Tag Archives: University of Michigan Risk Science Center

Dunkin’ Donuts and nano titanium dioxide

It’s been a busy few days for titanium dioxide, nano and otherwise, as the news about its removal from powdered sugar in Dunkin’ Donuts products ripples through the nano blogosphere. A March 6, 2015 news item on Azonano kicks off the discussion with an announcement,

Dunkin’ Brands, the parent company of the Dunkin’ Donuts chain, has agreed to remove titanium dioxide, a whitening agent that is commonly a source of nanomaterials, from all powdered sugar used to make the company’s donuts. As a result of this progress, the advocacy group As You Sow has withdrawn a shareholder proposal asking Dunkin’ to assess and reduce the risks of using nanomaterials in its food products.

Here’s a brief recent history of Dunkin’ Donuts and nano titanium dioxide from my Aug. 21, 2014 posting titled, FOE, nano, and food: part two of three (the problem with research),

Returning to the ‘debate’, a July 11, 2014 article by Sarah Shemkus for a sponsored section in the UK’s Guardian newspaper highlights an initiative taken by an environmental organization, As You Sow, concerning titanium dioxide in Dunkin’ Donuts’ products (Note: A link has been removed),

The activists at environmental nonprofit As You Sow want you to take another look at your breakfast doughnut. The organization recently filed a shareholder resolution asking Dunkin’ Brands, the parent company of Dunkin’ Donuts, to identify products that may contain nanomaterials and to prepare a report assessing the risks of using these substances in foods.

Their resolution received a fair amount of support: at the company’s annual general meeting in May, 18.7% of shareholders, representing $547m in investment, voted for it. Danielle Fugere, As You Sow’s president, claims that it was the first such resolution to ever receive a vote. Though it did not pass, she says that she is encouraged by the support it received.

“That’s a substantial number of votes in favor, especially for a first-time resolution,” she says.

The measure was driven by recent testing sponsored by As You Sow, which found nanoparticles of titanium dioxide in the powdered sugar that coats some of the donut chain’s products. [emphasis mine] An additive widely used to boost whiteness in products from toothpaste to plastic, microscopic titanium dioxide has not been conclusively proven unsafe for human consumption. Then again, As You Sow contends, there also isn’t proof that it is harmless.

“Until a company can demonstrate the use of nanomaterials is safe, we’re asking companies either to not use them or to provide labels,” says Fugere. “It would make more sense to understand these materials before putting them in our food.”

As I understand it, Dunkin’ Donuts will be removing all titanium dioxide, nano-sized or other, from powdered sugar used in its products. It seems As You Sow’s promise to withdraw its July 2104 shareholder resolution is the main reason for Dunkin’ Donuts’ decision. While I was and am critical of Dunkin’ Donuts’ handling of the situation with As You Sow, I am somewhat distressed that the company seems to have acquiesced on the basis of research which is, at best, inconclusive.

Dr. Andrew Maynard, director of the University of Michigan Risk Science Centre, has written a substantive analysis of the current situation regarding nano titanium dioxide in a March 12, 2015 post on his 2020 Science blog (Note: Links have been removed),

Titanium dioxide (which isn’t the same thing as the metal titanium) is an inert, insoluble material that’s used as a whitener in everything from paper and paint to plastics. It’s the active ingredient in many mineral-based sunscreens. And as a pigment, is also used to make food products look more appealing.

Part of the appeal to food producers is that titanium dioxide is a pretty dull chemical. It doesn’t dissolve in water. It isn’t particularly reactive. It isn’t easily absorbed into the body from food. And it doesn’t seem to cause adverse health problems. It just seems to do what manufacturers want it to do – make food look better. It’s what makes the powdered sugar coating on donuts appear so dense and snow white. Titanium dioxide gives it a boost.

And you’ve probably been consuming it for years without knowing. In the US, the Food and Drug Administration allows food products to contain up to 1% food-grade titanium dioxide without the need to include it on the ingredient label. Help yourself to a slice of bread, a bar of chocolate, a spoonful of mayonnaise or a donut, and chances are you’ll be eating a small amount of the substance.

