Tag Archives: Panasonic

Panasonic and its next generation makeup mirror

Before leaping to Panasonic’s latest makeup mirror news, here’s an earlier iteration of their product at the 2016 Consumer Electronics Show (CES),

That was posted on Jan. 10, 2016 by Makeup University.

Panasonic has come back in 2017 to hype its “Snow Beauty Mirror,”  a product which builds on its predecessor’s abilities by allowing the mirror to create a makeup look which it then produces for the user. At least, they hope it will—in 2020. From a Jan. 8, 2017 article by Shusuke Murai about the mirror and Japan’s evolving appliances market for The Japan Times,

Panasonic Corp. is developing a “magic” mirror for 2020 that will use nanotechnology for high-definition TVs to offer advice on how to become more beautiful.

The aim of the Snow Beauty Mirror is “to let people become what they want to be,” said Panasonic’s Sachiko Kawaguchi, who is in charge of the product’s development.

“Since 2012 or 2013, many female high school students have taken advantage of blogs and other platforms to spread their own messages,” Kawaguchi said. “Now the trend is that, in this digital era, they change their faces (on a photo) as they like to make them appear as they want to be.”

When one sits in front of the computerized mirror, a camera and sensors start scanning the face to check the skin. It then shines a light to analyze reflection and absorption rates, find flaws like dark spots, wrinkles and large pores, and offer tips on how to improve appearances.

But this is when the real “magic” begins.

Tap print on the results screen and a special printer for the mirror churns out an ultrathin, 100-nanometer makeup-coated patch that is tailor-made for the person examined.

The patch is made of a safe material often used for surgery so it can be directly applied to the face. Once the patch settles, it is barely noticeable and resists falling off unless sprayed with water.

The technologies behind the patch involve Panasonic’s know-how in organic light-emitting diodes (OLED), Kawaguchi said. By using the company’s technology to spray OLED material precisely onto display substrates, the printer connected to the computerized mirror prints a makeup ink that is made of material similar to that used in foundation, she added.

Though the product is still in the early stages of development, Panasonic envisions the mirror allowing users to download their favorite makeups from a database and apply them. It also believes the makeup sheet can be used to cover blemishes and birthmarks.

Before coming up with the smart mirror, Panasonic conducted a survey involving more than 50 middle- to upper-class women from six major Asian cities whose ages ranged from their 20s to 40s about makeup habits and demands.

Some respondents said they were not sure how to care for their skin to make it look its best, while others said they were hesitant to visit makeup counters in department stores.

“As consumer needs are becoming increasingly diverse, the first thing to do is to offer a tailor-made solution to answer each individual’s needs,” Kawaguchi said.

Panasonic aims to introduce the smart mirror and cosmetics sheets at department stores and beauty salons by 2020.

But Kawaguchi said there are many technological and marketing hurdles that must first be overcome — including how to mass-produce the ultrathin sheets.

“We are still at about 30 percent of overall progress,” she said, adding that the company hopes to market the makeup sheet at a price as low as foundation and concealer combined.

“I hope that, by 2020, applying facial sheets will become a major way to do makeup,” she said.

For anyone interested in Japan’s appliances market, please read Murai’s article in its entirety.

Panasonic powers up a village in Myanmar with photovoltaics

This story reminded me of an account I read (when I was working in the city’s archives) of Vancouver’s (Canada) West End where residents were advised against going out at night after the sun set because there was no street lighting. And, in those days (19th century) the city was still somewhat forested with bears, foxes, coyotes, and other wild animals being a lot more common that they are today. (Vancouver is a big city but there are coyote warning signs on its beaches and residents of North Vancouver [a nearby municipality] occasionally have awakened to find bears in their backyards.)

