Tag Archives: musings

New nano job board; Canadian science and technology strategy inferred by climate debate and 2010 federal budget?

Happy job hunting! Nanowerk has announced a new initiative (from the announcement),

Nanowerk, the leading information provider for all areas of nanotechnologies, today added to its nanotechnology information portal a new free job posting service.

The new application, called nanoJOBS, is available immediately on the Nanowerk website.

By posting their job openings on Nanowerk’s new nanoJOBS service, employers will reach a large audience in the areas of nanotechnologies, chemistry, physics, material sciences & engineering, medical technologies & pharmaceuticals, electronics, laboratory equipment, and all sectors involving state-of-the-art process technologies.

Like all other Nanowerk databases and directories, the nanoJOBS job postings are freely accessible. Employers need to register once and, in order to assure a high level of quality, their postings will be validated and approved by a Nanowerk administrator.

On other fronts, I mentioned climate science yesterday (March 22, 2010) in the context of public perception and how slow they can be to change.  Today I noticed a posting by Dave at The Black Hole blog which comes at the issue from a different angle. In the context of discussing science outreach in the UK, Dave describes two different lectures (pro and con) on climate change held at Cambridge. With some reluctance, Dave admits that the speaker (Nigel Lawson) on the ‘con’ side gave a better presentation and the ‘pro’ questioners at Lawson’s session were shrill and ill-considered (my words for the behaviour). As for Dave’s advice on how to ask politicians questions,

If you’re asking a politician a question, make it a yes or no question – people like Nigel Lawson are experts at saying what they want to say no matter what you ask, try boxing them in with logic and simplicity.

At the end of his post, Dave points to a March 18, 2010 article on Canadian climate science, the government’s attitude to it, and the 2010 federal budget in the Guardian newspaper. Titled Canadian government ‘hiding truth about climate change’, report claims by Stephen Leahy, the article notes that the Canadian federal 2010 budget did not allocate a single cent to climate change science with the consequence that the programmes will run out of money in early 2011. The Climate Action Network had obviously realized which way the wind was blowing as this nongovernmental organization released a report titled Troubling Evidence: The Harper Government’s Approach to Climate Science Research in Canada a few days after the budget was announced. From the Guardian article,

Climate change is not an abstract concept. It already results in the deaths of 300,000 people a year, virtually all in the world’s poorest countries. Some 325 million people are being seriously affected, with economic losses averaging 125 billion dollars a year, according to “The Anatomy of a Silent Crisis”, the first detailed look at climate change and the human impacts.

Canadians are unlikely to know any of this. [emphasis mine]

“Media coverage of climate change science, our most high-profile issue, has been reduced by over 80 percent,” says internal government documents obtained by Climate Action Network.

The dramatic decline results from a 2007 Harper government-imposed prohibition on government scientists speaking to reporters. Canadian scientists have told IPS they required permission from the prime minister’s communications office to comment on their own studies made public in scientific journals and reports.

If permission is granted, it requires written questions submitted in advance and often replies by scientists have to go through a vetting process. Within six months, reporters stopped calling and media coverage declined, the leaked report noted.

While climate experts were being muzzled, known climate change deniers were put in key positions on scientific funding bodies says Saul. The report documents three appointments and their public statements that climate change is a myth or exaggerated.

(One brief aside: the suggestion elsewhere  in the article that Maxime Bernier, former External Affairs minister, might one day step into the Prime Minister’s Office suggests that the reporter is not very familiar with Canadian politics. Also, he fails to note Harper’s roots in Alberta.) I’ve written previously about the 2007 muzzle which I believe sent a chill throughout the entire federal science community not just the scientists working for Environment Canada.

Before making some inferences about science and technology strategy/policy in Canada I need to offer some context. There is a stunning indifference to science policy amongst Canada’s political parties (I have more about that and links here). The only party which evinces an official strategy is the Conservative Party currently in office. The strategy occupies four bullet points in a very tightly written party platform. None of the other federal parties offers any science policy information on their websites. (Note: Marc Garneau of the Liberals has written up a document on his own initiative. You can find the links here.)

The Conservative government has consistently sent out messages about its attitude to science. If it makes money, it is good;  not unusual, as it is part of an international shift towards monetizing science research as quickly as possible. The Canadian difference is that there is no clear direction, i.e. no national science policy. (The prestigious international science journal, Nature,  published an editorial about the situation, which I mentioned here.)

The Canadian government does not have a chief science advisor (that office was cancelled in 2006 2008 [Corrected Mar.24.10 as per Wikipedia entry thanks to Shewonk for the date and do read her blog for another take on what she calls the anti-science attitude in Canada]) and replaced the position with a new advisory board reporting to the Minister of Industry called the  Science, Technology and Innovation Council (STIC ).