Andrew goes on to describe the concerns that groups such as You As Sow have (Note: Links have been removed),

For some years now, researchers have recognized that some powders become more toxic the smaller the individual particles are, and titanium dioxide is no exception. Pigment grade titanium dioxide – the stuff typically used in consumer products and food – contains particles around 200 nanometers in diameter, or around one five hundredth the width of a human hair. Inhale large quantities of these titanium dioxide particles (I’m thinking “can’t see your hand in front of your face” quantities), and your lungs would begin to feel it.

If the particles are smaller though, it takes much less material to cause the same effect.

But you’d still need to inhale very large quantities of the material for it to be harmful. And while eating a powdered donut can certainly be messy, it’s highly unlikely that you’re going to end up stuck in a cloud of titanium dioxide-tinted powdered sugar coating!

… Depending on what they are made of and what shape they are, research has shown that some nanoparticles are capable of getting to parts of the body that are inaccessible to larger particles. And some particles are more chemically reactive because of their small size. Some may cause unexpected harm simply because they are small enough to throw a nano-wrench into the nano-workings of your cells.

This body of research is why organizations like As You Sow have been advocating caution in using nanoparticles in products without appropriate testing – especially in food. But the science about nanoparticles isn’t as straightforward as it seems.

As Andrew notes,

First of all, particles of the same size but made of different materials can behave in radically different ways. Assuming one type of nanoparticle is potentially harmful because of what another type does is the equivalent of avoiding apples because you’re allergic to oysters.

He describes some of the research on nano titanium dioxide (Note: Links have been removed),

… In 2004 the European Food Safety Agency carried out a comprehensive safety review of the material. After considering the available evidence on the same materials that are currently being used in products like Dunkin’ Donuts, the review panel concluded that there no evidence for safety concerns.

Most research on titanium dioxide nanoparticles has been carried out on ones that are inhaled, not ones we eat. Yet nanoparticles in the gut are a very different proposition to those that are breathed in.

Studies into the impacts of ingested nanoparticles are still in their infancy, and more research is definitely needed. Early indications are that the gastrointestinal tract is pretty good at handling small quantities of these fine particles. This stands to reason given the naturally occurring nanoparticles we inadvertently eat every day, from charred foods and soil residue on veggies and salad, to more esoteric products such as clay-baked potatoes. There’s even evidence that nanoparticles occur naturally inside the gastrointestinal tract.

He also probes the issue’s, nanoparticles, be they titanium dioxide or otherwise, and toxicity, complexity (Note: Links have been removed),

There’s a small possibility that we haven’t been looking in the right places when it comes to possible health issues. Maybe – just maybe – there could be long term health problems from this seemingly ubiquitous diet of small, insoluble particles that we just haven’t spotted yet. It’s the sort of question that scientists love to ask, because it opens up new avenues of research. It doesn’t mean that there is an issue, just that there is sufficient wiggle room in what we don’t know to ask interesting questions.

… While there is no evidence of a causal association between titanium dioxide in food and ill health, some studies – but not all by any means – suggest that large quantities of titanium dioxide nanoparticles can cause harm if they get to specific parts of the body.

For instance, there are a growing number of published studies that indicate nanometer sized titanium dioxide particles may cause DNA damage at high concentrations if it can get into cells. But while these studies demonstrate the potential for harm to occur, they lack information on how much material is needed, and under what conditions, for significant harm. And they tend to be associated with much larger quantities of material than anyone is likely to be ingesting on a regular basis.

They are also counterbalanced by studies that show no effects, indicating that there is still considerable uncertainty over the toxicity or otherwise of the material. It’s as if we’ve just discovered that paper can cause cuts, but we’re not sure yet whether this is a minor inconvenience or potentially life threatening. In the case of nanoscale titanium dioxide, it’s the classic case of “more research is needed.”

I strongly suggest reading Andrew’s post in its entirety either here on the University of Michigan website or here on The Conversation website.

Dexter Johnson in a March 11, 2015 post on his Nanoclast blog also weighs in on the discussion. He provides a very neat summary of the issues along with these observations (Note Links have been removed),

With decades of TiO2 being in our food supply and no reports of toxic reactions, it would seem that the threshold for proof is extremely high, especially when you combine the term “nano” with “asbestos”.

