Category Archives: public perceptions

Graphene hype; the emerging story in an interview with Carla Alvial Palavicino (University of Twente, Netherlands)

i’m delighted to be publishing this interview with Carla Alvial Palavicino, PhD student at the University of Twente (Netherlands), as she is working on the topicof  graphene ‘hype’. Here’s a bit more about the work from her University of Twente webpage (Note: A link has been removed),

From its origins the field of nanotechnology has been populated of expectations. Pictured as “the new industrial revolution” the economic promise holds strong, but also nanotechnologies as a cure for almost all the human ills, sustainers of future growth, prosperity and happiness. In contrast to these promises, the uncertainties associated to the introduction of such a new and revolutionary technology, and mainly risks of nanomaterials, have elicited concerns among governments and the public. Nevertheless, the case of the public can be characterized as concerns about concerns, based on the experience of previous innovations (GMO, etc.).

Expectations, both as promises and concerns, have played and continue playing a central role in the “real-time social and political constitution of nanotechnology” (Kearnes and Macnaghten 2006). A circulation of visions, promises and concerns in observed in the field, from the broadly defined umbrella promises to more specific expectations, and references to grand challenges as moral imperatives. These expectations have become such an important part of the social repertoire of nano applications that we observe the proliferation of systematic and intentional modes of expectation building such as roadmaps, technology assessment, etc.; as well as a considerable group of reports on risk, concerns, and ethical and social aspects. This different modes of expectation building (Konrad 2010) co-exist and contribute to the articulation of the nano field.

This project seeks to identify, characterize and contextualize the existing modes of expectations building, being those intentional (i.e. foresight, TA, etc.) or implicit in arenas of public discourse, associated to ongoing and emerging social processes in the context of socio-technical change.

This dynamics are being explored in relation to the new material graphene.

Before getting to the interview, here’s Alvial Palavicino’s biography,

Carla Alvial Palavicino has a bachelor degree in Molecular Biology Engineering, School of Science, University of Chile, Chile and a Master’s degree on Sustainability Sciences, Graduate School of Frontier Science, University of Tokyo, Japan. She has worked in technology transfer and more recently, in Smart Grids and local scale renewable energy provision.

Finally, here’s the interview (Note: At the author’s request, there have been some grammatical changes made to conform with Canadian English.),

  • What is it that interests you about the ‘hype’ that some technologies receive and how did you come to focus on graphene in particular?

My research belongs to a field called the Sociology of Expectations, which deals with the role of promises, visions, concerns and ideas of the future in the development of technologies, and how these ideas actually affect people’s strategies in technology development. Part of the dynamic found for these expectations are hype-disappointment cycles, much like the ones the Gartner Group uses. And hype has become an expectation itself; people expect that there will be too many promises and some, maybe many of them are not going to be fulfilled, followed by disappointment.

I came to know about graphene because, initially, I was broadly interested in nanoelectronics (my research project is part of NanoNextNL a large Dutch Nano research programme), due to the strong future orientation in the electronics industry. The industry has been organizing, and continues to organize around the promise of Moore’s law for more than 50 years! So I came across graphene as thriving to some extent on the expectations around the end of Moore’s law and because simply everybody was talking about it as the next big thing! Then I thought, this is a great opportunity to investigate hype in real-time

  • Is there something different about the hype for graphene or is this the standard ‘we’ve found a new material and it will change everything’?

I guess with every new technology and new material you find a portion of genuine enthusiasm which might lead to big promises. But that doesn’t necessarily turn into big hype. One thing is that all hype is not the same and you might have technologies that disappeared after the hype such as High Temperature Semiconductors, or technologies that go through a number of hype cycles and disappointment cycles throughout their development (for example, Fuel Cells). Now with graphene what you certainly have is very ‘loud’ hype – the amount of attention it has received in so little time is extraordinary. If that is a characteristic of graphene or a consequence of the current conditions in which the hype has been developed, such as faster ways of communication (social media for example) or different incentives for science and innovation well, this is part of what I am trying to find out.