In the 2010 budget, the government announced that 245 positions on various boards would be cut for a saving of approximately $1M with no mention made in the news report as to which boards would suffer cuts or how the decisions would be made as to which positions would be lost due to attrition. (Given that STIC has 17 members on its board, I would imagine that there is some fat to be lost. However, it’s been my experience that the fat gets retained while the meat is discarded.)

In the 2009 budget, Genome Canada was ignored and the tri-council funding agencies suffered cuts. This year some money has been restored to the tri-council and Genome Canada and some science agencies such as TRIUMF (nuclear research facility at the University of British Columbia) have enjoyed substantive new funding while climate scientists have been thoroughly ignored.

The consistent messages to be derived are (1) that science will be somewhat supported for a time and (2) science that we (Conservatives) don’t approve of will be strangled (not unusual and not confined to the Canadian situation). Other than a few distinct areas such as climate change, drug addiction (Insite facility in Vancouver), and, apparently, Genomic research, there is no clear understanding as to which research is acceptable. Presumably there is interest in research where investments will show profit but if that were the case, why no clear focus on emerging technologies such as (I use this example only because I’m somewhat familiar with the subject area) nanotechnology? In fact, I’d like a clear focus, let’s call it a policy, on anything scientific.

If one is of Machiavellian inclinations, one might suspect a strategy of deliberate confusion as the government keeps the science community off-balance (it’s a guessing game as to which agency/group(s) will lose in the 2011 budget), confused (no science policy/direction) and from banding together (some groups did very well in the 2010 budget and have no incentive to complain as they have funding for the next 5 years).

It’s easy to blame the Conservative government currently in power but I think that Canadian scientists should bear some of the burden. There is very little substantive outreach or attempt to communicate to politicians or the public in an attempt to put science policy forward in any kind of national debate. Where is the Canadian equivalent to a Royal Society in the UK or the American Association for the Advancement of Science in the US?

In the meantime, I just got a notice that Carl Weiman (currently a professor at the University of British Columbia) has been nominated for an appointment as Associate Director of Science in the White House Office of Science and Technology Policy. Weiman has accepted the nomination. From the news release,

Wieman, a 2001 Nobel Laureate joined UBC’s Faculty of Science in 2007 as professor of Physics and Director of the $12 million Carl Wieman Science Education Initiative (CWSEI) to transform the teaching of science at UBC and elsewhere. He will take an unpaid leave of absence from the university upon confirmation of his appointment by the US Senate.

Wieman came to UBC from the University of Colorado, where he won the 2001 Nobel Prize in Physics and where he maintains a part-time appointment to head up an education project similar to the CWSEI.

Interesting, non?

Before I sign off, do read Rob Annan’s latest, scathingly funny/sad roundup and analysis of responses to the federal 2010 budget now that the dust is starting to settle.

Tomorrow: my interview with Peter Julian, the NDP member of Parliament who has tabled Canada’s first nanotechnology bill.

Responsible science communication and magic bullets; lego and pasta analogies; sing about physics

Cancer’s ‘magic bullet],  a term which has been around for decades, is falling into disuse and deservedly. So it’s disturbing to see it used by someone in McGill University’s (Montreal, Canada) communications department for a recent breakthrough by their researchers.

The reason ‘magic bullet for cancer’ has been falling into is disuse because it does not function well as a metaphor with what we now know about biology. (The term itself dates from the 19th century and chemist, Paul Erlich.) It continues to exist because it’s an easy (and lazy) way to get attention and headlines. Unfortunately, hyperbolic writing of this type obscures the extraordinary and exciting work that researchers are accomplishing. From the news release on the McGill website (also available on Nanowerk here),

A team of McGill Chemistry Department researchers led by Dr. Hanadi Sleiman has achieved a major breakthrough in the development of nanotubes – tiny “magic bullets” that could one day deliver drugs to specific diseased cells.

The lead researcher seems less inclined to irresponsible hyperbole,

One of the possible future applications for this discovery is cancer treatment. However, Sleiman cautions, “we are still far from being able to treat diseases using this technology; this is only a step in that direction. Researchers need to learn how to take these DNA nanostructures, such as the nanotubes here, and bring them back to biology to solve problems in nanomedicine, from drug delivery, to tissue engineering to sensors,” she said.

You’ll notice that the researcher says these ‘DNA nanotubes’ have to be brought “back to biology.” This comment brought to mind a recent post on 2020 Science (Andrew Maynard’s blog) about noted chemist and nanoscientist’s, George Whitesides, concerns/doubts about the direction for cancer and nanotechnology research. From Andrew’s post,

Cancer treatment has been a poster-child for nanotechnology for almost as long as I’ve been involved with the field. As far back as in 1999, a brochure on nanotechnology published by the US government described future “synthetic anti-body-like nanoscale drugs or devices that might seek out and destroy malignant cells wherever they might be in the body.”

