Tag Archives: prosthetics

God from the machine: Deus ex machina and augmentation

Wherever you go, there it is: ancient Greece. Deus Ex, a game series from Eidos Montréal, is likely referencing ‘deus ex machina’, a term applied to a theatrical device (in both senses of the word) attributed to  playwrights of ancient Greece. (For anyone who’s unfamiliar with the term, at the end of a play, all of the conflicts would be resolved by a god descending from the heavens. The term refers both to the plot device itself and to the mechanical device used to lower the ‘god’.)

The latest game in the series, Deus Ex: Human Revolution, a role-playing shooter, will be released August 23, 2011. From the August 16, 2011 article by Susan Karlin for Fast Company,

The result—Deus Ex: Human Revolution, a role-playing shooter that comes out August 23–extrapolates MicroTransponder, prosthetics, robotics, and other current augmentation technology into a vision of how technologically enhanced people might gain superhuman abilities and at what cost.

… “We built a timeline that traces the history of augmentation, creating new things, and predicting how would it get out into society. We wanted to ground it in today, and make something where everyone could say, ‘I can see the world going that way.'” [Mary DeMarle, Human Revolution’s lead writer]

Human Revolution, although the third in the series, is a prequel to the original Deus Ex which took place 25 years after Human Revolution.

I’m glad to see games that bring up interesting philosophical questions and possible social impacts of emerging technologies along with the action. In a February 3, 2011 interview with Mary DeMarle, Quintin Smith of Rock, Paper, Shotgun posed these questions,

RPS: Finally, with anti-augmentation groups featuring in Human Revolution, I was just wondering what your own opinions are on human augmentation and human bioengineering are.

MD: Oh, gosh. Well I have to tell you that the joke on the team is that for the duration of this story I’d be supporting the anti-technology view, because most people on the team wouldn’t be anti-technology, and it’d help me make the game more human, you know? And now that the project’s over I bought my first iPad, and I have to admit I’m suddenly like “You know, if I could get one of those InfoLinks in my head, it’d be really useful.”

But you know, all of this stuff is already out there. We already have people putting cameras in their eyes to improve their vision. [emphasis mine] The technology’s there, we’re just not aware of it. As far as our team’s technology expert is concerned, human augmentation’s been going on for decades. If you look at all the sports controversy regarding drugs, that is augmentation. It’s already happening.

RPS: But you have no qualms with our using technology to make ourselves more than we can be?

MD: From my perspective, I think mankind will always try to be more than he is. That’s part of being human. But I do admit we have to be careful about how we do it.

In my February 2, 2010 posting (scroll down about 1/2 way), I featured a quote that resonates with DeMarle’s comments about humans trying to be more,

“I don’t think I would have said this if it had never happened,” says Bailey, referring to the accident that tore off his pinkie, ring, and middle fingers. “But I told Touch Bionics I’d cut the rest of my hand off if I could make all five of my fingers robotic.”

Bailey went on to say that having machinery incorporated into his body made him feel “above human”.

As for cameras being implanted in eyes to improve vision, I would be delighted to hear from anyone who has information about this. The only project I could find in my search was EyeBorg, a project with a one-eyed Canadian filmmaker who was planning to have a video camera implanted into his eye socket to record images. From the About the Project page,

Take a one eyed film maker, an unemployed engineer, and a vision for something that’s never been done before and you have yourself the EyeBorg Project. Rob Spence and Kosta Grammatis are trying to make history by embedding a video camera and a transmitter in a prosthetic eye. That eye is going in Robs eye socket, and will record the world from a perspective that’s never been seen before.

There are more details about the EyeBorg project in a June 11, 2010 posting by Tim Hornyak for the Automaton blog (on the IEEE [Institute of Electrical and Electronics Engineers] website),

When Canadian filmmaker Rob Spence was a kid, he would peer through the bionic eye of his Six Million Dollar action figure. After a shooting accident left him partially blind, he decided to create his own electronic eye. Now he calls himself Eyeborg.

Spence’s bionic eye contains a battery-powered, wireless video camera. Not only can he record everything he sees just by looking around, but soon people will be able to log on to his video feed and view the world through his right eye.