Quite clearly, the hype in graphene seems to be more ‘reflexive’ than others, that is, people seem to be more conscious about hype now. We have had the experience with carbon nanotubes only recently and scientist, companies and investors are less naïve about what can be expected of the technology, and what needs to be done to move it forward ‘in the right direction’. And they do act in ways that try to soften the slope of the hype-disappointment curve. Having said that, actors [Ed. Note: as in actor-network theory] are also aware of how they can take some advantage of the hype (for funding, investment, or another interest), how to make use of it and hopefully leave safely, before disappointment. In the end, it is rather hard to ask accountability of big promises over the long-term.

  • In the description of your work you mention intentional and implicit modes of building expectations, could explain the difference between the two?

One striking feature of technology development today is that we found more and more activities directed at learning about, assess, and shaping the future, such as forecasts, foresights, Delphi, roadmaps and so on. There are even specialized future actors such as consultancy organisations or foresight experts,  Cientifica among them. And these formalized ways of anticipating  the future are expected to be performative by those who produce them and use them, that is, influence the way the future – and the present- turns out. But this is not a linear story, it’s not like 100% of a roadmap can be turned practice (not even for the ITRS roadmap [Ed. Note: International Technology Roadmap for Semi-conductors] that sustains Moore’s law, some expectations change quite radically between editions of the roadmap). Besides that, there are other forms of building expectations which are embedded in practices around new technologies. Think of the promises made in high profile journals or grant applications; and of expectations incorporated in patents and standards. All these embody particular forms and directions for the future, and exclude others. These are implicit forms of expectation-building, even if not primarily intended as such. These forms are shaped by particular expectations which themselves shape further development. So, in order to understand how these practices, both intentional and implicit, anticipate futures you need to look at the interplay between the various types.

  • Do you see a difference internationally with regard to graphene hype? Is it more prevalent in Europe than in the North America? Is it particularly prevalent in some jurisdiction, e.g. UK?

I think the graphene ‘hype’ has been quite global, but it is moving to different communities, or actors groups, as Tim Harper from Cientifica has mentioned in his recent report about graphene

What is interesting in relation to the different ‘geographical’ responses to graphene is that they exemplify nicely how a big promise (graphene, in this case) is connected to other circulating visions, expectations or concerns. In the case of the UK, the *Nobel prize on Graphene and the following investment was connected to the idea of a perceived crisis of innovation in the country. Thus, the decision to invest in graphene was presented and discussed in reference to global competitiveness, showing a political commitment for science and innovation that was in doubt at that time.

In the European case with its *Graphene flagship, something similar happened. While there is no doubt of the scientific excellence of the flagship project, the reasons why it finally became a winner in the flagship competition might have been related to the attention on graphene. The project itself started quite humbly, and it differed from the other flagship proposals that were much more oriented towards economic or societal challenges. But the attention graphene received after the Nobel Prize, plus the engagement of some large companies, helped to frame the project in terms of its economic profitability.  And. this might have helped to bring attention and make sense of the project in the terms the European Commission was interested in.

In contrast, if you think of the US, the hype has been there (the number of companies engaged in graphene research is only increasing) but it has not had a big echo in policy. One of the reasons might be because this idea of global competition and being left behind is not so present in the US. And in the case of Canada for example, graphene has been taken up by the graphite (mining) community, which is a very local feature.

So answering your questions, the hype has been quite global and fed in a global way (developments in one place resonate in the other) but different geographical areas have reacted in relation to their contingent expectations to what this hype dynamic provided.

  • What do you think of graphene?

I think it’s the new material with more YouTube videos (this one is particularly good in over promising for example)  and the coolest superhero (Mr G from the Flagship). But seriously,  I often get asked that question when I do interviews with actors in the field, since they are curious to learn about the outsider perspective. But to be honest I try to remain as neutral and distant as possible regarding my research object… and not getting caught in the hype!

