Tag Archives: Future and Emerging Technologies [Fet11]) in information technology

Follow the ‘graphene brick’ road

Today (Oct. 11, 2012), I’m highlighting a second article in Nature. This time it’s a “A roadmap for graphene ” (behind a paywall) in the Oct. 11, 2012 online issue of Nature written by Nobel Prize-winner Professor Kostya Novoselov of the University of Manchester; V. I. Fal′ko Department of Physics, Lancaster University;  L. Colombo, Texas Instruments Incorporated; P. R. Gellert, AstraZeneca; M. G. Schwab, BASF SE; and K. Kim, Samsung Advanced Institute of Technology.

If you can get behind the paywall, the article offers excellent insight into the state of graphene research and the state of graphene applications.  The authors cover:

Challenges in Production

Chemical vapour deposition

Synthesis on SiC

Other growth methods

Graphene electronics

Flexible electronics

High-frequency transistors

Logic transistor

Photonics

Photodetectors

Optical modulator

Mode-locked laser/THz generator

Optical polarization controller

Composite materials, paints, and coating

Energy generation and storage

Graphene for sensors and metrology

Bioapplications

You can get more details about the article from the Oct. 11, 2012 news release from the University of Manchester,

The authors estimate that the first graphene touchscreen devices could be on the market within three to five years, but will only realise its full potential in flexible electronics applications.

Rollable e-paper is another application which should be available as a prototype by 2015 – graphene’s flexibility proving ideal for fold-up electronic sheets which could revolutionise electronics.

Timescales for applications vary greatly upon the quality of graphene required, the report claims. For example, the researchers estimate devices including photo-detectors, high-speed wireless communications and THz generators (for use in medical imaging and security devices) would not be available until at least 2020, while anticancer drugs and graphene as a replacement for silicon is unlikely to become a reality until around 2030.

I notice the lead authors are from the University of Manchester and Lancaster University. These UK educational institutions are part of the FET (Future and Emerging Technologies) GRAPHENE-CA flagship project, which is in competition for one of two prizes of 1B Euros for research. As I’ve noted previously in my Feb. 21, 2012 posting and many others, the UK is leading a tremendous public relations/marketing campaign on behalf of this project and the UK’s own interests. Good luck to them as I believe the announcement of which are the two winning projects from a field of six should be made in the next few months.

The current international infatuation with roadmaps sometimes reminds me of The Wizard of Oz and the Yellow Brick Road,

I always appreciate the optimism shown by the lead character, Dorothy, as she takes off for parts unknown.

Graphene 2012 and the Graphene flagship project

The Graphene Flagship project strikes again, this time at Graphene 2012, the second international conference on graphene. Here’s more about the conference, from the March 20, 2012 news item on Azonano,

Internationally renowned speakers will present the latest trends in the field and the global Graphene technology revolution. The Graphene 2012 program includes more than 100 speakers from all over the World, presentations from both research and industry.

Graphene 2012 [April 10 – 13, 2012 in Brussels, Belgium] is now an established European event, attracting global participants intent on sharing, exchanging and exploring new avenues of graphene-related scientific and commercial developments. Until now, the best, among many others, represented countries are United Kingdom, Germany, Spain, Belgium, France and United States.

I checked out the programme and found this front and centre,

Graphene Flagship Session

The consortium of the Graphene Flagship Pilot Action is working to establish the “Graphene Science and Technology Roadmap” which will be presented to the European Commission and Member States to demonstrate the need for securing long term funding, coordinated through a new Graphene Alliance. The Graphene Flagship Pilot Action will take advantage of the International conference Graphene 2012 in Brussels to co-organize a specific session in order to timely deliver to the European community the results of this Roadmap.

Tentative program

a. “Graphene Flagship: working together to combine scientific excellence and technological impacts”: Jari Kinaret
b. “The Graphene Science and Technology Roadmap”: Vladimir Falko and Andrea Ferrari
c. “Korean Graphene Research and Roadmap”: Byung Hee Hong
d . “Japanese Graphene Research and Roadmap”: Masataka Hasegawa
e. Round Table (tentative): Luigi Colombo, Gabriel Crean, Andrea Ferrari, Albert Fert, David Guedj, Francisco Guinea, Byung Hee Hong, Jari Kinaret, Klaus von Klitzing, and Ken Teo

I have commented previously on GRAPHENE-CA or the Graphene Flagship project, most recently in my Feb. 13, 2012 posting where I discuss the European Union’s Future and Emerging Technologies (FET) funding initiatives. The GRAPHENE-CA consortium is in competition for a 1B Euro research funding prize and they (particularly the UK) have been heroic in their promotional efforts, this new Graphene Alliance being yet another example.

