Tag Archives: EHS

US National Nanotechnology Initiative holding EHS webinar

There’s an Oct. 15, 2011 news item on Nanowerk announcing the US National Nanotechnology Initiative’s Environmental, Health, and Safety webinar on research strategies.

Federal Agencies participating in the National Nanotechnology Initiative (NNI) are hosting a webinar to announce the release of the 2011 NNI Environmental, Health, and Safety (EHS) Research Strategy and to the discuss the development of this document and its key focus areas. The webinar will be held October 20, 2011 from 12 noon until 12:45p.m [EDT].

The event will consist of an overview of the strategy’s development followed by comments from industrial, regulatory, and public health perspectives. Dr. John Howard, Nanotechnology Environmental and Health Implications (NEHI) Working Group Co-Chair, will serve as the moderator. Panelists include:

  • Dr. Treye Thomas, NEHI Working Group Co-Chair
  • Dr. Shaun Clancy, Evonik DeGussa Corporation
  • Dr. Janet Carter, Occupational Safety and Health Administration (OSHA)
  • Ms. Lynn Bergeson, Bergeson & Campbell

The webinar will also feature a 20-minute question-and-answer segment following the presentations. Questions may be submitted prior to the webinar to webinar@nnco.nano.gov beginning at noon (EDT) Wednesday, October 19, 2011 and will be accepted until the close of the webinar at 12:45 p.m. Thursday, October 20, 2011. [???]

I’m pretty sure that last bit is an error. I can’t imagine a webinar that lasts for 25 hours, at least not on this topic.

As registration is necessary to watch the webinar, I tried to do so and failed each time. I think the problem is that I don’t have a zip code. Usually I can fill in a Canadian postal code instead but this system rejected every attempt. If you do have a US zip code, you can register here.

In preparation for this webinar about EHS research strategies to be undertaken by US federal agencies, Dr. Andrew Maynard has summarized some of the public comments about the  key recommendations in the draft version, which was published in December 2010. Excerpted from Andrew’s Oct. 15, 2011 posting,

Bill Kojola

An integrated and linked research effort to assess, via epidemiological studies, the impact of exposure to engineered nanomaterials on human health and any necessary resultant risk assessment/management responses seems to be missing from the strategy.

Andrew Maynard

…what would it take to craft a federal strategy that enabled agencies to work together more effectively in ensuring the safe use of nanomaterials?  I’m not sure that this is entirely possible – an internal strategy will always be constrained by the system in ways that an externally-crafted strategy isn’t.  But I do think that there are three areas in particular that could be built on here:

  1. Principles. The idea of establishing principles to which agencies sign up to is a powerful one, and could be extended further.  For instance, they could include a commitment to working closely and cooperatively with other agencies, to working toward a common set of aims, and to critically reviewing progress towards these aims on a regular basis.
  2. Accountability. The implementation and coordination framework set out in chapter 8 of the draft strategy contains a number of items that, with a bit of work, some group within the federal government could be held accountable to.  Formally, the NNCO would seem to be the most appropriate organization to be held responsible for progress here.  With accountability for actions that support the implementation and coordination of the strategy, a basis could be built for an actionable strategy, rather than wishful thinking.
  3. Innovation. So often in documents like this, there is a sense of defeatism – “this is the system, and there’s nothing we can do to change it”.  Yet there are always innovative ways to circumvent institutional barriers in order to achieve specific ends.  I would strongly encourage the NEHI to start from the question “where to we want to go, and how are we going to get there”, rather than “what are we allowed to do”, and from this starting point explore innovative ways of making substantive and measurable progress towards the stated mission of the strategy.  Just one possibility here is to use the model of the Signature Initiatives being developed elsewhere within the NNI – which overcome institutional barriers to encourage agencies to focus on a common challenge.  Something similar to a Signature Initiative focused on predictive modeling, or personal exposure measurement, or nanomaterial characterization, could enable highly coordinated and integrated cross-agency programs that accelerate progress toward specific goals.  But this is just one possibility – there are surely many more ways of getting round the system!

John DiLoreto, The Nanotechnology Coalition

A core mission of the NNI is to foster “technological advancements that benefit society” (Draft NNI 2011 Environmental, Health, and Safety Strategy, page 1). The NNI strategy provides valuable help in identifying key research areas and, in some cases, providing the necessary funding to conduct the research itself. The Coalition believes that to fulfill its mission in this regard, the NNI could and should direct its considerable influence and resources to educating regulatory and other officials in positions of influence about nanotechnology so they can better fulfill their responsibilities to protect the safety of consumers. The EHS research strategy should also examine ways that science-based safety information can be shared with regulatory officials and others in leadership positions and provide scientific resources to assist these officials in understanding what a ‘nanomaterial’ is and help create a better understanding of properties that may impact safety.