Thanks so much for a fascinating interview Carla and I very much appreciate the inclusion of Canada in your response to the question about the international response to graphene hype. (Here are three of my postings on graphite and mining in Canada: Canada’s contribution to graphene research: big graphite flakes [Feb. 6, 2012]; A ‘graphite today, graphene tomorrow’ philosophy from Focus Graphite [April 17, 2013[; and Lomiko’s Quatre Milles graphite flakes—pure and ultra pure [April 17, 2013] There are others you can find by searching ‘graphite’ in the blog’s search box.)

* For anyone curious about the Nobel prize and graphene, there’s this Oct.7, 2010 posting. Plus, the Graphene Flagship was one of several projects competing for one of the two 1B Euro research prizes awarded in January 2013 (the win is mentioned in my Jan. 28, 2013 posting).

Merry Christmas, Happy New Year, and Happy Holidays to all!

Nanosilver—US Environmental Protection Agency (EPA) gets wrist slapped over nanosilver decision in textiles while Canadian Broadcasting Corporation (CBC) publishes article about nanosilver

I have two pieces about nanosilver today (Nov. 11 ,2013). The first concerns a Nov. 7, 2013 court ruling in favour of the Natural Resources Defense Council (NRDC) stating that the US Environmental Protection Agency (EPA) failed to follow its own rules when it accorded HeiQ Materials (a Swiss textile company) permission to market and sell its nanosilver-based antimicrobial fabric treatment in the US. From the NRDC’s Nov. 7, 2013 press release,

Court Ruling in NRDC’s Favor Should Limit Pesticide Nanosilver in Textiles

In a decision handed down today, the court said the EPA had improperly approved the use of nanosilver by one U.S. textile manufacturer [HeiQ Materials; headquarteed in Switzerland]. The court vacated the approval and sent it back to the agency for reevaluation. The lawsuit has been closely watched as a test case for the growing use of nanotechnology in consumer products.

“The court’s ruling puts us a step closer toward removing nanosilver from textiles,” said Mae Wu, an attorney in NRDC’s Health Program. “EPA shouldn’t have approved nanosilver in the first place. This is just one of a long line of decisions by the agency treating people and our environment as guinea pigs and laboratories for these untested pesticides.”

NRDC sued the U.S. Environmental Protection Agency in early 2012 to limit the use of nanosilver out of a concern for public health. Today the 9th U.S. Circuit Court of Appeals agreed with a key point NRDC raised: that the EPA didn’t follow its own rules for determining whether the pesticide’s use in products would be safe.

Beginning in December 2011, EPA approved the company HeiQ Materials to sell nanosilver used in fabrics for the next four years and required the company to provide data on toxicity for human health and aquatic organisms. In early 2012, NRDC filed a lawsuit against EPA seeking to block nanosilver’s use, contending, among several points, that the agency had ignored its own rules for determining the safety of nanosilver.

The key part of today’s Ninth Circuit ruling addressed EPA’s determination that there is no risk concern for toddlers exposed to nanosilver-treated textiles. The agency’s rules state that if there’s an aggregate exposure to the skin or through ingestion at or below a specific level, there is a risk of health concerns. But the Ninth Circuit found that the EPA had data showing that nanosilver was right at the level that should have triggered a finding of potential risk, but approved the pesticide anyway. That led to the Ninth Circuit vacating EPA’s approval and sending it back down to the agency for reevaluation.

Published in July 2013 (?), Nate Seltenrich’s article, Nanosilver: Weighing the Risks and BenefitsNanosilver: Weighing the Risks and Benefits, for the journal, Environmental Health Perspectives (EHP) [published with support from the National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services]) provides some insight into the court case and the issues,

It takes a special sort of case to spur attorneys into a debate over the drooling habits of toddlers. Yet that’s where lawyers from the Natural Resources Defense Council (NRDC), the U.S. Environmental Protection Agency (EPA), and Swiss chemicals company HeiQ found themselves in January 2013 as they debated in a federal appeals court the extent to which 1-year-olds and 3-year-olds chew, salivate, and swallow.1

At issue in the NRDC’s suit against the EPA, which is still awaiting ruling, was whether the agency was right in granting a conditional registration in December 2011 to a nanosilver-based antimicrobial fabric treatment manufactured by HeiQ.2 The EPA’s risk assessment was based in part on assumptions about exposure of 3-year-olds by sucking or chewing on nanosilver-laced textiles such as clothing, blankets, and pillowcases.