Registration for the conference is here.

UK rolls dice on glamourous graphene

These days, graphene is the glamourpuss (a US slang term from the 1940s for which I have great affection) of the nanoscience/nanotechnology research world and is an international ‘object of desire’. For example, the UK government just announced a GBP 50 M investment in graphene research. From the Feb. 2, 2012 news item on Nanowerk,

Minister for Universities and Science, David Willetts, said: “This significant investment in graphene will drive growth and innovation, create high-tech jobs and keep the UK at the very forefront of this rapidly evolving area of science. With a Nobel Prize and hundreds of published papers under their belts, scientists in the UK have already demonstrated that we have real strengths in this area. The graphene hub will build on this by taking this research through to commercial success.”

A key element of the graphene hub will be a national institute of graphene research and commercialisation activities. The University of Manchester has been confirmed as the single supplier invited to submit a proposal for funding a new £45 million national institute, £38 million of which will be provided by the UK Government. This world-class shared facility for graphene research and commercialisation activities will be accessible by both researchers and business.

I’d never really heard about graphene until 2010 when Andre Geim and Konstantin Novoselov at the University of Manchester won the Nobel Prize in Physics for their work in graphene. (In 2012, both scientists were knighted and I could have referred to them as Sir Geim and Sir Novoselov.) Since that time money has been flowing towards graphene research. As far as I can tell this GBP 50 M is the tip of the iceberg.

The University of Manchester and other institutions in the UK are part of an international consortium competing for a 1 billion Euro research prize through the European Union’s Future and Emerging Technologies (FET) programme. (I have a bit more about the FET competition in my June 13, 2011 posting.)

There does seem to be some jockeying for position. First, the graphene consortium is currently competing for the FET money as the Graphene Flagship. Only two of six competing flagships will receive money for further research. Should the consortium’s flagship be successful, there will be six member countries competing for a share of that 1 billion Euro prize. The UK is represented by three research institutions (University of Manchester, Lancaster University, and the University of Cambridge) while every other country in the graphene consortium is represented by one research institution.

The decision as to which two FET flagship projects receive the funding will be made public in late 2012. Meanwhile, the UK not only announces this latest funding but last fall also launched a big graphene exhibition, anchored by the three UK universities in the consortium,  in Warsaw. I wrote about that development in my Nov. 25, 2011 posting and questioned the communication strategy. It’s taken me a while but I’m beginning to realize that this was likely part of a larger political machination designed to ensure UK dominance in graphene research and, I imagine they dearly hope this will be true, commercialization.

ETA Feb. 6, 2012: Dexter Johnson at the Nanoclast blog (on the Institute of Electrical and Electronics Engineers [IEEE] website) noted this about the UK and commercializing graphene in the electronics industry in his Feb. 3, 2012 posting,

The press release emphasizes how “The graphene hub will build on this [investment] by taking this research through to commercial success.” So I was wondering if there would be any discussion of how they intended to build up an electronics industry that it never really had in the first place to exploit the material.

Graphene: scientific rock star? Sweden, and FET

Well, some think graphene is a scientific rock star according to the Nov. 9, 2011 news item on Nanowerk,

Graphene is sort of a scientific rock star, with countless groups studying its amazing electrical properties and tensile strength and dreaming up applications ranging from flat-panel screens to elevators in space.

That’s what a research group (Craighead Research Group) at Cornell University is saying about graphene in its article, “Fabrication and performance of graphene nanoelectromechanical systems” published n the Journal of Vacuum Science and Technology B, 2011, vol. 29 (5).

There’s no question that graphene is a sizzling topic these days and much money is being flung in that direction for research. The Nov. 8, 2011 news item on Nanowerk features a major chunk of funding (which may also have an impact on a huge European Union funding project next year) for a graphene research group in Sweden,

Graphene can enable the best quantum resistance standard. This is one of many advances emerging from the active research into graphene at Chalmers University of Technology. Chalmers will now receive the lion’s share of a new Swedish research grant of SEK 40 million [approximately $6M CAD] for the supermaterial graphene.

Following the new financing from the Knut and Alice Wallenberg Foundation, a group of some 30 Swedish graphene researchers will be formed, in a close collaboration between Chalmers and the universities of Uppsala and Linköping. The effort will form the Swedish spearhead in international graphene research – a hot topic ever since the Nobel Physics Prize in 2010.