David Berube

Section 6, p. 56, line 23/25/26/30 – 23 conflates translation with risk communication (they are different). 25 “approaches” is unclear and should reference levels of acceptable caution. 26 high uncertainty may demand whole new algorithms – your assumption whether risk communication and risk management can be integrated is incorrect. 30 is a good point to discuss the conflation of translation which occurs between parties within similar ranges of understanding and public perception (NGOs) as well as perception of public perception (legislators). Each of these subset publics have different needs and interests and standardization of terminology is hardly sufficient to the task at hand.

p. 57 line 4 – see above and consider we might need to develop algorithms appropriate to different levels of certainty. The assumption the answer to uncertainty is more certainty is not necessarily valid for all publics. The simplified version in the document seems more attuned to strategic communication involving response strategies for different risks and certainty values involving variables like plausibility, phenomenon specificity, exigence, salience, etc.

p. 63 lines 34/37 34 (see above). 37 one model does not fit all. 38 link to trust is very complex and complicated by new/digital media sources as well as new credibility (social media) and reliability.

p. 58 lines 1/5/11/27 (see above) and this demands information sharing and transparency as well as answering how data is defined, who decides what is relevant data, how it is generated, how data is compiled and concatenated. how data is vetted and debunked, and how data is revised. 5 two ways is overly simplistic, try interactional. 11 this is a model issue and we do not have a model for high uncertainty. 27 assumes risk communication is a function of data, esp. scientific data and for many publics that is not true.

p. 76 – Explanation SP objective 4.2 re: needs of the stakeholders – it might be prudent to ask them what their needs are.

Samantha Dozier, PETA

A complete, step-wise method for rigorous characterization is imperative so that measurement is not questioned and studies are not repeated. A clear requirement for nanomaterial characterization will help eliminate redundancy and imprecise data-gathering and will aid in reducing animal use for the field.

For human health effects assessment, the NNI should promote the development of a tiered, weight-of-evidence approach that is based on the most relevant methods available and encourages the NNI to support the incorporation of appropriate in vitro human-relevant cell and tissue assays for all endpoints, instead of relying on inadequately modified, non-validated animal assays. This tiered approach should start with an initial characterization of the nanomaterial, followed by in vitro basal cell and portal-of-entry toxicity assessments according to human exposure potential and a full characterization of the toxicokinetic potential.

There’s a lot more in Andrew’s posting. It saddens me even more now that I see Andrew’s posting that Health Canada did not make the submissions to its public consultation on “Policy Statement on Health Canada’s Working Definition for Nanomaterials” available for viewing (my Oct. 11, 2011 posting).

Comparing nanomaterials definitions: US and Canada

In light of yesterday’s (April 26, 2010) posting about Health Canada and their nanomaterials definition, Andrew Maynard’s April 23, 2010 post at 2020 Science (blog) is quite timely. Andrew has some details about new nanomaterials definitions being proposed in the both the US Senate and House of Representatives so that their Toxic Substances Control Act can be amended. From Andrew’s posting, an excerpt about the proposed House bill,

The House draft document is a little more explicit. It recommends amending section 3(2) of the original act with:

“(C) For purposes of this Act, such term may include more than 1 form of a substance with a particular molecular identity as described in sub-paragraph (A) if the Administrator has determined such forms to be different substances, based on variations in the substance characteristics. New forms of existing chemical substances so determined shall be considered new chemical substances.” (page 6)

with the clarification that

“The term ‘substance characteristic’ means, with respect to a particular chemical substance, the physical and chemical characteristics that may vary for such substance, and whose variation may bear on the toxicological properties of the chemical substance, including—

(A) chemical structure and composition

(B) size or size distribution

(C) shape

(D) surface structure

(E) reactivity; and

(F) other characteristics and properties that may bear on toxicological properties” (page 11)

Both the Senate bill and the House discussion document provide EPA with the authority to regulate any substance that presents a new or previously unrecognized risk to human health as a new substance. This is critical to ensuring the safety of engineered nanomaterials, where risk may depend on more than just the chemistry of the substance. But it also creates a framework for regulating any new material that presents a potential risk – whether it is a new chemical, a relatively simple nanomaterial, a more complex nanomaterial – possibly one that changes behavior in response to its environment, or a novel material that has yet to be invented. In other words, these provisions effectively future-proof the new regulation.

I prefer the definition in the draft House of Representatives bill to Health Canada’s because of its specificity and its future-oriented approach. Contrast their specificity with this from the Interim Policy Statement on Health Canada’s Working Definition for Nanomaterials:

Health Canada considers any manufactured product, material, substance, ingredient, device, system or structure to be nanomaterial if:

1. It is at or within the nanoscale in at least one spatial dimension, or;

2. It is smaller or larger than the nanoscale in all spatial dimensions and exhibits one or more nanoscale phenomena.

For the purposes of this definition:

* The term “nanoscale” means 1 to 100 nanometres, inclusive;

* The term “nanoscale phenomena” means properties of the product, material, substance, ingredient, device, system or structure which are attributable to its size [emphasis mine] and distinguishable from the chemical or physical properties of individual atoms, individual molecules and bulk material; and,

* The term “manufactured” includes engineering processes and control of matter and processes at the nanoscale.