Moving onto the true subject of this posting, Myanmar and power, a Sept. 22, 2016 news item on phys.org announced the presence of a new power grid in a village in Myanmar,

Panasonic Corporation provided the Power Supply Station; a stand-alone photovoltaic power package, to the village of Yin Ma Chaung, a Magway Region of the Republic of the Union of Myanmar. The Power Supply Station is installed as part of a CSR [Corporate social responsibility?] effort by the Sustainable Alternative Livelihood Development Project, supported by the Mae Fah Luang Foundation under Royal Patronage (MFL Foundation) of the Kingdom of Thailand. This project was rolled out in partnership with Mitsui & Co., Ltd as one of their CSR activities, and funded by donations to support the mission of the MFL Foundation’s activities.

A Sept. 22, 2016 Panasonic press release, which originated the news item, provides more detail about the power station,

Panasonic’s power supply station consists of solar modules and storage batteries, which enables energy to be created, stored and managed efficiently. The whole system is able to supply electricity to the entire village, relieving approximately 140 households in the non-electrified mountainous village by powering up electrical appliances and lights, which are essential and important in daily lives.

The presence of lightings [sic] in the village makes it possible for villagers to move around during the night, as prior to that; they were unable to do so since the area is inhabited by poisonous snakes. In addition, all the street lights have time-switch LED bulbs that could also make use of limited electricity, efficiently.

In Myanmar, its off-grid areas are said to be at the highest level among the ASEAN [Association of Southeast Asian Nations] countries, at approximately 68%1 across the nation. In its countryside, the number reaches to an estimate of 84%2 households being unconnected to electricity. To step up on its efforts, Panasonic also installed a refrigerator in the village’s meeting area to store anti-venom drugs. With a well-powered point, the meeting area has thus serves as a center for welfare, entertainment and other purposes.

The whole initiative aimed to provide additional electricity to surrounding villages as well; contributing to the entire Yenan Chuang Township.

Panasonic will continue to develop localized solutions in its bid to provide electricity to off-grid regions and improves the standard of living amongst communities, around the world.

The Power Supply Station is equipped with twelve Panasonic HIT solar modules and can output approximately 3 kW of electricity. It is also equipped with 24 storage batteries (approximately 17 kWh), enabling it to supply stored power.

Features of the Power Supply Station stand-alone photovoltaic power package

(1) Stable quality and performance achieved by production at the factory

The Power Supply Station was developed as a mass produced product to deliver stable quality overseas. The unit for this project was manufactured and its quality was controlled by our Thai subsidiary, Panasonic Eco Solutions Steel (Thailand) Co., Ltd., before delivery to Myanmar.

(2)Simple and quick assembly for portability and expansion

The station is designed to eliminate the need for on-site professional construction work, allowing an electrical contractor to easily and quickly install it.

(3) Utilization of proven Panasonic technologies

The station uses Panasonic HIT 3 solar modules to provide power efficiently, even in restricted spaces. The company’s newly developed power supply main unit acts as the energy management system to monitor the remaining electricity level of the lead-acid storage batteries and controls supply and demand, reducing deterioration of the batteries. This reduces the life-cycle cost and maintenance man-hours for the storage batteries.

There is a video which reminds you of what life could be like without electricity in the context of this Power Supply Station installation,

It’s nice to be reminded of how magical electricity and all its accoutrements are as so many of us with easy access take it all for granted.

Cientifica’s latest smart textiles and wearable electronics report

After publishing a report on wearable technology in May 2016 (see my June 2, 2016 posting), Cientifica has published another wearable technology report, this one is titled, Smart Textiles and Wearables: Markets, Applications and Technologies. Here’s more about the latest report from the report order page,

“Smart Textiles and Wearables: Markets, Applications and Technologies” examines the markets for textile based wearable technologies, the companies producing them and the enabling technologies. This is creating a 4th industrial revolution for the textiles and fashion industry worth over $130 billion by 2025.

Advances in fields such as nanotechnology, organic electronics (also known as plastic electronics) and conducting polymers are creating a range of textile–based technologies with the ability to sense and react to the world around them.  This includes monitoring biometric data such as heart rate, the environmental factors such as temperature and The presence of toxic gases producing real time feedback in the form of electrical stimuli, haptic feedback or changes in color.

The report identifies three distinct generations of textile wearable technologies.