I don’t know how the Eyeborg project is proceeding as there haven’t been any updates on the site since August 25, 2010.

While I wish Quintin Smith had asked for more details about the science information DeMarle was passing on in the February 3, 2011 interview, I think it’s interesting to note that information about science and technology comes to us in many ways: advertisements, popular television programmes, comic books, interviews, and games, as well as, formal public science outreach programmes through museums and educational institutions.

ETA August 19, 2011: I found some information about visual prosthetics at the European Commission’s Future and Emerging Technologies (FET) website, We can rebuild you page featuring a TEDxVienna November 2010 talk by electrical engineer, Grégoire Cosendai, from the Swiss Federal Institute of Technology. He doesn’t mention the prosthetics until approximately 13 minutes, 25 seconds into the talk. The work is being done to help people with retinitis pigmentosa, a condition that is incurable at this time but it may have implications for others. There are 30 people worldwide in a clinical trial testing a retinal implant that requires the person wear special glasses containing a camera and an antenna. For Star Trek fans, this seems similar to Geordi LaForge‘s special glasses.

ETA Sept. 13, 2011: Better late than never, here’s an excerpt from Dexter Johnson’s Sept. 2, 2011 posting (on his Nanoclast blog at the Institute of Electrical and Electronics Engineers [IEEE] website) about a nano retina project,

The Israel-based company [Nano Retina] is a joint venture between Rainbow Medical and Zyvex Labs, the latter being well known for its work in nanotechnology and its founder Jim Von Ehr, who has been a strong proponent of molecular mechanosynthesis.

It’s well worth contrasting the information in the company video that Dexter provides and the information in the FET video mentioned in the Aug. 19, 2011 update preceding this one. The company presents a vastly more optimistic claim for the vision these implants will provide than one would expect after viewing the information in the FET video about clinical trials, for another similar (to me) system, currently taking place.

Growing into your prosthetics

Fusing skin to metal is the secret to making prosthetics more comfortable and usable. In a July 13, 2011 posting, GrrlScientist at the Guardian Science blogs highlights this pioneering research,

… thanks to the work of Professor Gordon Blunn, Head of University College London’s Centre for Bio-Medical Engineering, and his colleagues, including Dr Noel Fitzpatrick, a veterinary surgeon. Professor Blunn has been developing groundbreaking metal prosthetic implants that provide comfort and improved mobility for amputee humans and animals.

… They found that in antlers, the bone structure under the skin is very different to that of the exposed bone.

“It was very porous, with lots of tiny holes, which the dermis [the inner layer of skin] webs its way into”, explained Professor Blunn. [emphasis mine]

This observation led to their breakthrough development, known as Intraosseous Transcutaneous Amputation Prosthesis (ITAP), which uses a layer of porous and bioactive (hydroxyapatite-coated) surfaces that encourage adhesion by living tissues. This living “seal” prevents bacterial infections, thereby allowing surgeons to provide amputees with securely-attached limbs that carry weight in a natural way.

Currently, battery-powered sensors allow human amputees to consciously control the movement of downstream portions of the prosthetic limb, such as flexing the hand on a prosthetic arm.

As an excuse for including this item here on the blog and until I hear otherwise, I choose to think of those tiny holes as being at the nanoscale . Plus, I’ve written about prosthetics and human enhancement a number of times.  Here’s the first in a four-part series on Robots and Human Enhancement, July 22, 2009 posting.

As for Blunn’s work, GrrlScientist includes a video and pictures as well as more details about it.

nanoBIDS; military robots from prototype to working model; prosthetics, the wave of the future?

The Nanowerk website is expanding. From their news item,

Nanowerk, the leading information provider for all areas of nanotechnologies, today added to its nanotechnology information portal a new free service for buyers and vendors of micro- and nanotechnology equipment and services. The new application, called nanoBIDS, is now available on the Nanowerk website. nanoBIDS facilitates the public posting of Requests for Proposal (RFPs) for equipment and services from procurement departments in the micro- and nanotechnologies community. nanoBIDS is open to all research organizations and companies.

