Tag Archives: University of Texas at Austin

NERCS—a great nano acronym (Nanosystems ERCs)—engineering research centers

It’s a bit complicated, isn’t it? Here’s the straight scoop from the Sept. 11, 2012 news item on Nanowerk,

The National Science Foundation (NSF) recently awarded $55.5 million to university consortia to establish three new Engineering Research Centers (ERCs) that will advance interdisciplinary nanosystems research and education in partnership with industry.

Over the next five years, these Nanosystems ERCs, or NERCS, will advance knowledge and create innovations that address significant societal issues, such as the human health and environmental implications of nanotechnology. At the same time, they will advance the competitiveness of U.S. industry. The centers will support research and innovation in electromagnetic systems, mobile computing and energy technologies, nanomanufacturing, and health and environmental sensing.

“The Nanosystems ERCs will build on more than a decade of investment and discoveries in fundamental nanoscale science and engineering,” said Thomas Peterson, NSF’s assistant director for engineering. “Our understanding of nanoscale phenomena, materials and devices has progressed to a point where we can make significant strides in nanoscale components, systems and manufacturing.”

Here are some specifics about the three new centers (from the news item),

The NSF Nanosystems Engineering Research Center for Advanced Self-Powered Systems of Integrated Sensors and Technology (ASSIST), led by North Carolina State University, will create self-powered wearable systems that simultaneously monitor a person’s environment and health, in search of connections between exposure to pollutants and chronic diseases.

The NSF Nanosystems Engineering Research Center for Nanomanufacturing Systems for Mobile Computing and Mobile Energy Technologies (NASCENT), led by the University of Texas at Austin, will pursue high-throughput, reliable, and versatile nanomanufacturing process systems, and will demonstrate them through the manufacture of mobile nanodevices.

The NSF Nanosystems Engineering Research Center for Translational Applications of Nanoscale Multiferroic Systems (TANMS), led by the University of California Los Angeles, will seek to reduce the size and increase the efficiency of components and systems whose functions rely on the manipulation of either magnetic or electromagnetic fields.

The NERCs will be a part of NSF’s contributions to the National Nanotechnology Initiative, which is a government-wide activity designed to ensure that investments in this area are made in a coordinated and timely manner and to accelerate the pace of revolutionary nanotechnology discoveries. A long-term view for nanotechnology research and education needs is documented in the 2010 NSF/WTEC report, “Nanotechnology Research Directions for Societal Needs in 2020”.

You can find the 614 pp. “Nanotechnology Research Directions for Societal Needs in 2020” PDF written in 2010 here.

DARPA’s Living Foundries and advanced nanotechnology via synthetic biology

This is not a comfortable topic for a lot of people, but James Lewis in a May 26, 2012 posting on the Foresight Institute blog, comments on some developments in the DARPA (US Defense Advanced Research Projeect Agency) Living Foundries program (Note: I have removed a link),

Synthetic biology promises near-term breakthroughs in medicine, materials, and energy, and is also one promising development pathway leading to advanced nanotechnology and a general capability for programmable, atomically-precise manufacturing. Darpa (US Defense Advanced Research Projects Agency) has launched a new program [Living Foundries] that could greatly accelerate progress in synthetic biology by creating a library of standardized, modular biological units that could be used to build new devices and circuits.

If Darpa’s Living Foundries program achieves its ambitious goals, it should create a methodology, toolbox, and a large group of practitioners ready to pursue a synthetic biology pathway to building complex molecular machine systems, and eventually, atomically precise manufacturing systems.

DARPA opened solicitations for this program Sept. 2, 2011 and made a series of award notices starting May 17, 2012 stretching to May 31,2012. Here’s a description of the program from the DARPA Living Foundries project webpage,

The Living Foundries Program seeks to create the engineering framework for biology, speeding the biological design-build-test cycle and expanding the complexity of systems that can be engineered. The Program aims to develop new tools, technologies and methodologies to decouple biological design from fabrication, yield design rules and tools, and manage biological complexity through abstraction and standardization.  These foundational tools would enable the rapid development of previously unattainable technologies and products, leveraging biology to solve challenges associated with production of new materials, novel capabilities, fuel and medicines. For example, one motivating, widespread and currently intractable problem is that of corrosion/materials degradation. The DoD must operate in all environments, including some of the most corrosively aggressive on Earth, and do so with increasingly complex heterogeneous materials systems. This multifaceted and ubiquitous problem costs the DoD approximately $23 Billion per year. The ability to truly program and engineer biology, would enable the capability to design and engineer systems to rapidly and dynamically prevent, seek out, identify and repair corrosion/materials degradation.

Accomplishing this vision requires an approach that is more than multidisciplinary – it requires a new engineering discipline built upon the integration of new ideas, approaches and tools from fields spanning computer science and electrical engineering to chemistry and the biological sciences.  The best innovations will introduce new architectures and tools into an open technology platform to rapidly move new designs from conception to execution.

Performers must ensure and demonstrate throughout the program that all methods and demonstrations of capability comply with national guidance for manipulation of genes and organisms and follow all guidance for biological safety and Biosecurity.