As You Sow makes sure to point out that asbestos is a nanoparticle. While the average diameter of an asbestos fiber is around 20 to 90 nm, their lengths varied between 200 nm and 200 micrometers.

The toxic aspect of asbestos was not its diameter, but its length. …

In addition to his summary Dexter highlights As You Sows attempt to link titanium dioxide nanoparticles to asbestos. I suggest reading his post for an informed description of what made asbestos so toxic (here) and why the linkage seems specious at this time.

For anyone interested in how As You Sow managed to introduce asbestos toxicity issues into a discussion about nano titanium dioxide and food products, there’s this from As You Sow’s FAQs (frequently asked questions) about nanomaterials in food page,

Why are nanomaterials in food important to investors?

When technology is used before ensuring that it is safe for humans and the environment, and before regulatory standards exist, companies can be exposed to significant financial, legal, and reputational risk. The limited studies that exist on nanomaterials, including nanoscale titanium dioxide*, have indicated that ingestion of these particles may pose health hazards.

The inaction of regulators does not protect companies, especially when the regulators themselves warn of the dangers of nanoparticles’ largely unknown risks. Draft guidance issued by the U.S. Food and Drug Administration raises questions about the safety of nanoparticles and demonstrates the general lack of knowledge about the technology and its effects. (1)

Asbestos litigation is a good example of the risks that can arise from using an emerging technology before it is proven safe. Use of asbestos (a nanomaterial) has created the longest, most expensive mass tort in national history with total U.S. costs now standing at over $250 billion. (2) If companies been asked to investigate and minimize or avoid risks prior to adopting asbestos technology, a sad and expensive chapter in worker harm could have been avoided.

* Titanium dioxide is a common pigment and FDA-approved food additive. It is used as a whitener, a dispersant, and a thickener.

While I don’t particularly appreciate fear-mongering as a tactic, the strategy of targeting investors and their concerns, seems to have helped As You Sow win its way.

Quantum dots, televisions, and a counter-intuitive approach to environmental issues

There’s a very interesting Jan. 8, 2015 essay by Dr. Andrew Maynard, being hosted on Nanowerk, about the effects that quantum dot televisions could have on the environment (Note: A link has been removed),

Earlier this week, The Conversation reported that, “The future is bright, the future is … quantum dot televisions”. And judging by the buzz coming from this week’s annual Consumer Electronics Show (CES) that’s right – the technology is providing manufacturers with a cheap and efficient way of producing the next generation of brilliant, high-definition TV screens.

But the quantum dots in these displays also use materials and technologies – including engineered nanoparticles and the heavy metal cadmium – that have been a magnet for health and environmental concerns. Will the dazzling pictures this technology allow blind us to new health and environmental challenges, or do their benefits outweigh the potential risks?

If I understand things rightly, cadmium is toxic at both the macroscale and the nanoscale and Andrew goes on to describe quantum dots (cadmium at the nanoscale) and the problem they could present in his Jan. 7, 2015 essay on The Conversation,also hosted by Nanowerk, (Note: Link have been removed),

Quantum dots are a product of the emerging field of nanotechnology. They are made of nanometer-sized particles of a semiconducting material – often cadmium selenide. About 2,000 to 20,000 times smaller than the width of a single human hair, they’re designed to absorb light of one color and emit it as another color – to fluoresce. This property makes them particularly well-suited for use in products like tablets and TVs that need bright, white, uniform backlights.

… What is unique about quantum dots is that the color of the emitted light can be modified by simply changing the size of the quantum dot particles. And because this color-shifting is a physical phenomenon, quantum dots far outperform their chemical counterparts in brightness, color and durability.

Unfortunately, the heavy metal cadmium used in the production of many quantum dots is a health and environmental hazard.

On top of this, the potential health and environmental impacts of engineered nanoparticles like quantum dots have been raising concerns with toxicologists and regulators for over a decade now. Research has shown that the size, shape and surface properties of some particles influence the harm they are capable of causing in humans and the environment; smaller particles are often more toxic than their larger counterparts. That said, this is an area where scientific understanding is still developing.