I checked out the nanoBIDS page and found RFP listings from UK, US (mostly), and Germany. The earliest are dated Jan.25, 2010 so this site is just over a week old and already has two pages.

The Big Dog robot (which I posted about briefly here) is in the news again. Kit Eaton (Fast Company) whose article last October first alerted me to this device now writes that the robot is being put into production. From the article (Robocalypse Alert: Defense Contract Awarded to Scary BigDog),

The contract’s been won by maker Boston Dynamics, which has just 30 months to turn the research prototype machines into a genuine load-toting, four-legged, semi-intelligent war robot–“first walk-out” of the newly-designated LS3 is scheduled in 2012.

LS3 stands for Legged Squad Support System, and that pretty much sums up what the device is all about: It’s a semi-autonomous assistant designed to follow soldiers and Marines across the battlefield, carrying up to 400 pounds of gear and enough fuel to keep it going for 24 hours over a march of 20 miles.

They have included a video of the prototype on a beach in Thailand and as Eaton notes, the robot is “disarmingly ‘cute'” and, to me, its legs look almost human-shaped, which leads me to my next bit.

I found another article on prosthetics this morning and it’s a very good one. Written by Paul Hochman for Fast Company [ETA March 23, 2022: an updated version of the article is now on Genius.com], Bionic Legs, iLimbs, and Other Super-Human Prostheses delves further into the world where people may be willing to trade a healthy limb for a prosthetic. From the article,

There are many advantages to having your leg amputated.

Pedicure costs drop 50% overnight. A pair of socks lasts twice as long. But Hugh Herr, the director of the Biomechatronics Group at the MIT Media Lab, goes a step further. “It’s actually unfair,” Herr says about amputees’ advantages over the able-bodied. “As tech advancements in prosthetics come along, amputees can exploit those improvements. They can get upgrades. A person with a natural body can’t.”

I came across both a milder version of this sentiment and a more targeted version (able-bodied athletes worried about double amputee Oscar Pistorius’ bid to run in the Olympics rather than the Paralympics) when I wrote my four part series on human enhancement (July 22, 23, 24 & 27, 2009).

The Hochman article also goes on to discuss some of the aesthetic considerations (which I discussed in the same posting where I mentioned the BigDog robots). What Hochman does particularly well is bringing all this information together and explaining how the lure of big money (profit) is stimulating market development,

Not surprisingly, the money is following the market. MIT’s Herr cofounded a company called iWalk, which has received $10 million in venture financing to develop the PowerFoot One — what the company calls the “world’s first actively powered prosthetic ankle and foot.” Meanwhile, the Department of Veterans Affairs recently gave Brown University’s Center for Restorative and Regenerative Medicine a $7 million round of funding, on top of the $7.2 million it provided in 2004. And the Defense Advanced Research Projects Administration (DARPA) has funded Manchester, New Hampshire-based DEKA Research, which is developing the Luke, a powered prosthetic arm (named after Luke Skywalker, whose hand is hacked off by his father, Darth Vader).

This influx of R&D cash, combined with breakthroughs in materials science and processor speed, has had a striking visual and social result: an emblem of hurt and loss has become a paradigm of the sleek, modern, and powerful. Which is why Michael Bailey, a 24-year-old student in Duluth, Georgia, is looking forward to the day when he can amputate the last two fingers on his left hand.

“I don’t think I would have said this if it had never happened,” says Bailey, referring to the accident that tore off his pinkie, ring, and middle fingers. “But I told Touch Bionics I’d cut the rest of my hand off if I could make all five of my fingers robotic.”

This kind of thinking is influencing surgery such that patients are asking to have more of their bodies removed.

The article is lengthy (by internet standards) and worthwhile as it contains nuggets such as this,

But Bailey is most surprised by his own reaction. “When I’m wearing it, I do feel different: I feel stronger. As weird as that sounds, having a piece of machinery incorporated into your body, as a part of you, well, it makes you feel above human. It’s a very powerful thing.”

So the prosthetic makes him “feel above human,” interesting, eh? It leads to the next question (and a grand and philosophical one it is), what does it mean to be human? At least lately, I tend to explore that question by reading fiction.