NRDC lawyer Catherine Rahm, however, begged to differ with the agency’s methods. In the January hearing, she argued that the agency record shows infants are more likely than any other subset of children to chew on fabrics that could contain the pesticide, and that if the agency were to recalculate its risk assessment based on the body weight of a 1-year-old, nanosilver concentrations in HeiQ’s product could result in potentially harmful exposures.

It’s an obscure but critical distinction as far as risk assessment goes. And given the implications for HeiQ and other companies looking to follow in its footsteps, the case has landed at the center of a prolonged conflict over the regulation of nanosilver and the growing deployment of this antimicrobial ingredient in a variety of commercial and consumer products.

Yet regardless of which side prevails in the case, the truth about nanosilver is not black and white. Even the loudest voices joining the NRDC’s call for strict regulation of nanosilver concede that context is key.

Seltenrich goes on to recount a little of the history of nanosilver and provide a brief a relatively balanced overview of the research. At the end of the article, he lists 37 reference documents and offers links, should you wish to research further. For anyone interested in HeiQ, here’s the company website.

The second nanosilver news item is from the CBC (Canadian Broadcasting Corporation( online. In an article by Evelyn Boychuk titled, Silver nanoparticle use spurs U.S. consumer database; Database tracks growing number of consumer goods containing nanomaterials, these nanoparticles are discussed within the context of a resuscitated Project on Emerging Nanotechnologies (PEN) Consumer Products Inventory (CPI), which was mentioned in my Oct. 28, 2013 posting titled: Rising from the dead: the inventory of nanotechnology-based consumer products. The articles offers an easy introduction to the topic and refers to a database of silver,nanotechnology in commercial products (complementary to the larger CPI).

Responsible innovation at the Center for Nanotechnology in Society’s (Arizona State University) Virtual Institute

The US National Science Foundation (NSF) has a funding program called Science Across Virtual Institutes (SAVI) which facilitates global communication for scientists, engineers, and educators. From the SAVI home page,

Science Across Virtual Institutes (SAVI) is a mechanism to foster and strengthen interaction among scientists, engineers and educators around the globe. It is based on the knowledge that excellence in STEM (science, technology, engineering and mathematics) research and education exists in many parts of the world, and that scientific advances can be accelerated by scientists and engineers working together across international borders.

According to a Sept. 24, 2013 news item on Nanowerk, the NSF’s SAVI program has funded a new virtual institute at Arizona State University’s (ASU)  Center for Nanotechnology in Societ6y (CNS), Note: Links have been removed,

The National Science Foundation recently announced a grant of nearly $500,000 to establish a new Virtual Institute for Responsible Innovation (VIRI) at the Center for Nanotechnology in Society at ASU (CNS-ASU). In a global marketplace that thrives on technological innovation, incorporating ethics, responsibility and sustainability into research and development is a critical priority.

VIRI’s goal is to enable an international community of students and scholars who can help establish a common understanding of responsible innovation in research, training and outreach. By doing so, VIRI aims to contribute to the governance of emerging technologies that are dominated by market uncertainty and difficult questions of how well they reflect societal values.

VIRI founding institutional partners are University of Exeter (UK), Durham University (UK), University of Sussex (UK), Maastricht University (Netherlands), University of Copenhagen (Denmark), Karlsruhe Institute of Technology (Germany), University of Waterloo (Canada), Oslo and Akershus University College of Applied Sciences (Norway), and State University of Campinas (Brazil).

VIRI founding institutional affiliates are the US National Academy of Engineering’s Center for Engineering, Ethics and Society, IEEE Spectrum Online and Fondazione Giannino Bassetti.

Interesting cast of characters.

The Sept. 23, 2013 ASU news release, which originated the news item, offers some insight into the time required to create this new virtual institute,

Led by ASU faculty members David Guston and Erik Fisher, VIRI will bring a social and ethical lens to research and development practices that do not always focus on the broader implications of their research and products. Guston, director of CNS-ASU, co-director of the Consortium of Science, Policy and Outcomes, and professor in the School of Politics and Global Studies, has been pushing for the establishment of academic units that focus on responsible innovation for years.