The Chalmers researchers have already achieved several important breakthroughs with graphene, despite the fact that the material was first produced as recently as 2004. One example is a new standard for the quantum of resistance – a “tuning fork” for calibrating the correct resistance in electrical instruments and devices. State-of-the-art resistance standards are based on silicon or gallium arsenide. These are difficult to manufacture, and the method only works at extremely low temperatures and in large magnetic fields. A new generation of resistance standards based on graphene are at least as accurate as those in use today, while benefitting from being substantially easier to produce and use.

In another project, Chalmers researchers have produced a graphene transistor that operates at more than 10 gigahertz. They are now working on producing one capable of reaching into the terahertz range – in other words faster than 100 gigahertz. This may become possible thanks to a large grant that Mikael Fogelström’s research group received earlier this year from the Foundation for Strategic Research – SEK 28.5 million over a five-year period.

The Future and Emerging Technologies in information technology (Fet 11) is the name for the European Union’s 2011 Pathfinder programme, which will be awarding $1B Euros in mid-2012, and which was mentioned in my June 13, 2011 posting about graphene. Here’s an excerpt from that posting,

Bringing together multiple disciplines and addressing research across a whole range of issues, from fundamental understandings of material properties to Graphene production, the Flagship will provide the platform for establishing European scientific and technological leadership in the application of Graphene to Information and Communication Technologies. The proposed research includes coverage of electronics, spintronics, photonics, plasmonics and mechanics, all based on Graphene.

[Project Team:]

Andrea Ferrari, Cambridge University, UK
Jari Kinaret, Chalmers University, Sweden
Vladimir Falko, Lancaster University, UK
Jani Kivioja, NOKIA, Finland [emphasis mine]

2011 has been quite the year for these researchers at Chalmers since they were one of six research groups getting funds to produce more work in preparation for a final round of considerations before deciding which two groups would be receiving $1B Euro each in 2012.

I gather from the news item on Nanowerk, this latest funding will aid in next year’s big decision,

Chalmers has previously gathered together European graphene researchers for a major research initiative competing for what is known as “Future Emerging Technology Flagship” funds, providing finance of up to SEK 10 billion over 10 years. Next year, the EU will decide whether to convert the pilot project into a flagship. The new research grant from the Knut and Alice Wallenberg Foundation is believed to increase the chances of that happening.

Europe’s Future and Emerging Technologies House website

The Future and Emerging Technologies (FET) House website is intended for young people as per the August 19, 2011 news item on Nanowerk,

The Future and Emerging Technologies (FET) scheme of the European Commission has launched FET-House, a new website presenting some of the most advanced information and communication technology (ICT) projects in Europe and the people involved.

The FET-House wants to help young people to understand what their options are as regards the career in science and technology, and bring across some of the excitement of people who have a passion for science.

More details about the house are available on this FET page on the European Commission’s website on ICT (information and communication technology)Research,

FET House is a website and application that showcases topics typically covered by some of the most advanced research projects in Europe, such as zero-power computation and communication, robotics, quantum technology, understanding the brain, and data privacy. These themes will be linked to demos, videos and catchy write-ups of a selection of related projects, as well as to people working in the field who are able to excite others about their work.

Through their experience and career stories, these people will act as mentors to young visitors to the FET House’s, inviting them to ask questions, post contributions in the forum, and ultimately to take up the challenge of a career in future technologies themselves. Using the site’s tools and channels, it may even be possible to arrange for real-life visits, to give young people first-hand experience of a lab working on cutting-edge technology.

I went to the FET House website and checked out a couple of areas, We can rebuild you (nanomedicine) and From zero-to superpower (energy). I found the material to be engaging. In fact, I found some information about visual prosthetics that I had been looking for in the context of a story (my August 18, 2011 posting) about Deus Ex: Human Revolution, a role-playing shooter game that tackles issues around human enhancement/augmentation.

Once you get past the FET House home page, you find this graphic,

FET House

When you get to the FET House website, you can navigate to We can rebuild you by clicking on the second room from the top, on the right side. The From zero- to superpower room is directly above it. Happy clicking.

 

Graphene, IBM’s first graphene-based integrated circuit, and the European Union’s pathfinder programme in information technologies

A flat layer of carbon atoms packed into a two-dimensional honeycomb arrangement, graphene is being touted as a miracle (it seems)  material which will enable new kinds of electronic products. Recently, there have been a number of news items and articles featuring graphene research.