I have been intrigued by Catherine Asaro‘s Skolian Empire series of books. The series features human beings (mostly soldiers) who have something she calls ‘biomech’  in their bodies to make them smarter, stronger, and faster. She also populates worlds with people who’ve had (thousands of years before) extensive genetic manipulation so they can better adapt to their new homeworlds. Her characters represent different opinions about the ‘biomech’ which is surgically implanted usually in adulthood and voluntarily. Asaro is a physicist who writes ‘hard’ science fiction laced with romance. She handles a great many thorny social questions in the context of this Skolian Empire that she has created where the technologies (nano, genetic engineering, etc.)  that we are exploring are a daily reality.

Reverse engineering the brain Ray Kurzweil style; funding for neuroprosthetics; a Canadian digital power list for 2009

After much hemming and hawing, I finally got around to reading something about Ray Kurzweil and his ideas in an interview at the H+ site and quite unexpectedly was engaged by his discussion of consciousness. From the interview,

I get very excited about discussions about the true nature of consciousness, because I‘ve been thinking about this issue for literally 50 years, going back to junior high school. And it‘s a very difficult subject. When some article purports to present the neurological basis of consciousness… I read it. And the articles usually start out, “Well, we think that consciousness is caused by…” You know, fill in the blank. And then it goes on with a big extensive examination of that phenomenon. And at the end of the article, I inevitably find myself thinking… where is the link to consciousness? Where is any justification for believing that this phenomenon should cause consciousness? Why would it cause consciousness?

Some scientists say, “Well, it‘s not a scientific issue, therefore it‘s not a real issue. Therefore consciousness is just an illusion and we should not waste time on it.” But we shouldn‘t be too quick to throw it overboard because our whole moral system and ethical system is based on consciousness.

The article is well worth a read  and I have to say I enjoyed his comments about science fiction movies. I’m not enamoured of his notion about trying to reverse engineer brains no matter how ‘mindfully’ done. I suspect I have a fundamental disagreement with many of Kurweil’s ideas which as far as I can tell are profoundly influenced by his experience and success in IT (information technology).

Unlike Kurzweil, I don’t view the brain or genomes as computer codes but I will read more about his work and ideas as he makes me think about some of my unconscious (pun intended) assumptions. (Note: in the H+ article Kurzweil mentions some nanotechnology guidelines from what the interviewers call the Forsyth Institute, I believe Kurzweil was referring to the Foresight Institute’s nanotechnology guidelines found here.)

I guess I’m getting a little blasé about money as I find the $1.6 million US funding awarded to help with neuroprosthetics for returning US soldiers a little on the skimpy side. From the news item on Nanowerk,

The conflicts in Iraq and Afghanistan have left a terrible legacy: more than 1,200 returning American soldiers have lost one or more limbs. To address this growing national need, researchers at Worcester Polytechnic Institute (WPI) are laying the groundwork for a new generation of advanced prosthetic limbs that will be fully integrated with the body and nervous system. These implantable neuroprosthetics will look and function like natural limbs, enabling injured soldiers and the more than 2 million other amputees in the United States lead higher quality, more independent lives.

As for making these limbs more natural looking, I find this contrasts a bit with some of Lanfranco Aceti’s work  (I first posted my comments about it here) where he notes that males (under 50) don’t want limbs that look natural. I don’t if he or someone else has followed up with that but it certainly poses an intriguing question about how we may be starting to view our bodies, gender differences and all.

Michael Geist has a 2009 Canadian digital power list on The Tyee website here. I was surprised that Gary Goodyear (Minister of State for Science and Technology) received no mention, given his portfolio.

Happy T Day! Robots; Nano-enabled prosthetics; ISEA 2009 aesthetics and prosthetics; Global TV (national edition): part 2

Happy Thanksgiving to everyone as Canada celebrates.