“We are thrilled that NSF has chosen to advance responsible innovation through this unique, international collaboration,” Guston said. “It will give ASU the opportunity to help focus the field and ensure that people start thinking about the broader implications of knowledge-based innovation.”

Fisher, assistant professor in the School for Politics and Global Studies, has long been involved in integrating social considerations into science research laboratories through his NSF-funded Socio-Technical Integration Research (STIR) project, an affiliated project of CNS-ASU.

“Using the insights we’ve gained in the labs that have participated in the STIR project, we expect to be able to get VIRI off the ground and make progress very quickly,” Fisher said.

The VIRI appears to be an invite-only affair and it’s early days yet so there’s not much information on the website but the VIRI home page looks promising,

“Responsible innovation” (RI) is an emerging term in science and innovation policy fields across the globe. Its precise definition has been at the center of numerous meetings, research council decisions, and other activities in recent years. But today there is neither a clear, unified vision of what responsible innovation is, what it requires in order to be effective, nor what it can accomplish.
The Virtual Institute for Responsible Innovation (VIRI)

The Virtual Institute for Responsible Innovation (VIRI) was created to accelerate the formation of a community of scholars and practitioners who, despite divides in geography and political culture, will create a common concept of responsible innovation for research, training and outreach – and in doing so contribute to the governance of emerging technologies under conditions dominated by high uncertainty, high stakes, and challenging questions of novelty.
Mission

VIRI’s mission in pursuit of this vision is to develop and disseminate a sophisticated conceptual and operational understanding of RI by facilitating collaborative research, training and outreach activities among a broad partnership of academic and non-academic institutions.
Activities

VIRI will:

  • perform interlinked empirical, reflexive and normative research in a collaborative and comparative mode to explore and develop key concepts in RI;
  • develop curricular material and support educational exchanges of graduate students, post-doctoral fellows, and faculty;
  •  create a dynamic online community to represent the breadth of the institute and its multi-lateral activities;
  •  disseminate outputs from across the institute through its own and partner channels and will encourage broad sharing of its research and educational findings.

VIRI will pursue these activities with founding academic partners in the US, the UK, the Netherlands, Germany, Denmark, Norway, Brazil and Canada.

The site does offer links to  relevant blogs here.

I was a bit surprised to see Canada’s University of Waterloo rather than the University of Alberta (home of Canada’s National Institute of Nanotechnology)  as one of the partners.

Comparing US and German reception of nanotechnology

There’s a tv (television) newsmagazine show devoted to nanotechnology that’s broadcast amongst other news shows in Germany according to an Aug. 8, 2013 news item on Azonano,

As Paul Youngman, professor of German at Washington and Lee (W&L) University, and student researchers Matthew Bittner and Curtis Correll learned this summer, your perception of nanotechnology—the manipulation of extremely small particles to make materials and machines—may depend on where you live.

In Germany, the scientific newsmagazine Nano spotlights nanoscience and emerging technologies. The show airs alongside other news programs. [emphasis mine] In the U.S., nanoscience is not featured regularly in the news. When U.S. broadcasters do run nanoscience stories, the coverage tends to be more sensational, said Bittner, whose research was funded by the W&L German Department.

“The Germans will look more at the short-term effect of science and technology—more realistic expectations,” said Bittner. American shows, while realistic, tend to look further into the future, and they highlight the most breathtaking possibilities.

The Aug. 7, 2013 W&L press release by Jeff Hanna, which originated the news item, notes that Youngman’s research is providing the basis for a forthcoming book,

“Nanotechnology is an emerging science that we don’t completely have a handle on, and our premise is always that science is never divorced from the larger culture at hand,” said Youngman. “What we’re doing is analyzing the cultural reception of nanotechnology as it exists right now. It’s a comparative study between German and U.S. reception.”