Katie Drummond in her May 22, 2012 posting on the Wired website’s Danger Room blog makes note of the awarded contracts (Note: I have removed the links),

Now, Darpa’s handed out seven research awards worth $15.5 million to six different companies and institutions. Among them are several Darpa favorites, including the University of Texas at Austin and the California Institute of Technology. Two contracts were also issued to the J. Craig Venter Institute. Dr. Venter is something of a biology superstar: He was among the first scientists to sequence a human genome, and his institute was, in 2010, the first to create a cell with entirely synthetic genome.

In total, nine contracts were awarded as of May 31, 2012. MIT (Massachusetts Institute of Technology) was awarded two, while  Stanford University, Harvard University, and the Foundation for Applied Molecular Evolution were each awarded one.

The J. Craig Venter Institute received a total of almost $4M for two separate contracts ($964,572 and $3,007, 321). Interestingly, Venter has just been profiled in the New York Times magazine in a May 30, 2012 article by Wil S. Hylton with nary a mention of this new project (I realize the print version couldn’t be revised but surely they could have managed a note online).  The opening paragraphs sound like a description of the Living Foundries project for people who don’t specialize in reading government documents,

In the menagerie of Craig Venter’s imagination, tiny bugs will save the world. They will be custom bugs, designer bugs — bugs that only Venter can create. He will mix them up in his private laboratory from bits and pieces of DNA, and then he will release them into the air and the water, into smokestacks and oil spills, hospitals and factories and your house.

Each of the bugs will have a mission. Some will be designed to devour things, like pollution. Others will generate food and fuel. There will be bugs to fight global warming, bugs to clean up toxic waste, bugs to manufacture medicine and diagnose disease, and they will all be driven to complete these tasks by the very fibers of their synthetic DNA.

This is is not a critical or academic  analysis of Venter’s approach to biology, synthetic or otherwise, but it does offer an in-depth profile and, given Venter’s prominence in the field of synthetic biology, it’s a worthwhile read.

AAAS 2012, the Sunday, Feb. 19, 2012 experience: art/sci, HUBzero, and a news scoop from the exhibition floor

“New Concepts in Integrating Arts and Science Research for a Global Knowledge Society” at the AAAS 2012 annual meeting provided some thought provoking moments courtesy of Gunalan Nadarajan, Vice Provost at the Maryland Institute College of Art. It’s always good to be reminded that art schools are only about 300 years old and the notion of studying science as a separate discipline is only about 200 years old. We tend talk about the arts and the sciences as if they’ve always been separate pursuits when, as Nadarajan pointed out, they were part of a larger pursuit, which included philosophy and religion as well. That pursuit was knowledge.

Nadarajan mentioned a new network (a pilot project) in the US called the Network for Science Engineering Art and Design where they hope to bring scientists and artists together for collaborative work. These relationships are not always successful and Nadarajan noted that the problems tend to boil down to relationship issues (sometimes people don’t get along very well even with the best of intentions). He did say that he wanted to encourage people to get to know each other first in nonstressful environments such as sharing a meal or coffee. It sounded a little bit like dating but rather than a romantic encounter (or that might be a possibility too), the emphasis is on your work compatibility.

According to a blog posting by one of the organizers of the Network for Science Engineering Art and Design, Roger Malina, it is searching for a new name (search engine issues). You can get more information about the new network in Malina’s Feb. 19, 2012 posting.

“HUBzero: Building Collaboratories for Research on a Global Scale” was a session I anticipated with much interest and I’m glad to say it was very good with all the speakers being articulate and excited about their topics. I did not realize that there are a number of hubs in the US; I’m familiar only with the nanoHUB based at Purdue University in Indiana. (My most recent posting about this was the Dec. 5, 2011 posting about their NanoHUB-U initiative.)

nanoHUB and the others all run on an open source software designed for scientific collaboration. What I found most fascinating was the differences between the various hubs. Michael McLennan spoke about both the HUBzero software (which can be downloaded for free from the HUBzero website) and the nanoHUB, which services the nanotechnology community and has approximately 200,000 registered users at this time (they double their numbers every 12 – 18 months according to McLennan).

There are videos, papers, courses, social networking opportunities and more can be made available through the HUBzero software but uniquely configured to each group’s needs. Ellen M. Rathje (University of Texas, Austin) spoke at length about some of the challenges the earthquake engineers (NEES.org) addressed when developing their hub with regard to sharing data and some of the analytical difficulties associated with earthquake data.

Each group that uses the software to create a hub has its own culture and customs and the software has to be tweaked such that the advantages to adopting new work strategies outweigh the disadvantages of making changes. William K. Barnett whose portfolio includes encouraging the use of collaborative technologies for the Indiana Clinical and Translational Sciences Institute (CSTI) had to adopt an approach for doctors who typically have very little time to adopt new technologies and who have requirements regarding confidentiality that are far different than that of nanoscientists or earthquake engineers.

I got my ‘scooplet’ when I visited the exhibition floor. The 2012 Canadian Science Policy Conference (2012 CSPC) will be held in Alberta as you can see in this Feb. 19, 2012 posting on the Government of Canada science site.

Apparently, there are two cities under consideration and, for anyone  who’s been hoping for a meeting in Wetaskawin, I must grind your dreams into dust. As most Canadians would expect, the choice is between Edmonton and Calgary. I understand the scales are tipped towards Calgary (that’s the scooplet) but these things can change in a heartbeat (no, don’t get your hopes up about Wetaskawin). I understand we should be learning the decision soon (I wonder if Banff might emerge as a dark horse contender).