Tag Archives: John Boland

2.5M Euros for Ireland’s John Boland and his memristive nanowires

The announcement makes no mention of the memristor or neuromorphic engineering but those are the areas in which  John Boland works and the reason for his 2.5M Euro research award. From the Ap. 3, 2013 news item on Nanowerk,

Professor John Boland, Director of CRANN, the SFI-funded [Science Foundation of Ireland] nanoscience institute based at Trinity College Dublin, and a Professor in the School of Chemistry has been awarded a €2.5 million research grant by the European Research Council (ERC). This is the second only Advanced ERC grant ever awarded in Physical Sciences in Ireland.

The Award will see Professor Boland and his team continue world-leading research into how nanowire networks can lead to a range of smart materials, sensors and digital memory applications. The research could result in computer networks that mimic the functions of the human brain and vastly improve on current computer capabilities such as facial recognition.

The University of Dublin’s Trinity College CRANN (Centre for Research on Adaptive Nanostructures and Nanodevices) April 3, 2013 news release, which originated the news item,  provides details about Boland’s proposed nanowire network,

Nanowires are spaghetti like structures, made of materials such as copper or silicon. They are just a few atoms thick and can be readily engineered into tangled networks of nanowires. Researchers worldwide are investigating the possibility that nanowires hold the future of energy production (solar cells) and could deliver the next generation of computers.

Professor Boland has discovered that exposing a random network of nanowires to stimuli like electricity, light and chemicals, generates chemical reaction at the junctions where the nanowires cross. By controlling the stimuli, it is possible to harness these reactions to manipulate the connectivity within the network. This could eventually allow computations that mimic the functions of the nerves in the human brain – particularly the development of associative memory functions which could lead to significant advances in areas such as facial recognition.

Commenting Professor John Boland said, “This funding from the European Research Council allows me to continue my work to deliver the next generation of computing, which differs from the traditional digital approach.  The human brain is neurologically advanced and exploits connectivity that is controlled by electrical and chemical signals. My research will create nanowire networks that have the potential to mimic aspects of the neurological functions of the human brain, which may revolutionise the performance of current day computers.   It could be truly ground-breaking.”

It’s only in the news release’s accompanying video that the memristor and neuromorphic engineering are mentioned,

I have written many times about the memristor, most recently in a Feb. 26, 2013 posting titled, How to use a memristor to create an artificial brain, where I noted a proposed ‘blueprint’ for an artificial brain. A contested concept, the memristor has attracted critical commentary as noted in a Mar. 19, 2013 comment added to the ‘blueprint’  post,

A Sceptic says:

….

Before talking about blueprints, one has to consider that the dynamic state equations describing so-called non-volatile memristors are in conflict with fundamentals of physics. These problems are discussed in:

“Fundamental Issues and Problems in the Realization of Memristors” by P. Meuffels and R. Soni (http://arxiv.org/abs/1207.7319)

“On the physical properties of memristive, memcapacitive, and meminductive systems” by M. Di Ventra and Y. V. Pershin (http://arxiv.org/abs/1302.7063)

Pretty nanopicture from Ireland

'The Hive', taken by Dr David McGovern at Trinity's Nanoscience Institute, CRANN.

The Hive was named the Research Image of the Year for 2011 by the Science Foundation of Ireland (SFI). From the Nov. 22, 2011 news item on Nanowerk,

The SFI Research Image competition offers SFI-funded researchers the opportunity to submit digital images created during the course of their research. The winning image was taken by Dr. David McGovern under supervision by Professor John Boland, CRANN’s [Center for Research on Adaptive Nanostructures and Nanodevices] Director and Principal Investigator from TCD’s [Trinity College of Dublin] School of Chemistry.

The image is of a porous surface of the polymer polylactic-co-glycolic acid (PLGA).  From the Nov. 18,  2011 news release on the Trinity College website,

Porous polymers have the potential to deliver new biocompatible nanodevices or nanotemplates for medical applications and are of significance not only in the biomedical industry but also for materials science.  CRANN’s research on porous polymers, during which the image was taken, has the potential to enable a wide variety of applications including therapeutic devices such as in implants, sutures, prosthetic devices and for drug delivery and wound care.

The image was produced using the Zeiss Auriga Focused Ion Beam (FIB) in CRANN’s Advanced Microscopy Laboratory (AML). The Auriga FIB is the only system in Europe and has the narrowest beam width of any such instrument on the market, enabling image resolution of less than 3 nanometres, approximately 30,000 times smaller than the width of one human hair.

Congratulations Dr. McGovern.