Tag Archives: NISE Net

NISE Net, the acronym remains the same but the name changes

NISE Net, the US Nanoscale Informal Science Education Network is winding down the nano and refocussing on STEM (science, technology, engineering, and mathematics). In short, NISE Net will now stand for National Informal STEM Education Network. Here’s more from the Jan. 7, 2016 NISE Net announcement in the January 2016 issue of the Nano Bite,

COMMUNITY NEWS

NISE Network is Transitioning to the National Informal STEM Education Network

Thank you for all the great work you have done over the past decade. It has opened up totally new possibilities for the decade ahead.

We are excited to let you know that with the completion of NSF funding for the Nanoscale Informal Science Education Network, and the soon-to-be-announced NASA [US National Aeronautics and Space Administration]-funded Space and Earth Informal STEM Education project, the NISE Network is transitioning to a new, ongoing identity as the National Informal STEM Education Network! While we’ll still be known as the NISE Net, network partners will now engage audiences across the United States in a range of STEM topics. Several new projects are already underway and others are in discussion for the future.

Current NISE Net projects include:

  • The original Nanoscale Informal Science Education Network (NISE Net), focusing on nanoscale science, engineering, and technology (funded by NSF and led by the Museum of Science, Boston)
  • Building with Biology, focusing on synthetic biology (funded by NSF and led by the Museum of Science with AAAS [American Association for the Advancement of Science], BioBuilder, and SynBerc [emphases mine])
  • Sustainability in Science Museums (funded by Walton Sustainability Solutions Initiatives and led by Arizona State University)
  • Transmedia Museum, focusing on science and society issues raised by Mary Shelley’s Frankenstein (funded by NSF and led by Arizona State University)
  • Space and Earth Informal STEM Education (funded by NASA and led by the Science Museum of Minnesota)

The “new” NISE Net will be led by the Science Museum of Minnesota in collaboration with the Museum of Science and Arizona State University. Network leadership, infrastructure, and participating organizations will include existing Network partners, and others attracted to the new topics. We will be in touch through the newsletter, blog, and website in the coming months to share more about our plans for the Network and its projects.

In the mean time, work is continuing with partners within the Nanoscale Informal Science Education Network throughout 2016, with an award end date of February 28, 2017. Although there will not be a new NanoDays 2016 kit, we encourage our partners to continue to engage audiences in nano by hosting NanoDays events in 2016 (March 26 – April 3) and in the years ahead using their existing kit materials. The Network will continue to host and update nisenet.org and the online catalog that includes 627 products of which 366 are NISE Net products (public and professional), 261 are Linked products, and 55 are Evaluation and Research reports. The Evaluation and Research team is continuing to work on final Network reports, and the Museum and Community Partnerships project has awarded 100 Explore Science physical kits to partners to create new or expanded collaborations with local community organizations to reach new underserved audiences not currently engaged in nano. These collaborative projects are taking place spring-summer 2016.

Thank you again for making this possible through your great work.

Best regards,

Larry Bell, Museum of Science
Paul Martin, Science Museum of Minnesota and
Rae Ostman, Arizona State University

As noted in previous posts, I’m quite interested in the synthetic biology focus the network has established in the last several months starting in late Spring 2015 and the mention of two (new-to-me) organizations, BioBuilder and Synberc piqued my interest.

I found this on the About the foundation page of the BioBuilder website,

What’s the best way to solve today’s health problems? Or hunger challenges? Address climate change concerns? Or keep the environment cleaner? These are big questions. And everyone can be part of the solutions. Everyone. Middle school students, teens, high school teachers.

At BioBuilder, we teach problem solving.
We bring current science to the classroom.
We engage our students to become real scientists — the problem solvers who will change the world.
At BioBuilder, we empower educators to be agents of educational reform by reconnecting teachers all across the country with their love of teaching and their own love of learning.

Synthetic biology programs living cells to tackle today’s challenges. Biofuels, safer foods, anti-malarial drugs, less toxic cancer treatment, biodegradable adhesives — all fuel young students’ imaginations. At BioBuilder, we empower students to tackle these big questions. BioBuilder’s curricula and teacher training capitalize on students’ need to know, to explore and to be part of solving real world problems. Developed by an award winning team out of MIT [Massachusetts Institute of Technology], BioBuilder is taught in schools across the country and supported by thought leaders in the STEM community.

BioBuilder proves that learning by doing works. And inspires.

