Tag Archives: John Zich

Breakthrough for tissue-interfaced bioelectronics

Let’s call this a cold open,

This October 24, 2024 news item on ScienceDaily describes some of what is in the video

The ideal material for interfacing electronics with living tissue is soft, stretchable, and just as water-loving as the tissue itself–in short, a hydrogel. Semiconductors, the key materials for bioelectronics such as pacemakers, biosensors, and drug delivery devices, on the other hand, are rigid, brittle, and water-hating, impossible to dissolve in the way hydrogels have traditionally been built. Scientists have now solved this challenge that has long stymied researchers, reimagining the process of creating hydrogels to build a powerful semiconductor in hydrogel form. The result is a bluish gel that flutters like a sea jelly in water but retains the immense semiconductive ability needed to transmit information between living tissue and machine.

An October 24, 2024 University of Chicago news release (also on EurekAlert) by Paul Dailing, which originated the news item, describes the breakthrough, Note: Links have been removed,

A paper published today in Science from the UChicago Pritzker School of Molecular Engineering (PME) has solved this challenge that has long stymied researchers, reimagining the process of creating hydrogels to build a powerful semiconductor in hydrogel form. Led by Asst. Prof. Sihong Wang’s research group, the result is a bluish gel that flutters like a sea jelly in water but retains the immense semiconductive ability needed to transmit information between living tissue and machine.

The material demonstrated tissue-level moduli as soft as 81 kPa, stretchability of 150% strain, and charge-carrier mobility up to 1.4 cm2 V-1 s-1. This means their material—both semiconductor and hydrogel at the same time—ticks all the boxes for an ideal bioelectronic interface.

“When making implantable bioelectronic devices, one challenge you must address is to make a device with tissue-like mechanical properties,” said Yahao Dai, the first author of the new paper. “That way, when it gets directly interfaced with the tissue, they can deform together and also form a very intimate bio-interface.”

Although the paper mainly focused on the challenges facing implanted medical devices such as biochemical sensors and pacemakers, Dai said the material also has many potential non-surgical applications, like better readings off the skin or improved care for wounds.

“It has very soft mechanical properties and a large degree of hydration similar to living tissue,” said UChicago PME Asst. Prof. Sihong Wang. “Hydrogel is also very porous, so it allows the efficient diffusion transport of different kinds of nutrition and chemicals. All these traits combine to make hydrogel probably the most useful material for tissue engineering and drug delivery.”

‘Let’s change our perspective’

The typical way of making a hydrogel is to take a material, dissolve it in water, and add the gelation chemicals to puff the new liquid into a gel form. Some materials simply dissolve in water, others require researchers to tinker and chemically modify the process, but the core mechanism is the same: No water, no hydrogel.

Semiconductors, however, don’t normally dissolve in water. Rather than find new, time-consuming means of trying to force the process, the UChicago PME team re-examined the question.

“We started to think, ‘Okay, let’s change our perspective,’ and we came up with a solvent exchange process,” Dai said.

Instead of dissolving the semiconductors in water, they dissolved them in an organic solvent that is miscible with water. They then prepared a gel from the dissolved semiconductors and hydrogel precursors. Their gel initially was an organogel, not a hydrogel.

“To eventually turn it into a hydrogel, we then immersed the whole material system into the water to let the organic solvent dissolve out and let the water come in,” Dai said.

An important benefit of such a solvent-exchange-based method is its broad applicability to different types of polymer semiconductors with different functions.

‘One plus one is greater than two’

The hydrogel semiconductor, which the team has patented and is commercializing through UChicago’s Polsky Center for Entrepreneurship and Innovation, is not merging a semiconductor with a hydrogel. It’s one material that is both semiconductor and hydrogel at the same time.

“It’s just one piece that has both semiconducting properties and hydrogel design, meaning that this whole piece is just like any other hydrogel,” Wang said.

Unlike any other hydrogel, however, the new material actually improved biological functions in two areas, creating better results than either hydrogel or semiconductor could accomplish on their own.

First, having a very soft material bond directly with tissue reduces the immune responses and inflammation typically triggered when a medical device is implanted.

Second, because hydrogels are so porous, the new material enables elevated biosensing response and stronger photo-modulation effects. With biomolecules being able to diffuse into the film to have volumetric interactions, the interaction sites for biomarkers-under-detection are significantly increased, which gives rise to higher sensitivity. Besides sensing, the responses to light for therapeutic functions at tissue surfaces also get increased from the more efficient transport of redox-active species. This benefits functions such as light-operated pacemakers or wound dressing that can be more efficiently heated with a flick of light to help speed healing.

“It’s a ‘one plus one is greater than two’ kind of combination,” Wang joked.