Here’s my roundup of the latest and greatest graphene news. I’m starting with an application that is the closest to commercialization: IBM recently announced the creation of the first graphene-based integrated circuit. From the Bob Yirka article dated June 10, 2011 on physorg.com,

Taking a giant step forward in the creation and production of graphene based integrated circuits, IBM has announced in Science, the fabrication of a graphene based integrated circuit [IC] on a single chip. The demonstration chip, known as a radio frequency “mixer” is capable of producing frequencies up to 10 GHz, and demonstrates that it is possible to overcome the adhesion problems that have stymied researchers efforts in creating graphene based IC’s that can be used in analog applications such as cell phones or more likely military communications.

The graphene circuits were started by growing a two or three layer graphene film on a silicon surface which was then heated to 1400°C. The graphene IC was then fabricated by employing top gated, dual fingered graphene FET’s (field-effect transistors) which were then integrated with inductors. The active channels were made by spin-coating the wafer with a thin polymer and then applying a layer of hydrogen silsequioxane. The channels were then carved by e-beam lithography. Next, the excess graphene was removed with an oxygen plasma laser, and then the whole works was cleaned with acetone. The result is an integrated circuit that is less than 1mm2 in total size.

Meanwhile, there’s a graphene research project in contention for a major research prize in Europe. Worth 1B Euros, the European Union’s 2011 pathfinder programme (Future and Emerging Technologies [Fet11]) in information technology) will select two from six pilot actions currently under way to be awarded a Flagship Initiative prize.  From the Fet11 flagships project page,

FET Flagships are large-scale, science-driven and mission oriented initiatives that aim to achieve a visionary technological goal. The scale of ambition is over 10 years of coordinated effort, and a budget of up to one billion Euro for each Flagship. They initiatives are coordinated between national and EU programmes and present global dimensions to foster European leadership and excellence in frontier research.

To prepare the launch of the FET Flagships, 6 Pilot Actions are funded for a 12-month period starting in May 2011. In the second half of 2012 two of the Pilots will be selected and launched as full FET Flagship Initiatives in 2013.

Here’s the description of the Graphene Science and technology for ICT and beyond pilot action,

Graphene, a new substance from the world of atomic and molecular scale manipulation of matter, could be the wonder material of the 21st century. Discovering just how important this material will be for Information and Communication Technologies is the long term focus of the Flagship Initiative, simply called, GRAPHENE. This aims to explore revolutionary potentials, in terms of both conventional as well as radically new fields of Information and Communication Technologies applications.

Bringing together multiple disciplines and addressing research across a whole range of issues, from fundamental understandings of material properties to Graphene production, the Flagship will provide the platform for establishing European scientific and technological leadership in the application of Graphene to Information and Communication Technologies. The proposed research includes coverage of electronics, spintronics, photonics, plasmonics and mechanics, all based on Graphene.

[Project Team:]

Andrea Ferrari, Cambridge University, UK
Jari Kinaret, Chalmers University, Sweden
Vladimir Falko, Lancaster University, UK
Jani Kivioja, NOKIA, Finland [emphases mine]

Not so coincidentally (given one member of the team is associated with Nokia and another is associated with Cambridge University), the Nokia Research Centre jointly with Cambridge University issued a May 4, 2011 news release (I highlighted it in my May 6, 2011 posting [scroll down past the theatre project information]) about the Morph concept (a rigid, flexible, and stretchable phone/blood pressure cuff/calculator/and  other electronic devices in one product) which they have been publicizing for years now. The news release concerned itself with how graphene would enable the researchers to take the Morph from idea to actuality. The webpage for the Graphene Pilot Action is here.

There’s something breathtaking when there is no guarantee of success about the willingness to invest up to 1B Euros in a project that spans 10 years. We’ll have to wait until 2013 before learning whether the graphene project will be one of the two selected as Flagship Initiatives.

I must say the timing for the 2010 Nobel Prize for Physics which went to two scientists (Andre Geim and Konstantin Novoselov) for their groundbreaking work with graphene sems interesting (featured in my Oct. 7, 2010 posting) in light of this graphene activity.

The rest of these graphene items are about research that could lay the groundwork for future commercialization.

