Tag Archives: Kazan Federal University

Nanoparticles for prolonged anti-lice protection

Caption Graphical abstract [the animal is a capybara, world’s largest rodent] Credit: Kazan Federal University, Louisiana Tech University, Gubkin University

A September 28, 2021Kazan Federal University (Russia) press release (also on EurekAlert; Source text: Larisa Busil Photo: Rawil Fakhrullin) announces news that could lead to relief for anyone who owns animals,

An international researcher team of Louisiana Tech University, Gubkin University [also known as, Gubkin Russian State University of Oil and Gas] and Kazan Federal University reported the fabrication of nanoscale insecticidal hair coating for prolonged anti-lice protection. The study was supported by the Russian Science Foundation.

“Treating agricultural and domestic animals infected with ectoparasites (such as lice, fleas, chewing lice, etc.) is among the primary challenges of veterinary medicine and agriculture. In case of mass infestation, regular measures, such as isolation of infected animals or repeated reapplication of insecticides, are not always effective. These methods are time-limited and provide a short-term therapeutic effect,” explains co-author Rawil Fakhrullin, Head of Kazan University’s Bionanotechnology Lab. “Using an inorganic nanoscale carrier as a component of a therapeutic formulation for topical application of insecticides might be the optimal way to address this challenge.”

Halloysite, a natural nanosized tubular mineral, was used as a drug carrier capable of forming a durable and uniform coating on the surface of animal hair.

“Loading an insecticidal drug, permethrin, into halloysite nanotubes reduces the release rate, leading to fewer re-treatments and fewer side effects,” continues Dr. Fakhrullin.

The paper shows that after goat hair samples were treated with halloysite-based nanocontainers, a stable 2-3 micron waterproof coating was formed on the surface of the hair, suitable for long-term antiparasitic protection.

“Long-term insecticidal activity is the result of the gradual release of the drug from the nanotubes. A formulation based on halloysite retains its protective antiparasitic properties after washing the animal’s hair with water. This stable and water-resistant composite coating provides a drug dose effective for long-term protection of animals,” says the interviewee.

The authors also examined the hair structure of the capybara, world’s largest rodent native to South America. They found that the wax-like layer present on the hair surface of this semi-aquatic animal facilitates the formation of a denser and more durable coating of halloysite than in terrestrial animals (guinea pigs and goats). The wax helps retaining nanoclay particles on the surface of the animal’s hair.

Dr. Fakhrullin comments about the test subjects, “We studied the suppressive effects of nanocontainers on goat ectoparasites Damalinia caprae from the Trichodectidae family. At the same time, our technique can be effective towards other types of lice, since these parasites live in hair and maintain close contact with hair cuticles, regardless of the animal’s dietary preferences. We believe that this approach can be used for long-term and sustainable antiparasitic protection of farm animals, especially if other insecticidal preparations are encapsulated in addition to permethrin. In addition, similar drugs can be used for the prevention or treatment of head lice in humans.”

Furthermore, the described material can also be helpful in treating fur in zoological collections.

Here’s a link to and a citation for the paper,

Clay Nanotube Immobilization on Animal Hair for Sustained Anti-Lice Protection by Naureen Rahman, Faith Hannah Scott, Yuri Lvov, Anna Stavitskaya, Farida Akhatova, Svetlana Konnova, Gӧlnur Fakhrullina and Rawil Fakhrullin. Pharmaceutics 2021, 13(9), 1477; DOI: https://doi.org/10.3390/pharmaceutics13091477 Published: 15 September 2021

This paper is open access.

Interstellar fullerenes

This work from Russia on fullerenes (also known as buckministerfullerenes, C60, and/or buckyballs) is quite interesting and dates back more than a year. I’m not sure why the work is being publicized now but nanotechnology and interstellar space is not covered here often enough so, here goes, (from a January 29, 2018 Kazan Federal University press release (also on EurekAlert), Note: Links have been removed,

Here’s a link to and a citation for the paper,

C60+ – looking for the bucky-ball in interstellar space by G. A. Galazutdinov, V. V. Shimansky, A. Bondar, G. Valyavin, J. Krełowski. Monthly Notices of the Royal Astronomical Society, Volume 465, Issue 4, 11 March 2017, Pages 3956–3964, https://doi.org/10.1093/mnras/stw2948 Published: 22 December 2016