Researchers in the lab of UChicago Pritzker School of Engineering Asst. Prof. Sihong Wang (right), including PhD student Yahao Dai (left), have developed a hydrogel that retains the semiconductive ability needed to transmit information between living tissue and machine, which can be used both in implantable medical devices and non-surgical applications. (Photo by John Zich)

Here’s a link to and a citation for the paper,

Soft hydrogel semiconductors with augmented biointeractive functions by Yahao Dai, Shinya Wai, Pengju Li, Naisong Shan, Zhiqiang Cao, Yang Li, Yunfei Wang, Youdi Liu, Wei Liu, Kan Tang, Yuzi Liu, Muchuan Hua, Songsong Li, Nan Li, Shivani Chatterji, H. Christopher Fry, Sean Lee, Cheng Zhang, Max Weires, Sean Sutyak, Jiuyun Shi, Chenhui Zhu, Jie Xu, Xiaodan Gu, Bozhi Tian, and Sihong Wang. Science 24 Oct 2024 Vol 386, Issue 6720 pp. 431-439 DOI: 10.1126/science.adp9314

This paper is behind a paywall.

Skin-like computing device analyzes health data with brain-mimicking artificial intelligence (a neuromorphic chip)

The wearable neuromorphic chip, made of stretchy semiconductors, can implement artificial intelligence (AI) to process massive amounts of health information in real time. Above, Asst. Prof. Sihong Wang shows a single neuromorphic device with three electrodes. (Photo by John Zich)

Does everything have to be ‘brainy’? Read on for the latest on ‘brainy’ devices.

An August 4, 2022 University of Chicago news release (also on EurekAlert) describes work on a stretchable neuromorphic chip, Note: Links have been removed,

It’s a brainy Band-Aid, a smart watch without the watch, and a leap forward for wearable health technologies. Researchers at the University of Chicago’s Pritzker School of Molecular Engineering (PME) have developed a flexible, stretchable computing chip that processes information by mimicking the human brain. The device, described in the journal Matter, aims to change the way health data is processed.

“With this work we’ve bridged wearable technology with artificial intelligence and machine learning to create a powerful device which can analyze health data right on our own bodies,” said Sihong Wang, a materials scientist and Assistant Professor of Molecular Engineering.

Today, getting an in-depth profile about your health requires a visit to a hospital or clinic. In the future, Wang said, people’s health could be tracked continuously by wearable electronics that can detect disease even before symptoms appear. Unobtrusive, wearable computing devices are one step toward making this vision a reality. 

A Data Deluge
The future of healthcare that Wang—and many others—envision includes wearable biosensors to track complex indicators of health including levels of oxygen, sugar, metabolites and immune molecules in people’s blood. One of the keys to making these sensors feasible is their ability to conform to the skin. As such skin-like wearable biosensors emerge and begin collecting more and more information in real-time, the analysis becomes exponentially more complex. A single piece of data must be put into the broader perspective of a patient’s history and other health parameters.

Today’s smart phones are not capable of the kind of complex analysis required to learn a patient’s baseline health measurements and pick out important signals of disease. However, cutting-edge artificial intelligence platforms that integrate machine learning to identify patterns in extremely complex datasets can do a better job. But sending information from a device to a centralized AI location is not ideal.

“Sending health data wirelessly is slow and presents a number of privacy concerns,” he said. “It is also incredibly energy inefficient; the more data we start collecting, the more energy these transmissions will start using.”

Skin and Brains
Wang’s team set out to design a chip that could collect data from multiple biosensors and draw conclusions about a person’s health using cutting-edge machine learning approaches. Importantly, they wanted it to be wearable on the body and integrate seamlessly with skin.

“With a smart watch, there’s always a gap,” said Wang. “We wanted something that can achieve very intimate contact and accommodate the movement of skin.”

Wang and his colleagues turned to polymers, which can be used to build semiconductors and electrochemical transistors but also have the ability to stretch and bend. They assembled polymers into a device that allowed the artificial-intelligence-based analysis of health data. Rather than work like a typical computer, the chip— called a neuromorphic computing chip—functions more like a human brain, able to both store and analyze data in an integrated way.

Testing the Technology
To test the utility of their new device, Wang’s group used it to analyze electrocardiogram (ECG) data representing the electrical activity of the human heart. They trained the device to classify ECGs into five categories—healthy or four types of abnormal signals. Then, they tested it on new ECGs. Whether or not the chip was stretched or bent, they showed, it could accurately classify the heartbeats.

More work is needed to test the power of the device in deducing patterns of health and disease. But eventually, it could be used either to send patients or clinicians alerts, or to automatically tweak medications.

“If you can get real-time information on blood pressure, for instance, this device could very intelligently make decisions about when to adjust the patient’s blood pressure medication levels,” said Wang. That kind of automatic feedback loop is already used by some implantable insulin pumps, he added.

He already is planning new iterations of the device to both expand the type of devices with which it can integrate and the types of machine learning algorithms it uses.

“Integration of artificial intelligence with wearable electronics is becoming a very active landscape,” said Wang. “This is not finished research, it’s just a starting point.”

Here’s a link to and a citation for the paper,

Intrinsically stretchable neuromorphic devices for on-body processing of health data with artificial intelligence by Shilei Dai, Yahao Dai, Zixuan Zhao, Jie Xu, Jia Huang, Sihong Wang. Matter DOI:https://doi.org/10.1016/j.matt.2022.07.016 Published: August 04, 2022

This paper is behind a paywall.