Rhetoric and public perception affect how nanotechnology is funded and regulated. Youngman’s book-in-progress, “National Nanotechnologies: Nanodiscourse in Germany and the United States,” compares rhetoric from a variety of sources in both countries. The book also examines nano imagery.

He focuses on Germany and the U.S. because they are the largest investors in nanoscience and technology (NST) in the European Union and North America, and the countries have partnered on numerous commercial and academic NST endeavors. Youngman is collaborating with Ljiljana Fruk, group leader at the Center for Functional Nanostructures (CFN) in Karlsruhe, Germany.

As noted in the press release, Youngman’s book, in additiion to rhetoric, is also examining nano imagery,

Curtis Correll, an economics and German and double major, from Memphis, Tenn., spent several weeks at CFN in Karlsruhe studying the ethics, usefulness and reliability of nano imagery. …

Correll watched an atomic force microscope (AFM) create nano images, a process called scanning probing microscopy. A probe uses electromagnetic waves to create a relief image of the nanoparticles, which are smaller than a wavelength of light and invisible to the human eye. This image is processed by computer software, which creates a final likeness.

“Some people call into question whether these images are truly reliable because they’re not raw data,” said Correll. Nano imagery initially appears in black and white. Scientists add colors and shadows to create contrasts for easier viewing. The choice of colors, however, can affect how the image is received.

There appears to be a misunderstanding, scanning probe microscopy includes both AFM and scanning tunneling microscopy amongst other forms of microscopy used at the nanoscale.  As for the process of creating nano images, it’s my understanding all microscopy at that scale employs software which renders data into images and some of these images are further ‘enhanced’ either for artistic purposes and/or to illustrate a particular point.

I am a little surprised to learn that Germany spends the most on nanoscience research as compared to other European countries. For some reason I thought that distinction belonged to the UK.  Nice to have my misassumptions corrected.

Nanotechnology and the US mega science project: BAM (Brain Activity Map) and more

The Brain Activity Map (BAM) project received budgetary approval as of this morning, Apr. 2, 2013 (I first mentioned BAM in my Mar. 4, 2013 posting when approval seemed imminent). From the news item, Obama Announces Huge Brain-Mapping Project, written by Stephanie Pappas for Yahoo News (Note: Links have been removed),

 President Barack Obama announced a new research initiative this morning (April 2) to map the human brain, a project that will launch with $100 million in funding in 2014.

The Brain Activity Map (BAM) project, as it is called, has been in the planning stages for some time. In the June 2012 issue of the journal Neuron, six scientists outlined broad proposals for developing non-invasive sensors and methods to experiment on single cells in neural networks. This February, President Obama made a vague reference to the project in his State of the Union address, mentioning that it could “unlock the answers to Alzheimer’s.”

In March, the project’s visionaries outlined their final goals in the journal Science. They call for an extended effort, lasting several years, to develop tools for monitoring up to a million neurons at a time. The end goal is to understand how brain networks function.

“It could enable neuroscience to really get to the nitty-gritty of brain circuits, which is the piece that’s been missing from the puzzle,” Rafael Yuste, the co-director of the Kavli Institute for Brain Circuits at Columbia University, who is part of the group spearheading the project, told LiveScience in March. “The reason it’s been missing is because we haven’t had the techniques, the tools.” [Inside the Brain: A Journey Through Time]

Not all neuroscientists support the project, however, with some arguing that it lacks clear goals and may cannibalize funds for other brain research.

….

I believe the $100M mentioned for 2014 would one installment in a series totaling up to $1B or more. In any event, it seems like a timely moment to comment on the communications campaign that has been waged on behalf of the BAM. It reminds me a little of the campaign for graphene, which was waged in the build up to the decision as to which two projects (in a field of six semi-finalists, then narrowed to a field of four finalists) should receive a FET (European Union’s Future and Emerging Technology) 1 billion euro research prize each. It seemed to me even a year or so before the decision that graphene’s win was a foregone conclusion but the organizers left nothing to chance and were relentless in their pursuit of attention and media coverage in the buildup to the final decision.