As for Synberc, it is the Synthetic Biology Engineering Research Center and they has this to say about themselves on their About us page (Note: Links have been removed),

Synberc is a multi-university research center established in 2006 with a grant from the National Science Foundation (NSF) to help lay the foundation for synthetic biology Our mission is threefold:

develop the foundational understanding and technologies to build biological components and assemble them into integrated systems to accomplish many particular tasks;
train a new cadre of engineers who will specialize in engineering biology; and
engage the public about the opportunities and challenges of engineering biology.

Just as electrical engineers have made it possible for us to assemble computers from standardized parts (hard drives, memory cards, motherboards, and so on), we envision a day when biological engineers will be able to systematically assemble biological components such as sensors, signals, pathways, and logic gates in order to build bio-based systems that solve real-world problems in health, energy, and the environment.

In our work, we apply engineering principles to biology to develop tools that improve how fast — and how well — we can go through the design-test-build cycle. These include smart fermentation organisms that can sense their environment and adjust accordingly, and multiplex automated genome engineering, or MAGE, designed for large-scale programming and evolution of cells. We also pursue the discovery of applications that can lead to significant public benefit, such as synthetic artemisinin [emphasis mine], an anti-malaria drug that costs less and is more effective than the current plant-derived treatment.

The reference to ‘synthetic artemisinin’ caught my eye as I wrote an April 12, 2013 posting featuring this “… anti-malaria drug …” and the claim that the synthetic “… costs less and is more effective than the current plant-derived treatment” wasn’t quite the conclusion journalist, Brendan Borrell arrived at. Perhaps there’s been new research? If so, please let me know.

Universal design: Aug. 21, 2012 online workshop; nano, ethics, and religion; and more from NISE Net

My August 2012 issue of The NanoBite from the Nanoscale Informal Science Education Network (NISE Net) features news of a free, online workshop about designing public programmes with a nanotechnology focus. From the event webpage,

You (or someone from your institution) is invited to attend a free, one-hour online workshop on Universal Design for Public Programs.

The workshop will be Tuesday, August 21st, 1 – 2 pm EDT.

What is the workshop about?
The workshop will focus specifically on the NISE Net’s Universal Design Guide for Public Programs. Workshop facilitators will give a brief introduction to the guide, look at some examples of universal design in programs from the NISE Net catalog, and will have an expert advisor on hand to answer questions. If you are interested in learning more about developing or implementing public programs (such as interpretation carts, stage demonstrations, and science theater) that are inclusive of the wide range of museum visitors, including those with disabilities then please join us. See the attached brief agenda for more detail.

We’re also testing out using the Adobe Connect online platform for short web-based trainings and conversations. This is a bit of an experiment, and we’ll be interested in hearing your take on the system!

What is Universal Design?
Universal Design (UD) is the design of products and environments to be usable by all people, to the greatest extent possible, without the need for adaptation or specialized design.

You can find and download the guide online at:
http://www.nisenet.org/catalog/tools_guides/universal_design_guidelines_…

How do I sign up?
Please RSVP using this survey gizmo link if you’re able to attend:
http://www.surveygizmo.com/s3/987616/Universal-Design-Online-Workshop-RSVP

Agenda at a Glance
1:00 – Overview of universal design and universal design for learning in a museum context
1:15 – UD Programs Concept 1 – Repeat and reinforce the main ideas and concepts
1:30 – UD Programs Concept 2 – Make multiple entry points and multiple ways of engagement available.
1:45 – UD Programs Concept 3 – Provide physical and sensory access to all aspects of the program

This universal design concept seems to be related to NISE Net’s Inclusive Audiences initiative mentioned in my Dec. 5, 2011 posting.

The magazine, Covalence, published an issue on science,ethics,  and religion that featured five articles about nano. From the August 2012 issue of NanoBite (the NISE Net newsletter),

Faith, Ethics, and Nanotechnology
A number of NISE Net partners recently contributed articles to Covalence, an online magazine of religion and science, as part of a package of five papers on “faith, ethics, and nanotechnology.” The five articles, Virtue and Vice Among the Molecules by Chris Toumey, The Landscape of Nanoethics by Ronald Sandler, Biomilitarism and Nanomedicine: Evil Metaphors for the Good of Human Health? by Brigitte Nerlich, A Place for Religion in Nanotechnology Debates by Jamey Wetmore, and Nanobots Dancing: Science Fiction and Faith by Steven Lynn can all be found in the collection here: http://www.elca.org/What-We-Believe/Social-Issues/Faith-Science-and-Technology/Covalence/Features.aspx. Thank you to Chris Toumey for letting us know!