First generation is where a sensor is attached to apparel and is the approach currently taken by major sportswear brands such as Adidas, Nike and Under Armour
Second generation products embed the sensor in the garment as demonstrated by products from Samsung, Alphabet, Ralph Lauren and Flex.
In third generation wearables the garment is the sensor and a growing number of companies including AdvanPro, Tamicare and BeBop sensors are making rapid progress in creating pressure, strain and temperature sensors.

Third generation wearables represent a significant opportunity for new and established textile companies to add significant value without having to directly compete with Apple, Samsung and Intel.

The report predicts that the key growth areas will be initially sports and wellbeing

followed by medical applications for patient monitoring. Technical textiles, fashion and entertainment will also be significant applications with the total market expected to rise to over $130 billion by 2025 with triple digit compound annual growth rates across many applications.

The rise of textile wearables also represents a significant opportunity for manufacturers of the advanced materials used in their manufacture. Toray, Panasonic, Covestro, DuPont and Toyobo are already suppling the necessary materials, while researchers are creating sensing and energy storage technologies, from flexible batteries to graphene supercapacitors which will power tomorrows wearables. The report details the latest advances and their applications.

This report is based on an extensive research study of the wearables and smart textile markets backed with over a decade of experience in identifying, predicting and sizing markets for nanotechnologies and smart textiles. Detailed market figures are given from 2016-2025, along with an analysis of the key opportunities, and illustrated with 139 figures and 6 tables.

The September 2016 report is organized differently and has a somewhat different focus from the report published in May 2016. Not having read either report, I’m guessing that while there might be a little repetition, you might better consider them to be companion volumes.

Here’s more from the September 2016 report’s table of contents which you can download from the order page (Note: The formatting has been changed),

