Tag Archives: Jr.

Scientific evidence and certainty: a controversy in the US Justice system

It seems that forensic evidence does not deliver the certainty that television and US prosecutors (I wonder if Canadian Crown Attorneys or Crown Counsels concur with their US colleagues?) would have us believe. The US President’s Council of Advisors on Science and Technology (PCAST) released a report (‘Forensic Science in Criminal Courts: Ensuring Scientific Validity of Feature-Comparison Methods‘ 174 pp PDF) on Sept. 20, 2016 that amongst other findings, notes that more scientific rigour needs to be applied to the field of forensic science.

Here’s more from the Sept. 20, 2016 posting by Eric Lander, William Press, S. James Gates, Jr., Susan L. Graham, J. Michael McQuade, and Daniel Schrag, on the White House blog,

The study that led to the report was a response to the President’s question to his PCAST in 2015, as to whether there are additional steps on the scientific side, beyond those already taken by the Administration in the aftermath of a highly critical 2009 National Research Council report on the state of the forensic sciences, that could help ensure the validity of forensic evidence used in the Nation’s legal system.

PCAST concluded that two important gaps warranted the group’s attention: (1) the need for clarity about the scientific standards for the validity and reliability of forensic methods and (2) the need to evaluate specific forensic methods to determine whether they have been scientifically established to be valid and reliable. The study aimed to help close these gaps for a number of forensic “feature-comparison” methods—specifically, methods for comparing DNA samples, bitemarks, latent fingerprints, firearm marks, footwear, and hair.

In the course of its year-long study, PCAST compiled and reviewed a set of more than 2,000 papers from various sources, educated itself on factual matters relating to the interaction between science and the law, and obtained input from forensic scientists and practitioners, judges, prosecutors, defense attorneys, academic researchers, criminal-justice-reform advocates, and representatives of Federal agencies.

A Sept. 23, 2016 article by Daniel Denvir for Salon.com sums up the responses from some of the institutions affected by this report,

Under fire yet again, law enforcement is fighting back. Facing heavy criticism for misconduct and abuse, prosecutors are protesting a new report from President Obama’s top scientific advisors that documents what has long been clear: much of the forensic evidence used to win convictions, including complex DNA samples and bite mark analysis, is not backed up by credible scientific research.

Although the evidence of this is clear, many in law enforcement seem terrified that keeping pseudoscience out of prosecutions will make them unwinnable. Attorney General Loretta Lynch declined to accept the report’s recommendations on the admissibility of evidence and the FBI accused the advisors of making “broad, unsupported assertions.” But the National District Attorneys Association, which represents roughly 2,5000 top prosecutors nationwide, went the furthest, taking it upon itself to, in its own words, “slam” the report.

Prosecutors’ actual problem with the report, produced by some of the nation’s leading scientists on the President’s Council of Advisors on Science and Technology, seems to be unrelated to science. Reached by phone NDAA president-elect Michael O. Freeman could not point to any specific problem with the research and accused the scientists of having an agenda against law enforcement.

“I’m a prosecutor and not a scientist,” Freeman, the County Attorney in Hennepin County, Minnesota, which encompasses Minneapolis, told Salon. “We think that there’s particular bias that exists in the folks who worked on this, and they were being highly critical of the forensic disciplines that we use in investigating and prosecuting cases.”

That response, devoid of any reference to hard science, has prompted some mockery, including from Robert Smith, Senior Research Fellow and Director of the Fair Punishment Project at Harvard Law School, who accused the NDAA of “fighting to turn America’s prosecutors into the Anti-Vaxxers, the Phrenologists, the Earth-Is-Flat Evangelists of the criminal justice world.”

It has also, however, also lent credence to a longstanding criticism that American prosecutors are more concerned with winning than in establishing a defendant’s guilt beyond a reasonable doubt.

“Prosecutors should not be concerned principally with convictions; they should be concerned with justice,” said Daniel S. Medwed, author of “Prosecution Complex: America’s Race to Convict and Its Impact on the Innocent” and a professor at Northern University School of Law, told Salon. “Using dodgy science to obtain convictions does not advance justice.”