Friday, June 13, 2011 there was a news item about foaming graphene on Nanowerk (from the news item),

Hui-Ming Cheng and co-workers from the Chinese Academy of Sciences’ Institute of Metal Research at Shenyang have now devised a chemical vapor deposition (CVD) method for turning graphene sheets into porous three-dimensional ‘foams’ with extremely high conductivity (“Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition” [published in Nature Materials 10, 424–428 (2011) doi:10.1038/nmat3001 Published online 10 April 2011]). By permeating this foam with a siloxane-based polymer, the researchers have produced a composite that can be twisted, stretched and bent without harming its electrical or mechanical properties.

Here’s an image from the Nature Publishing Group (NPG) of both the vapour and the bendable, twistable, stretchable composite (downloaded from the news item on Nanowerk where you can find a larger version of the image),

A scanning electron microscopy image of the net-like structure of graphene foam (left), and a photograph of a highly conductive elastic conductor produced from the foam. (© 2011 NPG)

The ‘elastic’ conductor (image to the right) reminds me of the ‘paper’ phone which I wrote about May 8, 2011 and May 12, 2011. (It’s a project where teams from Queen’s University [in Ontario] and Arizona State University are working to create flexible screens that give you telephony, music playing and other capabilities  much like the Morph concept.)

Researchers in Singapore have developed a graphene quantum dot using a C60 (a buckminster fullerene). From the June 13, 2011 news item (Graphene: from spheres to perfect dots) on Nanowerk,

An electron trapped in a space of just a few nanometers across behaves very differently to one that is free. Structures that confine electrons in all three dimensions can produce some useful optical and electronic effects. Known as quantum dots, such structures are being widely investigated for use in new types of optical and electronics technologies, but because they are so small it is difficult to fabricate quantum dots reproducibly in terms of shape and size. Researchers from the National University of Singapore (NUS) and A*STAR have now developed a technique that enables graphene quantum dots of a known size to be created repeatedly and quickly (“Transforming C60 molecules into graphene quantum dots” [published in Nature Nanotechnology 6, 247–252 (2011) doi:10.1038/nnano.2011.30 Published online 20 March 2011]).

This final bit is about a nano PacMan that allows for more precise patterning from a June 13, 2011 article written by Michael Berger,

A widely discussed method for the patterning of graphene is the channelling of graphite by metal nanoparticles in oxidizing or reducing environments (see for instance: “Nanotechnology PacMan cuts straight graphene edges”).

“All previous studies of channelling behavior have been limited by the need to perform the experiment ex situ, i.e. comparing single ‘before’ and ‘after’ images,” Peter Bøggild, an associate professor at DTU [Danish Technical University] Nanotech, explains to Nanowerk. “In these and other ex situ experiments the dynamic behavior must be inferred from the length of channels and heating time after completion of the experiment, with the rate of formation of the channel assumed to be consistent over the course of the experiment.”

In new work, reported in the June 9, 2011 advance online edition of Nano Letters (“Discrete dynamics of nanoparticle channelling in suspended graphene” [published in Nano Letters, Article ASAP, DOI: 10.1021/nl200928k, Publication Date (Web): June 9, 2011]), Bøggild and his team report the nanoscale observation of this channelling process by silver nanoparticles in an oxygen atmosphere in-situ on suspended mono- and bilayer graphene in an environmental transmission electron microscope, enabling direct concurrent observation of the process, impossible in ex-situ experiments.

Personally, I love the youtube video I’ve included here largely because it features blobs (as many of these videos do) where they’ve added music and titles (many of these videos do not) so you can better appreciate the excitement,

From the article by Michael Berger,

As a result of watching this process occur live in a transmission electron microscope, the researchers say they have seen many details that were hidden before, and video really brings the “nano pacman” behavior to life …

There’s a reason why they’re so interested in cutting graphene,

“With a deeper understanding of the fine details we hope to one day use this nanoscale channelling behavior to directly cut desired patterns out of suspended graphene sheets, with a resolution and accuracy that isn’t achievable with any other technique,” says Bøggild. “A critical advantage here is that the graphene crystal structure guides the patterning, and in our case all of the cut edges of the graphene are ‘zigzag’ edges.”

So there you have it. IBM creates the first integrated graphene-based circuit, there’s the prospect of a huge cash prize for a 10-year project on graphene so they could produce the long awaited Morph concept and other graphene-based electronics products while a number of research teams around the world continue teasing out its secrets with graphene ‘foam’ projects, graphene quantum dots, and nano PacMen who cut graphene’s zigzag edges with precision.

ETA June 16, 2011: For those interested in the business end of things, i.e. market value of graphene-based products, Cameron Chai features a report, Graphene: Technologies, Applications, and Markets, in his June 16, 2011 news item on Azonano.