SMART TEXTILES AND WEARABLES:
MARKETS, APPLICATIONS AND
TECHNOLOGIES

Contents  1
List of Tables  4
List of Figures  4
Introduction  8
How to Use This Report  8
Wearable Technologies and the 4Th Industrial Revolution  9
The Evolution of Wearable Technologies  10
Defining Smart Textiles  15
Factors Affecting The Adoption of Smart Textiles for Wearables  18
Cost  18
Accuracy  18
On Shoring  19
Power management  19
Security and Privacy  20
Markets  21
Total Market Growth and CAGR  21
Market Growth By Application  21
Adding Value To Textiles Through Technology  27
How Nanomaterials Add Functionality and Value  31
Business Models  33
Applications  35
Sports and Wellbeing  35
1st Generation Technologies  35
Under Armour Healthbox Wearables  35
Adidas MiCoach  36
Sensoria  36
EMPA’s Long Term Research  39
2nd Generation Technologies  39
Google’s Project Jacquard  39
Samsung Creative Lab  43
Microsoft Collaborations  44
Intel Systems on a Chip  44
Flex (Formerly Flextronics) and MAS Holdings  45
Jiobit  46
Asensei Personal Trainer  47
OmSignal Smart Clothing  48
Ralph Lauren PoloTech  49
Hexoskin Performance Management  50
Jabil Circuit Textile Heart Monitoring  51
Stretch Sense Sensors  52
NTT Data and Toray  54
Goldwin Inc. and DoCoMo  55
SupaSpot Inc Smart Sensors  55
Wearable Experiments and Brand Marketing  56
Wearable Life Sciences Antelope  57
Textronics NuMetrex  59
3rd Generation Technologies  60
AdvanPro Pressure Sensing Shoes  60
Tamicare 3D printed Wearables with Integrated Sensors  62
AiQ Smart Clothing Stainless Steel Yarns  64
Flex Printed Inks And Conductive Yarns  66
Sensing Tech Conductive Inks  67
EHO Textiles Body Motion Monitoring  68
Bebop Sensors Washable E-Ink Sensors  70
Fraunhofer Institute for Silicate Research Piezolectric Polymer
Sensors  71
CLIM8 GEAR Heated Textiles  74
VTT Smart Clothing Human Thermal Model  74
ATTACH (Adaptive Textiles Technology with Active Cooling and Heating) 76
Energy Storage and Generation  78
Intelligent Textiles Military Uniforms  78
BAE Systems Broadsword Spine  79
Stretchable Batteries  80
LG Chem Cable Batteries  81
Supercapacitors  83
Swinburne Graphene Supercapacitors  83
MIT Niobium Nanowire Supercapacitors  83
Energy Harvesting  86
Kinetic  86
StretchSense Energy Harvesting Kit  86
NASA Environmental Sensing Fibers  86
Solar  87
Powertextiles  88
Sphelar Power Corp Solar Textiles  88
Ohmatex and Powerweave  89
Fashion  89
1st Generation Technologies  92
Cute Circuit LED Couture  92
MAKEFASHION LED Couture  94
2nd Generation Technologies  94
Covestro Luminous Clothing  94
3rd Generation Technologies  96
The Unseen Temperature Sensitive Dyes  96
Entertainment  98
Wearable Experiments Marketing  98
Key Technologies 100
Circuitry  100
Conductive Inks for Fabrics  100
Conductive Ink For Printing On Stretchable Fabrics  100
Creative Materials Conductive Inks And Adhesives  100
Dupont Stretchable Electronic Inks  101
Aluminium Inks From Alink Co  101
Conductive Fibres  102
Circuitex Silver Coated Nylon  102
Textronics Yarns and Fibres  102
Novonic Elastic Conductive Yarn  103
Copper Coated Polyacrylonitrile (PAN) Fibres  103
Printed electronics  105
Covestro TPU Films for Flexible Circuits  105
Sensors  107
Electrical  107
Hitoe  107
Cocomi  108
Panasonic Polymer Resin  109
Cardiac Monitoring  110
Mechanical  113
Strain  113
Textile-Based Weft Knitted Strain Sensors  113
Chain Mail Fabric for Smart Textiles  113
Nano-Treatment for Conductive Fiber/Sensors 115
Piezoceramic materials  116
Graphene-Based Woven Fabric  117
Pressure Sensing  117
LG Innotek Flexible Textile Pressure Sensors  117
Hong Kong Polytechnic University Pressure Sensing Fibers  119
Conductive Polymer Composite Coatings  122
Printed Textile Sensors To Track Movement  125
Environment  127
Photochromic Textiles  127
Temperature  127
Sefar PowerSens  127
Gasses & Chemicals  127
Textile Gas Sensors  127
Energy  130
Storage  130
Graphene Supercapacitors  130
Niobium Nanowire Supercapacitors  130
Stretchy supercapacitors  132
Energy Generation  133
StretchSense Energy Harvesting Kit  133
Piezoelectric Or Thermoelectric Coated Fibres  134
Optical  137
Light Emitting  137
University of Manchester Electroluminescent Inks and Yarns 137
Polyera Wove  138
Companies Mentioned  141
List of Tables
Table 1 CAGR by application  22
Table 2 Value of market by application 2016-25 (millions USD)  24
Table 3 % market share by application  26
Table 4 CAGR 2016-25 by application  26
Table 5 Technology-Enabled Market Growth in Textile by Sector (2016-22) 28
Table 6 Value of nanomaterials by sector 2016-22 ($ Millions)  33
List of Figures
Figure 1 The 4th Industrial Revolution (World Economic Forum)  9
Figure 2 Block Diagram of typical MEMS digital output motion sensor: ultra