Since I have mentioned military robots in the not too distant past, this recent headline Two Military Robots That Rival the Creepiest Sci-Fi Creatures for Kit Eaton’s Fast Company article caught my eye. One of the robots, Big Dog (and its companion prototype Small Dog), utilizes artificial intelligence to navigate terrain and assist soldiers in the field. The larger one can carry heavy loads while the smaller one could be used for reconnaissance. The other robot is a cyborg beetle. Electrodes have been implanted so the beetle’s flight patterns can be controlled. There are two videos, one for each robot. It is a very disconcerting experience watching the beetle being flown by someone standing in front of a set of controls.

Keeping with the theme of planting electrodes, I found something on Azonano about a bio- adaptive prosthetic hand. Funded by the European Union as a nanotechnology project, here’s more from the news item,

What is unique about the sophisticated prototype artificial hand developed by the SMARTHAND partners is that not only does it replicate the movements of a real hand, but it also gives the user sensations of touch and feeling. The researchers said the hand has 4 electric motors and 40 sensors that are activated when pressed against an object. These sensors stimulate the arm’s nerves to activate a part in the brain that enables patients to feel the objects.

Led by Sweden’s Lund University, the researchers continue to work on the sensory feedback system within the robotic hand. The hurdle they need to cross is to make the cables and electric motors smaller. Nanotechnology could help the team iron out any problems. Specifically, they would implant a tiny processing unit, a power source and a trans-skin communication method into the user of the hand to optimise functionality.

It’s a fascinating read which brought to mind an ISEA (International Symposium on Electronic Arts) 2009 presentation by Dr. Lanfranco Aceti (professor at Sabanci University in Istanbul, Turkey). Titled The Aesthetic Beauty of the Artificial: When Prosthetic Bodies Become an Art Expression of Empowering Design Technologies, the presentation was a revelation. Dr. Aceti’s research yielded a rather surprising insight from a doctor in London, England who specializes in prosthetics. According to the doctor, women want limbs that most closely resemble their original but men (under 50 years old usually) want limbs that are metallic and/or look high tech. Lanfranco suggested that the men have been influenced by movies. Take for example, Wolverine (Wikipedia entry here) where the hero’s skeleton has been reinforced with metal and he can make his claws (now covered with metal) protrude from his arms at will. You can view Lanfranco’s site here or a simple biography about him here.

A few months back I posted about  prosthetics and design student projects and I’m starting to sense a trend emerging from these bits and pieces of information. There is the repair aspect to prosthetics but there is also an increasing interest not just in the aesthetics but in the notion of improving on the original. At its most extreme, I can imagine people wanting to remove perfectly healthy limbs and organs to get an improved version.

I got a chance to see part 2 of Global TV’s (broadcast in Canada) nanotechnology series, Small Wonders. As I’ve noticed that my link for part 1 of the series is no longer useful I am providing a link to part 2 which will land you on the search page. If you don’t see part 2 listed, go to the mutimedia tab which is just above the search results and where you can find part 1 and I assume, at some point, part 2.

As I hoped, they focused on nanotechnology projects in the materials field in part 2 of the series. They noted that nanotechnology-based materials in sports equipment and clothing are already available in the market place. An interview with Dr. Robert Wolkow at the National Institute of Nanotechnology and at the Physics Dept. at the University of Alberta, featured a discussion about replacing silicon chips with more efficient materials built at the molecular level.

Reimagining prosthetic arms; touchable holograms and brief thoughts on multimodal science communication; and nanoscience conference in Seattle

Reimagining the prosthetic arm, an article by Cliff Kuang in Fast Company (here) highlights a student design project at New York’s School of Visual Arts. Students were asked to improve prosthetic arms and were given four categories: decorative, playful, utilitarian, and awareness. This one by Tonya Douraghey and Carli Pierce caught my fancy, after all, who hasn’t thought of growing wings? (Rrom the Fast Company website),

Feathered cuff and wing arm

Feathered cuff and wing arm

I suggest reading Kuang’s article before heading off to the project website to see more student projects.