You’ll notice the House of Representatives’ draft bill offers five elements to the description (chemical composition, size or size distribution [emphasis mine], shape, surface structure, reactivity, and other characteristics and properties that may bear on toxicological properties). So in the US they include elements that have been identified as possibly being a problem and leave the door open for future discovery.

The proposed legislation has another feature, Andrew notes that,

Both the Senate bill and the House discussion document provide EPA with the authority [emphasis mine] to regulate any substance that presents a new or previously unrecognized risk to human health as a new substance. This is critical to ensuring the safety of engineered nanomaterials, where risk may depend on more than just the chemistry of the substance. But it also creates a framework for regulating any new material that presents a potential risk – whether it is a new chemical, a relatively simple nanomaterial, a more complex nanomaterial – possibly one that changes behavior in response to its environment, or a novel material that has yet to be invented. In other words, these provisions effectively future-proof the new regulation.

As far as I can recall, Peter Julian’s (MP – NDP) tabled draft bill for nanotechnology regulation in Canada does not offer this kind of ‘future-proofing’ although it could be added if it is ever brought forward for debate in the House of Commons. Given the quantity of public and political discussion on nanotechnology (and science, in general) in Canada, I doubt any politician could offer those kinds of amendments to Julian’s proposed bill.

As for Canada’s proposed nanomaterials reporting plan/inventory/scheme, Health Canada’s proposed definition’s vagueness makes compliance difficult. Let me illustrate what I mean while I explain why I highlighted ‘size distribution’ in the House of Representatives draft bill by first discussing Michael Berger’s article on Nanowerk about environment, health and safety (EHS) research into the toxicological properties of nanomaterials. From Berger’s article,

” What we found in our work is that nanomaterials purchased from commercial sources may not be as well characterized as indicated by the manufacturer,” Vicki H. Grassian, a professor in the Department of Chemistry at the University of Iowa, tells Nanowerk. “For example, it might be stated that a certain nanoparticle is being sold as 30 nm in diameter and, although ’30 nm’ might be close to the average diameter, there is usually a range of particle sizes that can extend from as much as small as 5 nm to as large as 300 nm. [emphases mine]”

That’s size distribution and it reveals two problems with a reporting plan/inventory/scheme that uses a definition that sets the size within a set range. (Julian’s bill has the same problem although his range is 1 to 1000 nm.) First, what happens if you have something that’s 1001 nm? This inflexible and unswerving focus on size will frustrate the intent both of the reporting plan and of Julian’s proposed legislation. Second, how can a business supply the information being requested when manufacturers offer such a wide distribution of sizes in  products where a uniform size is claimed? Are businesses going to be asked to measure the nanomaterials? Two or three years or more after they received the products? [Aug.4.10 Note: Some grammatical changes made to this paragraph so it conveys my message more clearly.]

Then Berger’s article moves onto another issue,

Reporting their findings in a recent paper in Environmental Toxicology and Chemistry (“Commercially manufactured engineered nanomaterials for environmental and health studies: Important insights provided by independent characterization”), among other problems Grassian and first author Heaweon Park also discuss the issue of batch-to-batch variability during the production of nanoparticles and that some nanomaterials which were being sold as having spherical morphology could contain mixed morphologies such as spheres and rods [emphases mine].

That’s right, you may not be getting the same shape of nanoparticle in your batch. This variability should not pose a problem for the proposed reporting plan/inventory/scheme since shape is not mentioned in Health Canada’s definition but it could bear on toxicology issues which is why a plan/inventory/scheme is being proposed in the first place.

Interestingly, the only ‘public consultation’ meeting that Health Canada/Environment Canada has held appears to have taken place in 2007 with none since and none planned for the future (see my April 26, 2010 posting).

Apparently, 3000 stakeholders have been contacted and asked for responses. I do wonder if an organization like Nano Quebec has been contacted and counted not as a single stakeholder but as representing its membership numbers (e.g. 500 members = 500 stakeholders?) whatever they may be. There is, of course, a specific Health Canada website for this interim definition where anyone can offer comments. It takes time to write a submission and I’m not sure how much time anyone has to devote to it which is why meetings can be very effective for information gathering especially in a field like nanotechnology where the thinking changes so quickly. 2007 seems like a long time ago.

Finally, Dexter Johnson on his Nanoclast blog is offering more perspective on the recent Andrew Schneider/National Nanotechnology Initiative dust up. Yes, he gave me a shout out (and I’m chuffed) and he puts the issues together to provide a different perspective on journalistic reporting environment, health and safety issues as they relate to nanotechnology along with some of the issues associated with toxicology research.