low-power high performance 3-axis “femto” accelerometer used in
fitness tracking devices.  11
Figure 3 Interior of Fitbit Flex device (from iFixit)  11
Figure 4 Internal layout of Fitbit Flex. Red is the main CPU, orange is the
BTLE chip, blue is a charger, yellow is the accelerometer (from iFixit)  11
Figure 5 Intel’s Curie processor stretches the definition of ‘wearable’  12
Figure 6 Typical Textile Based Wearable System Components  13
Figure 7 The Chromat Aeros Sports Bra “powered by Intel, inspired by wind, air and flight.”  14
Figure 8 The Evolution of Smart textiles  15
Figure 9 Goldwin’s C2fit IN-pulse sportswear using Toray’s Hitoe  16
Figure 10 Sensoglove reads grip pressure for golfers  16
Figure 11 Textile Based Wearables Growth 2016-25(USD Millions)  21
Figure 12 Total market for textile based wearables 2016-25 (USD Millions)  22
Figure 13 Health and Sports Market Size 2016-20 (USD Millions)  23
Figure 14 Health and Sports Market Size 2016-25 (USD Millions)  23
Figure 15 Critical steps for obtaining FDA medical device approval  25
Figure 16 Market split between wellbeing and medical 2016-25  26
Figure 17 Current World Textile Market by Sector (2016)  27
Figure 18 The Global Textile Market By Sector ($ Millions)  27
Figure 19 Compound Annual Growth Rates (CAGR) by Sector (2016-25)  28
Figure 20 The Global Textile Market in 2022  29
Figure 21 The Global Textile Market in 2025  30
Figure 22 Textile Market Evolution (2012-2025)  30
Figure 23 Total Value of Nanomaterials in Textiles 2012-2022 ($ Millions)  31
Figure 24 Value of Nanomaterials in Textiles by Sector 2016-2025 ($ Millions) 32
Figure 25 Adidas miCoach Connect Heart Rate Monitor  36
Figure 26 Sensoria’s Hear[t] Rate Monitoring Garments . 37
Figure 27 Flexible components used in Google’s Project Jacquard  40
Figure 28 Google and Levi’s Smart Jacket  41
Figure 29 Embedded electronics Google’s Project Jacquard  42
Figure 30 Samsung’s WELT ‘smart’ belt  43
Figure 31 Samsung Body Compass at CES16  44
Figure 32 Lumo Run washable motion sensor  45
Figure 33 OMSignal’s Smart Bra  49
Figure 34 PoloTech Shirt from Ralph Lauren  50
Figure 35 Hexoskin Data Acquisition and Processing  51
Figure 36 Peak+™ Hear[t] Rate Monitoring Garment  52
Figure 37 StretchSense CEO Ben O’Brien, with a fabric stretch sensor  53
Figure 38 C3fit Pulse from Goldwin Inc  55
Figure 39 The Antelope Tank-Top  58
Figure 40 Sportswear with integrated sensors from Textronix  60
Figure 41 AdvanPro’s pressure sensing insoles  61
Figure 42 AdvanPro’s pressure sensing textile  62
Figure 43 Tamicare 3D Printing Sensors and Apparel  63
Figure 44 Smart clothing using stainless steel yarns and textile sensors from AiQ  65
Figure 45 EHO Smart Sock  69
Figure 46 BeBop Smart Car Seat Sensor  71
Figure 47 Non-transparent printed sensors from Fraunhofer ISC  73
Figure 48 Clim8 Intelligent Heat Regulating Shirt  74
Figure 49 Temperature regulating smart fabric printed at UC San Diego  76
Figure 50 Intelligent Textiles Ltd smart uniform  79
Figure 51 BAE Systems Broadsword Spine  80
Figure 52 LG Chem cable-shaped lithium-ion battery powers an LED display even when twisted and strained  81
Figure 53 Supercapacitor yarn made of niobium nanowires  84
Figure 54 Sphelar Textile  89
Figure 55 Sphelar Textile Solar Cells  89
Figure 56 Katy Perry wears Cute Circuit in 2010  91
Figure 57 Cute Circuit K Dress  93
Figure 58 MAKEFASHION runway at the Brother’s “Back to Business” conference, Nashville 2016  94
Figure 59 Covestro material with LEDs are positioned on formable films made from thermoplastic polyurethane (TPU).  95
Figure 60 Unseen headpiece, made of 4000 conductive Swarovski stones, changes color to correspond with localized brain activity  96
Figure 61 Eighthsense a coded couture piece.  97
Figure 62 Durex Fundawear  98
Figure 63 Printed fabric sensors from the University of Tokyo  100
Figure 64 Tony Kanaan’s shirt with electrically conductive nano-fibers  107
Figure 65 Panasonic stretchable resin technology  109
Figure 66 Nanoflex moniroring system  111
Figure 67 Knitted strain sensors  113
Figure 68 Chain Mail Fabric for Smart Textiles  114
Figure 69 Electroplated Fabric  115
Figure 70 LG Innotek flexible textile pressure sensors  118
Figure 71 Smart Footwear installed with fabric sensors. (Credit: Image courtesy of The Hong Kong Polytechnic University)  120
Figure 72 SOFTCEPTOR™ textile strain sensors  122
Figure 73 conductive polymer composite coating for pressure sensing  123
Figure 74 Fraunhofer ISC_ printed sensor  125
Figure 75 The graphene-coated yarn sensor. (Image: ETRI)  128
Figure 76 Supercapacitor yarn made of niobium nanowires  131
Figure 77 StretchSense Energy Harvesting Kit  134
Figure 78 Energy harvesting textiles at the University of Southampton  135
Figure 79 Polyera Wove Flexible Screen  139