The most recent salvo in the BAM campaign was an attempt to link it with nanotechnology. A shrewd move given that the US has spent well over $1B since the US National Nanotechnology Initiative (NNI) was first approved in 2000. Linking the two projects means the NNI can lend a little authority to the new project (subtext: we’ve supported a mega-project before and that was successful) while the new project BAM can imbue the ageing NNI with some excitement.

Here’s more about nanotechnology and BAM from a Mar. 27, 2013 Spotlight article by Michael Berger on Nanowerk,

A comprehensive understanding of the brain remains an elusive, distant frontier. To arrive at a general theory of brain function would be an historic event, comparable to inferring quantum theory from huge sets of complex spectra and inferring evolutionary theory from vast biological field work. You might have heard about the proposed Brain Activity Map – a project that, like the Human Genome Project, will tap the hive mind of experts to make headway in the understanding of the field. Engineers and nanotechnologists will be needed to help build ever smaller devices for measuring the activity of individual neurons and, later, to control how those neurons function. Computer scientists will be called upon to develop methods for storing and analyzing the vast quantities of imaging and physiological data, and for creating virtual models for studying brain function. Neuroscientists will provide critical biological expertise to guide the research and interpret the results.

Berger goes on to highlight some of the ways nanotechnology-enabled devices could contribute to the effort. He draws heavily on a study published Mar. 20, 2013 online in ACS (American Chemical Society)Nano. Shockingly, the article is open access. Given that this is the first time I’ve come across an open access article in any of the American Chemical Society’s journals, I suspect that there was payment of some kind involved to make this information freely available. (The practice of allowing researchers to pay more in order to guarantee open access to their research in journals that also have articles behind paywalls seems to be in the process of becoming more common.)

Here’s a citation and a link to the article about nanotechnology and BAM,

Nanotools for Neuroscience and Brain Activity Mapping by A. Paul Alivisatos, Anne M. Andrews, Edward S. Boyden, Miyoung Chun, George M. Church, Karl Deisseroth, John P. Donoghue, Scott E. Fraser, Jennifer Lippincott-Schwartz, Loren L. Looger, Sotiris Masmanidis, Paul L. McEuen, Arto V. Nurmikko, Hongkun Park, Darcy S. Peterka, Clay Reid, Michael L. Roukes, Axel Scherer, Mark Schnitzer, Terrence J. Sejnowski, Kenneth L. Shepard, Doris Tsao, Gina Turrigiano, Paul S. Weiss, Chris Xu, Rafael Yuste, and Xiaowei Zhuang. ACS Nano, 2013, 7 (3), pp 1850–1866 DOI: 10.1021/nn4012847 Publication Date (Web): March 20, 2013
Copyright © 2013 American Chemical Society

As these things go, it’s a readable article for people without a neuroscience education provided they don’t mind feeling a little confused from time to time. From Nanotools for Neuroscience and Brain Activity Mapping (Note: Footnotes and links removed),

The Brain Activity Mapping (BAM) Project (…) has three goals in terms of building tools for neuroscience capable of (…) measuring the activity of large sets of neurons in complex brain circuits, (…) computationally analyzing and modeling these brain circuits, and (…) testing these models by manipulating the activities of chosen sets of neurons in these brain circuits.

As described below, many different approaches can, and likely will, be taken to achieve these goals as neural circuits of increasing size and complexity are studied and probed.

The BAM project will focus both on dynamic voltage activity and on chemical neurotransmission. With an estimated 85 billion neurons, 100 trillion synapses, and 100 chemical neurotransmitters in the human brain,(…) this is a daunting task. Thus, the BAM project will start with model organisms, neural circuits (vide infra), and small subsets of specific neural circuits in humans.

Among the approaches that show promise for the required dynamic, parallel measurements are optical and electro-optical methods that can be used to sense neural cell activity such as Ca2+,(7) voltage,(…) and (already some) neurotransmitters;(…) electrophysiological approaches that sense voltages and some electrochemically active neurotransmitters;(…) next-generation photonics-based probes with multifunctional capabilities;(18) synthetic biology approaches for recording histories of function;(…) and nanoelectronic measurements of voltage and local brain chemistry.(…) We anticipate that tools developed will also be applied to glia and more broadly to nanoscale and microscale monitoring of metabolic processes.