NISE Net has  a new partner, which is also a new organization, Informal Science Learning Associates (ISLA), from the Aug. 2012 issue of the NanoBite,

Informal Science Learning Associates (ISLA)
The Informal Science Learning Associates (ISLA)  is a newly-formed nonprofit organization dedicated to improving educational opportunities for all children. A museum without walls, ISLA provides interactive programming in science, technology, engineering, and mathematics to promote life-long learning in the community and surrounding communities of Laredo, Texas. One of ISLA’s first big events was hosting NanoDays at local high schools. For more on ISLA’s NanoDays activities and programs, read this Partner Highlight by Aaron Guerrero of the Children’s Museum of Houston, the regional hub leader for the South region.

And as always, I will end this with the poetry, from the Aug. 2012 issue of the NanoBite,

Nano Haiku

Fantastic voyage
Dendrimer nanospaceship
Drug delivery

After reading the article Nanoparticles Help Researchers Deliver Steroids to the Retina, Wendy Aldwyn, of the North Carolina Museum of Life & Science shared the above haiku.

Blue morpho butterfly at the nanoscale illustrates bioinspired natural colour

My January 2012 NISE (Nanoscale informal science education) Net newsletter (The Nano Bite) features a new video, this one about the Blue Morpho butterfly which shows the butterfly wings at various magnifications. (I most recently wrote about the butterfly in my Oct. 14, 2011 posting on colour, nanostructures, and nature.)

Zoom into a Blue Morpho Butterfly (with narration) from NISE Network on Vimeo.  You can find the video and additional information in the catalog.

I’ve read about the nanostructures but I’ve never seen them before and was thrilled about it since there’s a Jan. 5, 2012 news item on Nanowerk regarding bioinspired colour and some of the challenges scientists face as they try to incorporate this inspiration into materials,

Nature’s ability to actively control color has led scientists to integrate structural color into the design of modern technologies. But how do scientists accurately mimic nature for such applications?

Hiroshi Fudouzi at National Institute for Materials Science (NIMS) in Japan describes the challenges facing materials scientists for the realization of photonic crystals based on design of bioinspired structural color.

The review paper, published in Science and Technology of Advanced Materials (“Tunable structural color in organisms and photonic materials for design of bioinspired materials”) [article available in open access journal], focuses on active structural color and covers the following aspects of structural color …

From the  introduction to Fudouzi’s paper (I have removed reference numbers, please check the paper for all the citations and reference numbers),

Iridescence is a structural color formed without using pigments, dye or luminescence. It originates from

spectrally selective reflection of visible light from a periodic modulation of refractive index. We can observe the structural color in natural life forms, for example, in peacock feathers, outer shells of jewel beetles, wings of Morpho butterflies and many other insects. A previous review summarized the multilayer interference of light in aquatic organisms, particularly in fish scales. Multilayer interference is also the major topic of this paper. Structural color in nature is used in camouflage, intimidation (warning), display and communication, and there have been recent discoveries in this area from the viewpoint of photonic crystals. However, the structural color of life forms cannot be expressed using a simple interference model, and its origin, particularly in butterflies, remains an active research topic in biology and physics.

The scales of some fishes and epidermises of insects can change their structural color.The blue color of Morpho butterfly wings is caused by their periodic nanostructure. It can be changed by varying the refractive index n, for example, from blue to green by soaking in acetone (n = 1.362). After the wings are dried, their color returns to original. This is an example of passive color change, and in this review, we focus on active structural color in organisms, that is, voluntary color changes in some groups of tropical fish, octopus, squid and beetle in response to external stimuli. Revealing their mechanisms may provide hints for the fabrication of new photonic materials with tunable structural color. Such bioinspired or biomimetic materials are a new trend and an emerging technology (p. 2)

One of the fish that Fudouzi examined is the blue damselfish. Here’s a video of someone’s home aquarium featuring the fish,

I did go looking for some of the challenges that bioinspiration brings,

As outlined in this review, bioinspired approaches are useful for the design of photonic materials. A humidity sensor based on 3D opal photonic crystals was fabricated on the basis of the nanoporous structure of the Hercules beetle. This sensor changes its color from blue to red at high humidity; however, it is yet unselective to the carrier gas. (p. 8) [emphasis mine]

If you are interested in more information about Dr. Fudouzi and his work, you can check at his page on the National Institute for Materials Science (NIMS), Learning from Nature Cluster website.