Denvir’s article is lengthier and worth reading in its entirety.

Assuming there’s an association of forensic scientists, I find it interesting they don’t appear to have responded.

Finally, if there’s one thing you learn while writing about science it’s that there is no real certainty. For example, if you read about the Higgs boson discovery, you’ll note that the scientists involved the research never stated with absolute certainty that it exists but rather they ‘were pretty darn sure’ it does (I believe the scientific term is 5-sigma). There’s more about the Higgs boson and 5-sigma in this July 17, 2012 article by Evelyn Lamb for Scientific American,

In short, five-sigma corresponds to a p-value, or probability, of 3×10-7, or about 1 in 3.5 million. This is not the probability that the Higgs boson does or doesn’t exist; rather, it is the probability that if the particle does not exist, the data that CERN [European Particle Physics Laboratory] scientists collected in Geneva, Switzerland, would be at least as extreme as what they observed. “The reason that it’s so annoying is that people want to hear declarative statements, like ‘The probability that there’s a Higgs is 99.9 percent,’ but the real statement has an ‘if’ in there. There’s a conditional. There’s no way to remove the conditional,” says Kyle Cranmer, a physicist at New York University and member of the ATLAS team, one of the two groups that announced the new particle results in Geneva on July 4 [2012].

For the interested, there’s a lot more to Lamb’s article.

Getting back to forensic science, this PCAST report looks like an attempt to bring forensics back into line with the rest of the science world.

A debate about engineered nanoparticles and naturally occurring nanoparticles

Thanks to Marina Vance’s Aug. 7, 2015 posting for the Environmental Science: Nano blog I have found an article which constitutes a debate about engineered and naturally occurring nanoparticles (Note: Links have been removed),

Summer is almost over and so is a whirlwind of environmental engineering- and nanotechnology-related conferences. At a previous environmental nanotechnology-related conference, I had the great experience to participate in a lively debate on a very fundamental, albeit not often asked question in our field: is nanotechnology novel?

In this recently published paper, Hochella, Spencer, and Jones present an overview of this unexpected debate. Jones moderated a discussion in which Hochella and Spencer, two experts in their respective fields of nanogeoscience and electrical engineering/material science, brought their arguments for and against the following statement:

“The magic of nanomaterials is not new: nature has been playing these tricks for billions of years.”

The printed debate Vance is referring to was published in Dec. 2014. Here’s a link and a citation,

Nanotechnology: nature’s gift or scientists’ brainchild? by Michael F. Hochella, Jr., Michael G. Spencer, and  Kimberly L. Jones. Environ. Sci.: Nano, 2015,2, 114-119 DOI: 10.1039/C4EN00145A First published online 02 Dec 2014

It is an open access paper.

I thought a few excerpts might be in order,

In the field of environmental nanotechnology, opinions on the novelty of engineered nanomaterials vary; some scientists believe that many engineered nanomaterials are indeed unique, while others are convinced that we are simply fabricating structures already designed in nature. In this article, we present balanced, objective evidence on both sides of the debate. While the idea of novel nanomaterials opens the mind to imagine truly unique structures with architectures unparalleled in nature, the idea that these structures have related analogs in nature has environmental relevance as scientists and engineers aim to design and manufacture more sustainable and environmentally benign nanomaterials.

The ‘there’s nothing new under the sun’ part of the debate (Note: Links have been removed),