Together, these factors would suggest caution is warranted in adopting quantum dot technologies. Yet taken in isolation they are misleading.

The essay describes the risk factors for various sectors (Note: A link has been removed),

The quantum dots currently being used in TVs are firmly embedded in the screens – usually enclosed behind multiple layers of glass and plastic. As a result, the chances of users being exposed to them during normal operation are pretty much nil.

The situation is potentially different during manufacturing, when there is a chance that someone could be inadvertently exposed to these nanoscopic particles. Scenarios like this have led to agencies like the US National Institute for Occupational Safety and Health taking a close look at safety when working with nanoparticles. While the potential risks are not negligible, good working practices are effective at reducing or eliminating potentially harmful exposures.

End-of-life disposal raises additional concerns. While the nanoparticles are likely to remain firmly embedded within a trashed TV’s screen, the toxic materials they contain, including cadmium, could well be released into the environment. Cadmium is certainly a health and environmental issue with poorly regulated e-waste disposal and recycling. However, when appropriate procedures are used, exposures should be negligible.

It seems quantum dot televisions impose a smaller burden than their cousins on the environment,

Although it seems counter-intuitive, analysis by the company that was made available to the EPA [US Environmental Protection Agency] showed QD Vision’s products lead to a net decrease in environmental cadmium releases compared to conventional TVs. Cadmium is one of the pollutants emitted from coal-fired electrical power plants. Because TVs using the company’s quantum dots use substantially less power than their non-quantum counterparts, the combined cadmium in QD Vision TVs and the power plant emissions associated with their use is actually lower than that associated with conventional flat screen TVs. In other words, using cadmium in quantum dots for production of more energy-efficient displays can actually results in a net reduction in cadmium emissions.

Not the conclusion one might have drawn at the outset, eh? You can read the essay in its entirety on either Nanowerk (Jan. 8, 2015 essay) or The Conversation (Jan. 7, 2015 essay). (Same essay just different publication dates.) Andrew has also posted his essay on the University of Michigan Risk Science Center website, Are quantum dot TVs – and their toxic ingredients – actually better for the environment? Note: Andrew Maynard is the center’s director.

Surprising facts about silver nanoparticles from the University of Michigan

Dr. Andrew Maynard, Director of the University of Michigan’s Risk Science Center, has featured seven surprising facts about silver nanoparticles in his latest video in the Risk Bites series. Before getting to the video,here’s an introduction to the topic of silver nanoparticles from a Feb. 18, 2014 posting by Ishani Hewage on the University of Michigan’s Risk Sense blog (Note: A link has been removed),

Silver – known for its germ-killing capabilities – has been used for thousands of years. In recent times though, concerns have been raised over the potential health and environmental risks associated with one particular form of silver that has been used increasingly in a range of products: engineered silver nanoparticle. In this week’s Risk Bites, Andrew Maynard, director of the Risk Science Center, rounds-up seven aspects of silver nanoparticles that might help you weigh up their risks and benefits.

“Silver has long been used for its medicinal properties,” says Andrew. “People used to intentionally dose themselves with silver nanoparticles in the form a silver laced tonic as a cure-all.”

Nowadays, the use of silver nanoparticles is not just limited to the medical field. The military, athletes and manufactures are increasingly using them to develop smart new technologies that inhibit bacterial growth and enhance overall performance.  These microscopically small particles make it easier to get silver into products without compromising them …

Without more ado, here’s the video, ‘7 surprising facts about silver nanoparticles and health’:

Both the blog posting and this link will lead you to more information about silver nanoparticles.

The long, the short, the straight, and the curved of them: all about carbon nanotubes

I implied a question in my Mar. 12, 2013 post about the recent announcement from the US National Institute of Occupational Health and Safety (NIOSH) concerning a carbon nanotube toxicity study. I indicated some curiosity about the length of the multi-walled carbon nanotubes studied in this latest research. Coincidentally, Dr. Andrew Maynard (Executive Director of the University of Michigan Risk Science Center answered this implied question in his Mar. 14, 2013 posting about the study (on Andrew’s 2020 Science blog),

The carbon nanotubes in this study were inhaled multi-walled carbon nanotubes with a predominantly long, straight fiber-like morphology.  Mice were exposed at a level of 5 mg/m3 for 5 hours per day, over a 15 day period.