Entirely new tools will ultimately be required both to study neurons and neural circuits with minimal perturbation and to study the human brain. These tools might include “smart”, active nanoscale devices embedded within the brain that report on neural circuit activity wirelessly and/or entirely new modalities of remote sensing of neural circuit dynamics from outside the body. Remarkable advances in nanoscience and nanotechnology thus have key roles to play in transduction, reporting, power, and communications.

One of the ultimate goals of the BAM project is that the knowledge acquired and tools developed will prove useful in the intervention and treatment of a wide variety of diseases of the brain, including depression, epilepsy, Parkinson’s, schizophrenia, and others. We note that tens of thousands of patients have already been treated with invasive (i.e., through the skull) treatments. [emphases mine] While we hope to reduce the need for such measures, greatly improved and more robust interfaces to the brain would impact effectiveness and longevity where such treatments remain necessary.

Perhaps not so coincidentally, there was this Mar. 29, 2013 news item on Nanowerk,

Some human cells forget to empty their trash bins, and when the garbage piles up, it can lead to Parkinson’s disease and other genetic and age-related disorders. Scientists don’t yet understand why this happens, and Rice University engineering researcher Laura Segatori is hoping to change that, thanks to a prestigious five-year CAREER Award from the National Science Foundation (NSF).

Segatori, Rice’s T.N. Law Assistant Professor of Chemical and Biomolecular Engineering and assistant professor of bioengineering and of biochemistry and cell biology, will use her CAREER grant to create a toolkit for probing the workings of the cellular processes that lead to accumulation of waste material and development of diseases, such as Parkinson’s and lysosomal storage disorders. Each tool in the kit will be a nanoparticle — a speck of matter about the size of a virus — with a specific shape, size and charge.  [emphases mine] By tailoring each of these properties, Segatori’s team will create a series of specialized probes that can undercover the workings of a cellular process called autophagy.

“Eventually, once we understand how to design a nanoparticle to activate autophagy, we will use it as a tool to learn more about the autophagic process itself because there are still many question marks in biology regarding how this pathway works,” Segatori said. “It’s not completely clear how it is regulated. It seems that excessive autophagy may activate cell death, but it’s not yet clear. In short, we are looking for more than therapeutic applications. We are also hoping to use these nanoparticles as tools to study the basic science of autophagy.”

There is no direct reference to BAM but there are some intriguing correspondences.

Finally, there is no mention of nanotechnology in this radio broadcast/podcast and transcript but it does provide more information about BAM (for many folks this was first time they’d heard about the project) and the hopes and concerns this project raises while linking it to the Human Genome Project. From the Mar. 31, 2013 posting of a transcript and radio (Kera News; a National Public Radio station) podcast titled, Somewhere Over the Rainbow: The Journey to Map the Human Brain,

During the State of the Union, President Obama said the nation is about to embark on an ambitious project: to examine the human brain and create a road map to the trillions of connections that make it work.

“Every dollar we invested to map the human genome returned $140 to our economy — every dollar,” the president said. “Today, our scientists are mapping the human brain to unlock the answers to Alzheimer’s.”

Details of the project have slowly been leaking out: $3 billion, 10 years of research and hundreds of scientists. The National Institutes of Health is calling it the Brain Activity Map.

Obama isn’t the first to tout the benefits of a huge government science project. But can these projects really deliver? And what is mapping the human brain really going to get us?

Whether one wants to call it a public relations campaign or a marketing campaign is irrelevant. Science does not take place in an environment where data and projects are considered dispassionately. Enormous amounts of money are spent to sway public opinion and policymakers’ decisions.

ETA Ap. 3, 2013: Here are more stories about BAM and the announcement:

BRAIN Initiative Launched to Unlock Mysteries of Human Mind

Obama’s BRAIN Only 1/13 The Size Of Europe’s

BRAIN Initiative Builds on Efforts of Leading Neuroscientists and Nanotechnologists