At the end of yesterday’s posting about MICA and multidimensional data visualization in spaces with up to 12 dimensions (here)  in virtual worlds such as Second Life, I made a comment about multimodal discourse which is something I think will become increasingly important. I’m not sure I can imagine 12 dimensions but I don’t expect that our usual means of visualizing or understanding data are going to be sufficient for the task. Consequently, I’ve been noticing more projects which engage some of our other senses, notably touch. For example, the SIGGRAPH 2009 conference in New Orleans featured a hologram that you can touch. This is another article by Cliff Kuang in Fast Company, Holograms that you can touch and feel. For anyone unfamiliar with SIGGRAPH, the show has introduced a number of important innovations, notably, clickable icons. It’s hard to believe but there was a time when everything was done by keyboard.

My August newsletter from NISE Net (Nanoscale Informal Science Education Network) brings news of a conference in Seattle, WA at the Pacific Science Centre, Sept. 8 – 11, 2009. It will feature (from the NISE Net blog),

Members of the NISE Net Program group and faculty and students at the Center for Nanotechnology in Society at Arizona State University are teaming up to demonstrate and discuss potential collaborations between the social science community and the informal science education community at a conference of the Society for the Study of Nanoscience and Emerging Technologies in Seattle in early September.

There’s more at the NISE Net blog here including a link to the conference site. (I gather the Society for the Study of Nanoscience and Emerging Nanotechnologies is in its very early stages of organizing so this is a fairly informal call for registrants.)

The NISE Net nano haiku this month is,

Nanoparticles

Surface plasmon resonance
Silver looks yellow

by Dr. Katie D. Cadwell of the University of Wisconsin-Madison MRSEC.

Have a nice weekend!

Nanotechnology enables robots and human enhancement: part 4

In Tracy Picha’s Future of Your Body Flare magazine article (August 2009) , she finishes her anecdote about the paralympian, Aimee Mullins (mentioned in my posting of July24, 2009), with a discussion of her racing prosthetics which were designed to resemble a cheetah’s hind legs.

And they not only propelled sprinters like Mullins to smoke the competition but they began to make their wearers look like threats to other “able”-bodied athletes.

Picha goes on to mention the controversy over Oscar Pistorius another paralympian  who has recently been allowed to compete in the Olympics despite the debate over whether or not his carbon fibre cheetah-shaped racing prosthetics give him an advantage over athletes using their own human legs. If you’re interested in the controversy, you can check it out in this Wired article. Picha’s article is only available in the print version of Flare magazine’s August 2009 issue.

I think the distinctions in the  study I mentioned on Friday (July 24, 2009) between restorative/preventive but non-enhancing interventions, therapeutic enhancements, and non-therapeutic enhancements are very useful for understanding the issues. (Note: I mistakenly identified it as a UK study, in fact, it is a European Parliament study titled, Human Enhancement.) The study also makes distinctions between visions for the future and current scientific development, which given the hype surrounding human enhancement is important. The study also takes into account the political and social impacts of these developments. If you’re interested in the 200 page report, it can be downloaded from here. There’s a summary of the study by Michael Berger on Nanowerk Spotlight here.

So, are robots going to become more like people or are people going to fuse themselves with equipment and/or enhance themselves with chemicals (augmenting intelligence mentioned in my June 19, 2009 posting here) or ???  Actually, people have already started fusing themselves with equipment and enhancing their intelligence with chemicals. I guess the real question is: how far are we prepared to go not only with ourselves but with other species too?

You may want to check out Andy Miah’s (professor Andy Miah that is) website for some more thinking on this topic. He specializes in the topic of human enhancement and he follows the Olympics movement closely. His site is here and he has some slide presentations available at Slideshare and most relevant one to this series is: Bioethics and the Olympic Games: Human Enhancement here.

As for nanotechnology’s role in all of this. It is, as Victor Jones noted, an enabling technology. If those cheetah legs aren’t being made with carbon nanostructures of one type or another, they will be. There’s nanotechnology work being done on making the covering for an android more skinlike.

One last thing, I’ve concentrated on people but animals are also being augmented. There was an opinion piece by Geoff Olson (July 24, 2009) in the Vancouver Courier, a community paper, about robotic insects. According to Olson’s research (and I don’t doubt it), scientists are fusing insects with machines so they can be used to sniff out drugs, find survivors after disasters,  and perform surveillance.

That’s as much as I care to explore the topic for now. For tomorrow, I swing back to my usual beat.