For example, the 1996 Nobel Prize in Chemistry was awarded to Robert F. Curl Jr., Sir Harold Kroto, and Richard E. Smalley for the discovery of fullerenes in 1985. Since then, naturally-occurring and “incidental” fullerenes have been found in everything from soot14 to deep space.15,16 It is arguable that fullerenes are present in unimaginable quantities, in every conceivable configuration, throughout the universe.16 And there is a lot of room in our universe (currently measured at 1024 km across) to do it with the full compliment of the periodic table spread throughout. Temperatures and pressures just within our own solar system (not including our sun) range from 3 to 7000 K and from 10−7 to 106 atmospheres pressure. And in the Milky Way alone, there are over 100 billion stars, and roughly that many planets, including a remarkable number of Earth-sized planets orbiting Sun-like stars.17 Yet our galaxy is only one of more than 100 billion galaxies, meaning the number of stars, planets, comets, asteroids, etc. truly defy comprehension. Back here at our infinitesimally small corner of the universe, just on and near Earth’s surface alone, it has been estimated that natural biogeochemical processes produce many thousands of terragrams (1 Tg = 1 million metric tons) of inorganic, organic, and “mixed” nanomaterials per year in a much wider variety than we can possibly presently know (Fig. 1).18 And the naturally-occurring nanomaterials that we have observed to date exhibit an astounding range of variety and complexity.19 In contrast, the current estimates of the annual manmade production of high-tonnage nanomaterials (nano-TiO2; nano-CeO2; carbon nanotubes; fullerenes; nano-Ag) are in the ballpark of hundredth to thousandth of Tg per year,20,21 roughly five to six orders of magnitude less than nature’s bounty, and by comparison, limited in compositional and structural variation.

And, this is the ‘of course, we’re doing something new’ side of the debate (Note: Links have been removed),

This idea can be clearly demonstrated by examining a natural meadow (Fig. 4a) and a garden (Fig. 4b). The meadow is the subject of the scientist who seeks to find out the general physical laws, which underpin the structure and function of the meadow. The engineer can be closely identified with the artist, who in the garden weaves the natural element found in the meadow with powerful effect creating something, which is an amalgamation of nature and man.29 Florman30 summarizes this close relationship between the artist and engineer “But of course we rely upon the artist! He is our cousin, our fellow creator”. Man made nanomaterials distinguish themselves from natural materials through several properties. These properties include order, purity, and scale. These are properties that natural materials often do not have. It is clear that the ability of engineers to fabricate and control nanomaterials is not rivalled by nature.

The summary and implications draws the ideas together,

When determining whether ENMs are truly novel or not, one must realize that we have only just begun to interrogate the Earth’s surface and atmosphere for evidence of these structures, and newly identified, naturally occurring structures are being discovered everyday. At the same time, creative engineers are pushing the limits of discovery to design nanostructures with novel shapes, configurations and properties. At some point, the discovery of naturally-occurring nanomaterials may converge with new ENMs, but in the meantime, scientists and engineers must work together to increase the speed of discovery on both sides of the debate. As we continue to develop nanomaterials for applications, it is important to be aware of natural analogues in order to predict potential environmental and health impacts as well as inform the design and manufacture of nanomaterials with lower likelihood of environmental risks.

I encourage you to read the whole debate if you have the time.

Crypton and NANO-TEX together at last

A Jan. 6, 2014 news item on Nanowerk notes that Crypton Fabrics has purchased NANO-TEX,

CRYPTON INC. has acquired NANO-TEX®, announced Randy Rubin, Chairman of The Crypton Companies. The privately held, 20-year-old Crypton Fabrics, based in Bloomfield Hills, Michigan, recently purchased NANO-TEX from private equity and venture capital investors; WL Ross and Co. LLC as major stockholders, in addition to Norwest Venture Partners, Masters Capital Nanotechnology Fund, Firelake Capital Management and Masters Capital Management.

NANO-TEX is a textile technology company whose performance finishes have enhanced leading consumer brands such as GAP, TARGET, MAIDENFORM, BASS PRO SHOPS, NORDSTROM, LAND’S END, FISHER-PRICE and many more.

The Jan. 6, 2014 Crypton (there has to be a Superman or inert gas enthusiast in that company) press release, which can be found on this page under this title: Silicon Valley to Motown, Performance Textile Leader Crypton Purchases Nano-Tex, explains why the NANO-TEX acquisition was so attractive and what it means to NANO-TEX’s major stockholders,

NANO‐TEX employs a proprietary nanotechnology approach to enhance textiles at the molecular level that provides permanent performance attributes such as stain and water resistance, moisture wicking, odor control, static elimination and wrinkle free properties. The end result is performance fabrics that maintain the original comfort, look and feel of the fabric and perform for the life of the product.