So I was somewhat surprised to see the eminent chemist and nano-scientist George Whitesides questioning how much progress we’ve made in developing nanotechnology-based cancer treatments, in an article published in the Columbia Chronicle.

Whitesides comments are quite illuminating (from the article, Microscopic particles have huge possibilites [sic], by Ivana Susic,

George Whitesides, professor of chemistry and chemical biology at Harvard University, said that while the technology sounds impressive, he thinks the focus should be on using nanoparticles in imaging and diagnosing, not treatment.

The problem lies in being able to deliver the treatment to the right cells, and Whitesides said this has proven difficult.

“Cancer cells are abnormal cells, but they’re still us,” he said. [emphasis is mine]

The nanoparticles sent in to destroy the cancer cells may also destroy unaffected cells, because they can sometimes have cancer markers even if they’re healthy. Tumors have also been known to be “genetically flexible” and mutate around several different therapies, Whitesides explained. This keeps them from getting recognized by the therapeutic drugs.

The other problem with targeting cancer cells is the likelihood that only large tumors will be targeted, missing smaller clumps of developing tumors.

“We need something that finds isolated [cancer] clumps that’s somewhere else in the tissue … it’s not a tumor, it’s a whole bunch of tumors,” Whitesides said.

The upside to the treatment possibilities is that they buy the patient time, he said, which is very important to many cancer patients.

“It’s easy to say that one is going to have a particle that’s going to recognize the tumor once it gets there and will do something that triggers the death of the cell, it’s just that we don’t know how to do either one of these parts,” he said.

There is no simple solution. The more scientists learn about biology the more complicated it becomes, not less. [emphasis is mine] Whitesides said one effective way to deal with cancer is to reduce the risk of getting it by reducing the environmental factors that lead to cancer.

It’s a biology problem, not a particle problem,” he said. [emphasis is mine]

If you are interested , do read Andrew’s post and the comments that follow as well as the article that includes Whitesides’ comments and quotes from Andrew in his guise as Chief Science Advisor for the Project on Emerging Nanotechnologies.

All of this discussion follows on yesterday’s (Mar.17.10) post about how confusing inaccurate science reporting can be.

Moving onwards to two analogies, lego and pasta. Researchers at the University of Glasgow have ‘built’ inorganic (not carbon-based) molecular structures which could potentionally be used as more energy efficient and environmentally friendly catalysts for industrial purposes. From the news item on Nanowerk,

Researchers within the Department of Chemistry created hollow cube-based frameworks from polyoxometalates (POMs) – complex compounds made from metal and oxygen atoms – which stick together like LEGO bricks meaning a whole range of well-defined architectures can be developed with great ease.

The molecular sensing aspects of this new material are related to the potassium and lithium ions, which sit loosely in cavities in the framework. These can be displaced by other positively charged ions such as transition metals or small organic molecules while at the same time leaving the framework intact.

These characteristics highlight some of the many potential uses and applications of POM frameworks, but their principle application is their use as catalysts – a molecule used to start or speed-up a chemical reaction making it more efficient, cost-effective and environmentally friendly.

Moving from lego to pasta with a short stop at the movies, we have MIT researchers describing how they and their team have found a way to ‘imprint’ computer chips by using a new electron-beam lithography process to encourage copolymers to self-assemble on the chip. (Currently, manufacturers use light lasers in a photolithographic process which is becoming less effective as chips grow ever smaller and light waves become too large to use.) From the news item on Nanowerk,

The new technique uses “copolymers” made of two different types of polymer. Berggren [Karl] compares a copolymer molecule to the characters played by Robert De Niro and Charles Grodin in the movie Midnight Run, a bounty hunter and a white-collar criminal who are handcuffed together but can’t stand each other. Ross [Caroline] prefers a homelier analogy: “You can think of it like a piece of spaghetti joined to a piece of tagliatelle,” she says. “These two chains don’t like to mix. So given the choice, all the spaghetti ends would go here, and all the tagliatelle ends would go there, but they can’t, because they’re joined together.” In their attempts to segregate themselves, the different types of polymer chain arrange themselves into predictable patterns. By varying the length of the chains, the proportions of the two polymers, and the shape and location of the silicon hitching posts, Ross, Berggren, and their colleagues were able to produce a wide range of patterns useful in circuit design.

ETA (March 18,2010): Dexter Johnson at Nanoclast continues with his his posts (maybe these will form a series?) about more accuracy in reporting, specifically the news item I’ve just highlighted. Check it out here.

To finish on a completely different note (pun intended), I have a link (courtesy of Dave Bruggeman of the Pasco Phronesis blog by way of the Science Cheerleader blog) to a website eponymously (not sure that’s the right term) named physicssongs.org. Do enjoy such titles as: I got Physics; Snel’s Law – Macarena Style!; and much, much more.

Tomorrow: I’m not sure if I’ll have time to do much more than link to it and point to some commentary but the UK’s Nanotechnologies Strategy has just been been released today.