It’s well worth reading Andrew’s posting for the context he provides about the research and for links to further information.

For anyone who wants the short story, multi-walled carbon nanotubes (predominantly the long, straight fibre-type were used in the study) when combined with a known cancer-initiating chemical are more toxic than plain carbon nanotubes. The study has yet to be published but the results were discussed at the Society of Toxicity’s 2013 annual meeting.

Happily, he also provides this charming video (part of his Risk Bites video series) describing carbon nanotubes and their ‘infinite’ variety,

Thank you Andrew for clearing up some of my longstanding questions about carbon nanotubes.

Happy weekend to all!

Nanosilver risk assessment in Germany and a new approach to risk assessment suggested at Univ. of Michigan

There’s a move to ban the use of nanosilver in food and articles used daily (think of the socks you don’t have to wash very often because they don’t smell) in Germany until there’s been a full risk assessment. From the April 14, 2011 news item on Nanowerk,

In its opinion on toxicity aspects of nano silver, the Federal Institute for Risk Assessment (BfR) had recommended to waive the use of nano silver in foods and articles of daily use until the data situation allows for a final assessment of the health risks. Mainly industry objected to this assessment by BfR that enough data were available for the evaluation of the health risks of nano silver in consumer products and foods. For that reason BfR had invited experts from research and science as well as representatives of associations and industry to a workshop in order to discuss existing risks and possible options for a comprehensive consumer protection. “The discussion confirmed the words of caution of BfR”, said BfR President Professor Dr. Dr. Andreas Hensel, “because the situation continues to be characterised by the fact that not enough secured scientific findings about the specific effects of nano-sized silver particles are available.

” Metallic silver and different silver compounds are used, for instance, in cosmetic agents as well as in different consumer products, mainly because of their anti-microbial effect. For textiles not only medical/therapeutic applications but increasingly also hygiene aspects play a role. The anti-microbial finishing of textile fibres is mainly to act against odour formation as a result of the microbial decomposition of sweat. In the meantime nano-sized silver particles are increasingly being used. Nano particles are particles with a diameter of less than 100 nanometres.

This is interesting in light of yesterday’s April 14, 2011 posting about the European Commission’s attempts to establish a definition for nanomaterials before any attempts to regulate their use. Then today I came across a posting by Dr. Andrew Maynard, Director of the Risk Science Center at the University of Michigan, Ann Arbor titled Why we don’t need a regulatory definition for nanomaterials. His comments represent a significant shift in opinion since I first started following his work in 2007,

Engineered nanomaterials present regulators with a conundrum – there is a gut feeling that these materials present a new regulatory challenge, yet the nature and resolution of this challenge remains elusive. But as the debate over the regulation of nanomaterials continues, there are worrying signs that discussions are being driven less by the science of how these materials might cause harm, and more by the politics of confusion and uncertainty.

Yet the more we learn about how materials interact with biology, the less clear it becomes where the boundaries of this class of materials called “nanomaterials” lie, or even whether this is a legitimate class of material at all from a regulatory perspective.

In an evidence-driven society, now would be the time to take stock – to ask what the science tells us about risks associated with exposure to materials more generally, and to reformulate the problems we are trying to address when it comes to nanomaterials. But increasingly, evidence is taking a backstage role in the process of developing definitions for regulatory purposes. This was highlighted recently by Henrik Laursen [quoted in my April 14, 2011 posting] , coordinator of the nano team in the European Commission’s environment department, who was reported on Euractiv.com as stating that ultimately, the decision on a regulatory definition of nanomaterials would be a policy decision.

This should ring alarm bells throughout the scientific community.