If you compare that with the table of contents for the May 2016 report in my June 2, 2016 posting, you can see the difference.

Here’s one last tidbit, a Sept. 15, 2016 news item on phys.org highlights another wearable technology report,

Wearable tech, which was seeing sizzling sales growth a year ago [2015], is cooling this year amid consumer hesitation over new devices, a survey showed Thursday [Sept. 15, 2016].

The research firm IDC said it expects global sales of wearables to grow some 29.4 percent to some 103 million units in 2016.

That follows 171 percent growth in 2015, fueled by the launch of the Apple Watch and a variety of fitness bands.

“It is increasingly becoming more obvious that consumers are not willing to deal with technical pain points that have to date been associated with many wearable devices,” said IDC analyst Ryan Reith.

So-called basic wearables—including fitness bands and other devices that do not run third party applications—will make up the lion’s share of the market with some 80.7 million units shipped this year, according to IDC.

According to IDC, it seems that the short term does not promise the explosive growth of the previous year but that new generations of wearable technology, according to both IDC and Cientifica, offer considerable promise for the market.

Intel to produce Panasonic SoCs (system-on-chips) using 14nm low-power process

A July 8, 2014 news item on Azonano describes a manufacturing agreement between Intel and Panasonic,

Intel Corporation today announced that it has entered into a manufacturing agreement with Panasonic Corporation’s System LSI Business Division. Intel’s custom foundry business will manufacture future Panasonic system-on-chips (SoCs) using Intel’s 14nm low-power manufacturing process.

Panasonic’s next-generation SoCs will target audio visual-based equipment markets, and will enable higher levels of performance, power and viewing experience for consumers.

A July 7, 2014 Intel press release, which originated the news item, reveals more details,

“Intel’s 14nm Tri-Gate process technology is very important to develop the next- generation SoCs,” said Yoshifumi Okamoto, director, Panasonic Corporation SLSI Business Division. “We will deliver highly improved performance and power advantages with next-generation SoCs by leveraging Intel’s 14nm Tri-Gate process technology through our collaboration.”

Intel’s leading-edge 14nm low-power process technology, which includes the second generation of Tri-Gate transistors, is optimized for low-power applications. This will enable Panasonic’s SoCs to achieve high levels of performance and functionality at lower power levels than was possible with planar transistors.

“We look forward to collaborating with the Panasonic SLSI Business Division,” said Sunit Rikhi, vice president and general manager, Intel Custom Foundry. “We will work hard to deliver the value of power-efficient performance of our 14nm LP process to Panasonic’s next-generation SoCs. This agreement with Panasonic is an important step in the buildup of Intel’s foundry business.”

Five other semiconductor companies have announced agreements with Intel’s custom foundry business, including Altera, Achronix Semiconductor, Tabula, Netronome and Microsemi.

Rick Merritt in a July 7, 2014 article for EE Times provides some insight,

“We are doing extremely well getting customers who can use our technology,” Sunit Rikhi, general manager of Intel’s foundry group, said in a talk at Semicon West, though he would not provide details. …

He suggested that the low-power variant of Intel’s 14nm process is relatively new. Intel uses a general-purpose 22nm process but supports multiple flavors of its 32nm process.