Broader Impacts Criterion and informal science education in the US

Broader Impacts Criterion (BIC), a requirement for US National Science Foundation (NSF) grants covers the areas of science education, science outreach, and the promotion of benefits to society. As you might expect there is support and criticism from scientists and the scientific community about having to include BIC in grant proposals, from the American Physical Society News, June 2007 (volume 16, no. 6),

Bob Eisenstein, Chair of APS’s Panel on Public Affairs, was at NSF when the criterion was first put in place in the mid-1990s. He said that the criterion is meant to serve two purposes: first, it forces scientists to think more carefully about the ways in which their work impacts society, and second, it helps provide the public with more information about what scientists are doing.

Fred Cooper, a current NSF program director for theoretical physics, said his personal opinion is that this is a good thing for NSF to do. “I’m very happy to encourage people to think about these things,” he said. He says it is in scientists’ self-interest to do so.

However, some scientists object to research funding being coupled to education or outreach efforts. Mildred Dresselhaus of MIT says she has heard from many scientists who are unhappy with the broader impacts requirements, and who feel they should be funded based on the quality of their research, not for outreach. …

I gather the criticism was serious enough to warrant a review, excerpted from the July 25, 2011 NISE (Nanoscale Informal Science Education) Net blog posting by Carol Lynn Alpert (BIC requirements have an indirect impact on science museums which benefit from subawards and partnerships with researchers and research institutions seeking to fulfill their BIC obligations),

After reviewing comments from 5,100 stakeholders, the NSB [the National Science Board is the NSF’s governing body] has decided to retain both criteria, but to revise them in order to clarify their intent and “connection to NSF’s core principles” (NSF-11-42, available at http://www.nsf.gov/nsb/publications/2011/06_mrtf.jsp).

As stated by the NSB, these core principles and national goals are led by concerns for global economic and workforce competitiveness, and for the first time allow that “broader impacts” may be achieved “through the research itself.”  This phrase has some worrying that a “BIC loophole” has been created, for it allows that the research itself may be “enough” to enhance U.S economic and workforce competitiveness, without the research team needing to specifically incorporate synergistic activities addressing concomitant K-12 education, diversity, or public engagement goals.

On July 13, AAAS [American Association for the Advancement of Science] submitted a letter to the Chairman of the NSB strongly objecting to what I am here referring to as the “BIC loophole.” AAAS said, “While increasing knowledge serves a public good, it is not always clear how publicly funded research can produce broader impacts unless it is applied and/or widely communicated beyond the scholarly community. The current language appears to offer researchers an excuse not to engage in a more thoughtful consideration of the criterion.”

Here’s a link to the full letter from the AAAS.

I find it fascinating that there’s a discussion about this in the US as the concept of scientists engaging in public outreach does not seem to exist in the same way in Canada. I was able to find Canadian science funding agencies that require some public outreach.  NSERC (Natural Sciences and Engineering Research Council) has a general NSERC policy for public communication,

The Institution [receiving the grant] agrees to:

  1. identify, encourage and assist researchers to communicate with media and participate in announcement events to promote Agency-funded research;
  2. inform, at least five working days before the proposed announcement, if feasible, the Agency’s or Agencies’ public affairs or communications division – normally through the Institution’s own public affairs, communications, or research communications department – of announcements of Agency awards, programs and significant research results that the Institution proposes to make;
  3. include appropriate acknowledgement of the appropriate Agency or Agencies in all relevant public communications issued by the Institution;
  4. respect the relevant Agency or Agencies’ obligation under the Communications Policy of the Government of Canada;
  5. respect the relevant Agency or Agencies’ prerogative to make the first public announcement of its awards, grants and programs, when the relevant Minister declines to do so. It is the purview of a Minister or the Minister’s designate to make public announcements of all federal expenditures; and
  6. share with the Agency or Agencies any promotional material for the general public that is based on Agency-funded research.

So, this NSERC policy is aimed more at the universities and other institutions not the individual researcher.  Also, it seems to be more a guideline or general rule which provides a bit of a contrast  with the Canada Foundation for Innovation (CFI) which lists public communication as a requirement for funding. From the CFI Policy and Program Guide, December 2010,

As part of filing their annual institutional reports (see secion 7.3.2), institutions must provide the CFI with information on the communication activities undertaken in the previous year, along with activities planned for the coming year that are designed to showcase the impacts and outcomes of CFI investments. Institutions are asked to provide information on media activity, publications (print and online) and special events. This information assists the CFI in identifying national trends in research communications, as well as opportunities for collaboration on communications initiatives with institutions. (p. 81)