This paper is behind a paywall.

h/t January 29, 2018 news item on Nanowerk

‘Smart dress’ for oil-degrading bacteria (marine oil spill remediation)

This July 22, 2016 news item (on Nanowerk) about bacteria and marine oil spill remediation was a little challenging (for me) to read (Note: A link has been removed),

Bionanotechnology research is targeted on functional structures synergistically combining macromolecules, cells, or multicellular assemblies with a wide range of nanomaterials. Providing micrometer-sized cells with tiny nanodevices expands the uses of the cultured microorganisms and requires nanoassembly on individual live cells (“Nanoshell Assembly for Magnet-Responsive Oil-Degrading Bacteria”).

Surface engineering functionalizes the cell walls with polymer layers and/or nanosized particles and has been widely employed to modify the intrinsic properties of microbial cells. Cell encapsulation allows fabricating live microbial cells with magnetic nanoparticles onto cell walls, which mimics natural magnetotactic bacteria.

For this study researchers from Kazan Federal University and Louisiana Tech University chose Alcanivorax borkumensis marine bacteria as a target microorganism for cell surface engineering with magnetic nanoparticles for the following reasons: (1) these hydrocarbon-degrading bacteria are regarded as an important tool in marine oil spill remediation and potentially can be used in industrial oil-processing bioreactors, therefore the external magnetic manipulations with these cells seems to be practically relevant; (2) A. borkumensis are marine Gram-negative species having relatively fragile and thin cell walls, which makes cell wall engineering of these bacteria particularly challenging.

Rendering oil-degrading bacteria with artificially added magnetic functionality is important to attenuate their properties and to expand their practical use.

[downloaded from http://pubs.acs.org/doi/abs/10.1021/acs.langmuir.6b01743]

[downloaded from http://pubs.acs.org/doi/abs/10.1021/acs.langmuir.6b01743]

A July 22, 2016 Kazan Federal University (Russia) press release (also on EurekAlert), which originated the news item, has more detail about the research,

Cell surface engineering was performed using polycation-coated magnetic nanoparticles, which is a fast and straightforward process utilizing the direct deposition of positively charged iron oxide nanoparticles onto microbial cells during a brief incubation in excessive concentrations of nanoparticles. Gram-negative bacteria cell walls are built from the thin peptidoglycan layer sandwiched between the outer membrane and inner plasma membrane, with lipopolysaccharides rendering the overall negative cell charge, therefore cationic particles will attach to the cell walls due to electrostatic interactions.

Rod-like 0.5-μm diameter Gram-negative bacteria A. borkumensis were coated with 70?100 nm [sic] magnetite shells. The deposition of nanoparticles was performed with extreme care to ensure the survival of magnetized cells.

The development of biofilms on hydrophobic surface is a very important feature of A. borkumensis cells because this is how these cells attach to the oil droplets in natural environments. Consequently, any cell surface modification should not reduce their ability to attach and proliferate as biofilms. Here, at all concentrations of PAH- magnetite nanoparticles investigated, authors of the study detected the similar biofilm growth patterns. Overall, the magnetized cells were able to proliferate and exhibited normal physiological activity.

The next generations of the bacteria have a tendency to remove the artificial shell returning to the native form. Such magnetic nanoencapsulation may be used for the A. borkumensis transportation in the bioreactors to enhance the spill oil decomposition at certain locations.

If I read this rightly, the idea, in future iterations of this research, is to destroy the oil once it’s been gathered by the biofilm. This seems a different approach where other oil spill remediation techniques have hydrophobic/oleophilic sponges absorbing the oil, which could potentially be used in the future. There are carbon nanotube sponges (my April 17, 2012 posting) and boron nitride sponges (my Dec. 7, 2015 posting).

Here’s a link to and a citation for the paper,

Nanoshell Assembly for Magnet-Responsive Oil-Degrading Bacteria by Svetlana A. Konnova, Yuri M. Lvov, and Rawil F. Fakhrullin. Langmuir, Article ASAP DOI: 10.1021/acs.langmuir.6b01743 Publication Date (Web): June 09, 2016

Copyright © 2016 American Chemical Society

This paper is behind a paywall.