In 2013, NANO‐TEX technologies were on $280 million in branded finished products at retail worldwide.

Wilbur Ross, Jr., Chairman of WL Ross said, “We are extremely pleased by Crypton’s acquisition. This assures that NANO‐TEX will continue on a strong growth trajectory. Its expanding market reach and prominence will further enhance the competitiveness of WL Ross’s companies in the consumer and industrial fabrics industries, too; the goal that sparked our initial investment interest in NANO‐TEX eight years ago.”

It seems there was a specific product which attracted the Crypton team’s attention,

“This is a strategic acquisition as we extend our market share with apparel throughout the world. The intellectual properties and latest development, Aquapel®, a non‐fluorinated repellency treatment, is very exciting to our research team,” said Rubin.

There’s more about this product on the NANO-TEX Aquapel® page.

On a completely other note, at least one NANO-TEX product has silver in it according to a 2007 entry on the Consumer Products Inventory (Project on Emerging Nanotechnologies),

They Say:

“Nano-Tex™’s revolutionary technology fundamentally transforms fabric at the nano-level to dramatically improve your favorite everyday clothing.”



Potential Exposure Pathways:


How much we know:

Category 4 (Unsupported claim)

Additional Information:

Generic Product

Crypton too has silver in at least one product (from the INCASE Fabric Protection FAQs),

Q:  How does INCASE™ resist bacterial growth?
A: Silver Ion technology is used in INCASE to inhibit the growth of a broad spectrum of medically relevant microorganisms, including bacteria. Silver is one of nature’s original antimicrobials. Used thousands of years ago by Greeks in vessels to preserve water and wine, the natural benefits of silver have now been tapped to keep fabrics odor-free.

Cyrpton’s INCASE product uses sliver ions, which according to some research at Rice University (based in Texas, US), are more toxic than silver nanoparticles, from my July 13, 2012 posting,

He [Pedro Alvarez, George R. Brown Professor and chair of Rice’s Civil and Environmental Engineering Department] said the finding should shift the debate over the size, shape and coating of silver nanoparticles. [emphasis mine] “Of course they matter,” Alvarez said, “but only indirectly, as far as these variables affect the dissolution rate of the ions. The key determinant of toxicity is the silver ions. So the focus should be on mass-transfer processes and controlled-release mechanisms.”

Crypton’s About page strongly suggests an environmentally friendly and health conscious company (Note: Links have been removed),

Innovation. Industry leadership. A deep commitment to product excellence. These core elements are at the heart of the Crypton DNA – a labor of love that began in 1993 when founders Craig and Randy Rubin set out to create a new generation of stylish fabrics that were moisture-resistant and easy-to-clean, yet soft, comfortable and breathable.

From the basement of their Michigan home, a textile revolution was born.

Now based in West Bloomfield Michigan, with a green manufacturing facility in Kings Mountain, North Carolina, Crypton is the only textile solution in the world offering complete stain, moisture, mildew, bacteria and odor-resistant protection thanks to a patented process developed by some of the leading minds in the textile industry.

Early on, by offering a fabric – not a vinyl or plastic – that was capable of resisting stains, moisture, odors and bacteria, Crypton proved to be the perfect solution for the health care market. Following this initial success, Crypton solutions rapidly expanded into some of the finest restaurants, hotels, cruise ships around the world, as well as government complexes, schools and health care facilities.

Now trusted and relied on by over 90% of contract designers, there are more than 20,000 patterns of Crypton fabric available today. Crypton is the only fabric deemed a non-porous surface and can be disinfected when used in conjunction with our U.S. EPA-approved Crypton Disinfectant & Deodorizer.

From fabric, carpet, leather, wall and mattress to pet beds, home accessories, bags and luggage – our mission is to give customers more ways to live healthy, live beautifully and Live Clean®.

While there is no incontrovertible proof that silver nanoparticles and/or silver ions are a serious threat to the environment, it would be nice to see companies acknowledge some of the concerns.