2BS is an adult plant gene. It appears that the synergistic effect of some multiple gene combinations, including Lr2BS, enhances leaf rust resistance. Furthermore, QTL mapping identified an uncharacterized resistance gene (LrUsw4B) that conferred resistance at the seedling stage.

I am sorry to see they are not sending all three national finalists to the international competition as they did in 2012. As I noted in my July 16, 2012 posting the international standings did not reflect the national standings,

As the 2012 winner of the Sanofi BioGENEius Challenge Canada competition, Tam was invited to compete in this year’s international Sanofi BioGENEisu Challenge held in Boston, Massachusetts on June 19, 2012. [Janelle] Tam received an honourable mention for her work while Rui Song of Saskatoon placed third internationally.

Presumably the costs are too high to continue the practice.

Getting back to 2014, congratulations to all the competitors and the winners! And, good luck to Nicole Ticea at the International BioGENEius Challenge which will be conducted at the annual BIO conference, June 22-25  2014, in San Diego, CA!