Intel expects to make 10nm chips without extreme ultraviolet (EUV) lithography, he said, reiterating comments from Intel’s Mark Bohr. …

This news provides an update of sorts to my October 21, 2010 posting,

Paul Otellini, Chief Executive Officer of Intel, just announced that the company will invest $6B to $8B for new and upgraded manufacturing facilities to produce 22 nanometre (nm) computer chips.

Now, almost our years later they’re talking about 10 nm chips. I wonder what 2018 will bring?

Nano hair care from Panasonic

In the world of nanotechnology, hair care products don’t get the same attention as do sunscreens. Thankfully, Azonano and Panasonic have addressed this issue with a June 10, 2013 news item featuring an interview with Yoshiyuki Namba, Leader for the Panasonic Beauty Product Planning team, on the AZoNano website (Note: A link has been removed),

Earlier this year [2013?], Panasonic – one of the world’s biggest electronic product companies – expanded their product range to beauty products and skincare beauty devices.

A novel entry into the world of cosmetic consumer goods, Panasonic have used the nanotechnology angle to create products that are set to offer a high standard model for the end-user.

“In 2005, Panasonic started sales of the world’s first nanoeTM equipped dryer technology by re-developing the nanoeTM device with an aim to concurrently add on moisture and electrical charges on human hairs. However, we found that the customers required help to refill the water in the tank for creating a nanoeTM generation device. Therefore, Panasonic developed a peltier device system to condense moisture and started selling the newly developed product ‘without a water tank’ in year 2006. Since then, Panasonic has been advancing its technical features in creating the devices more and more compact in size.”

Panasonic has two ‘nano’ hair dryers. There is the Nano Care Hair Dryer on the Pansonic.asia website,

Every girl deserves the best. Pamper your hair with this top of the range Nanocare Hair Dryer equipped with nanoe* technology to help remove sebum more easily from your scalp. The dryer is also compact in size, making it easy for storage or travel.

*nanoe is a nano-sized ion particle coated with water particles. *nanoe is a trademark of Panasonic Corporation

They offer instructions, step 3 is my favourite,

STEP 3: To create silky smooth and straight hair, take a round brush and gently comb downwards, with the hair dryer following the brush. Part hair to smaller portions for easier management. [downloaded from http://www.panasonic.asia/beauty/products/eh_na30.html]

STEP 3:
To create silky smooth and straight hair, take a round brush and gently comb downwards, with the hair dryer following the brush. Part hair to smaller portions for easier management. [downloaded from http://www.panasonic.asia/beauty/products/eh_na30.html]

There is what appears to be another ‘nano’ hair dryer featuring a nozzle with a different shape and a technical marketing campaign, which can be found on the company’s ‘home’ website, Panasonic.net. From the Hair Dryer: nanoe™ for healthy and beautiful hair webpage,

[downloaded from http://panasonic.net/beauty/products/dryer.html]

[downloaded from http://panasonic.net/beauty/products/dryer.html]

For the very curious, there’s a webspace dedicated to nanoe™  technology on the Panasonic.net website where you can find out more and source published research.

The Azozano news item provides more information about the reasoning behind Panasonic’s claim that this is a ‘nanotechnology’  product in the Azonano. I’m not sure I follow the logic all the way through but it seems to have something to do with creating a negative ion hair dryer that emits an ultrafine mist by applying an electrode to condensation. The earlier version of the product had a water tank but the company found that caused problems so they redesigned the dryer. Unfortunately I can’t find an explanation for how they compensated for the loss of the water tank.

From a marketing communications perspective, this makes a very interesting case study. I haven’t seen any consumer-oriented products in Canada or from the US where nanotechnology is mentioned in a marketing campaign in quite some time. Any nanotechnology references in cosmetics advertizing, e.g. one company used to advertize ‘nanosomes’ in its skin creams, are long gone.

I’m glad to see this item as it provides some insight into how ‘nanotechnology’ products are marketed elsewhere.