Andrew has been heavily involved with the nanotechnology effort and discussion for many years. This is the biographical information available from his faculty page (it is by no means comprehensive),

Prof. Maynard is a leading authority on the responsible development and use of emerging technologies. His research interests span identifying, assessing and managing emergent risks, to exploring innovative solutions to established and emerging human health and environmental risks, to equipping people with the tools they need to make informed decisions in the face of risk and uncertainty. Prof. Maynard is a member of the World Economic Forum Global Agenda Council on the Challenges of Emerging Technologies, serves on numerous review and advisory panels around the world, and has testified on a number of occasions before U.S. Congressional committees.

Andrew explains why his ideas about regulation changed and how he wants to approach it,


Five years ago, the state of the science was such that it still seemed feasible that a regulatory definition of nanomaterials could be crafted. Today, that hope is looking increasingly tenuous. We know that size matters when it comes to understanding the risks presented by materials generally – and particles more specifically – and that characteristics such as physical form and chemistry are also important. But these are relevant from diameters of tens of micrometers – where particles begin to be able to penetrate organisms – down to the nanometer size range. At different length scales, different material-biology interactions lead to different mechanisms of action that have the potential to cause harm in different ways. But there are no rules that are generalizeable to the nanoscale specifically – that much the science is clear on. And this alone calls into question the scientific-basis of enforcing nanoscale-specific regulations.

Rather, the science suggests that we have a bigger task in hand – how do we develop a better understanding of how any particle capable of entering or otherwise interacting with an organism might cause harm, and how do we codify this in evidence-based guidelines that will inform regulation?

Here’s his proposal in a nutshell,

Difficult as it may be given the momentum of current efforts to define nanomaterials for regulatory purposes, now is the time to shift toward evidence-based regulation of sophisticated materials.

Andrew has written a paper about this proposal along with David B. Warheit and Martin A. Philbert, The New Toxicology of Sophisticated Materials: Nanotoxicology and Beyond (behind a paywall), in the journal Toxicological Sciences, (2011) 120 (suppl 1): S109 – S129, doi: 10.1093/toxsci/kfq372, in 50th Anniversary Issue.

I am intrigued but not yet convinced. I really must make time to read the paper. In any event, I encourage you to read Andrew’s full posting on the topic.

University of Michigan offers a nanotechnology webcast on Feb. 8, 2011

Unsurprisingly, I came across information about a nano webcast on Andrew Maynard’s 2020 Science blog. Unsurprising since Andrew is the director of the institution, which is hosting this event, the University of Michigan’s Risk Science Center (UMRSC). From Andrew’s Feb. 1, 2011 posting,

Under the tagline “No PowerPoint, no script; just stimulating conversation”, the Unplugged series will be engaging experts in lively conversation on a range of topics. Each event will be webcast (and archived), and will allow on-line discussion around the topic of focus.

Nanotechnology is the topic of the first event, being held on February 8. Under my “strict and provocative” moderation, three leading experts will engage in conversation about what nanotechnology is, what it’s significance to public health is, and how we as a society might exploit it safely and responsibly.

Nanotechnology Unplugged is being held tomorrow from 11 am to 12 pm PST (2-3 pm EST). You can go here to view the live webcast (scroll to the bottom of the page).

I have found some more information about the three nanotechnology experts (their names, titles, and provocative opening statements), from the UMRSC Nanotechnology Unplugged web page,

Martin Philbert
Dean, School of Public Health

“Nanotechnology is a myth – something that was invented to stimulate funding and encourage scientists to work together in new ways. But engineering matter at the nanoscale is real – and is leading to new risks as well as new opportunities. Realizing these opportunities will require new approaches to understanding and addressing the potential risks”

Mark Banaszak-Holl
Professor of Chemistry, College of Literature, Science, and the Arts

“We have an opportunity to revolutionize biology and medicine in a manner analogous to the great strides previously achieved at the molecular and micron scales and to achieve a much greater understanding of complex, hierarchical biological materials. This new knowledge will engender more effective therapeutics, prosthetics, artificial tissues, and tissue regeneration; however, new risks and ethical problems will arise alongside these new capabilities.”

Shobita Parthasarathy
Assistant Professor of Public Policy, Gerald R. Ford School of Public Policy

“The new opportunities and challenges presented by nanoscale science and engineering raise critical new policy issues. How can we ensure these new technologies are developed and used most effectively, without harming people?”