Category Archives: public perceptions

Science denial is not limited to the political right

These days, climate is the most likely topic to bring up charges of having anti-science views and/or ‘right wing’ thinking but according to a Sept. 19, 2017 news item on phys.org ‘left wing’ thinkers can also reject science,

In the wake of Hurricanes Harvey and Irma, many claims have been made that science denial, particularly as it relates to climate change, is primarily a problem of the political right.

But what happens when scientific conclusions challenge liberals’ attitudes on public policy issues, such as gun control, nuclear power or immigration?

A new study from social psychologists at the University of Illinois at Chicago [UIC] and published online in Social Psychological and Personality Science suggests people of all political backgrounds can be motivated to participate in science denial.

A Sept. 19, 2017 University of Illinois at Chicago news release (also on EurekAlert), which originated the news item, delves further,

UIC researchers Anthony Washburn, a graduate student in psychology, and Linda Skitka, professor of psychology, had participants indicate their political orientation, evaluate fabricated scientific results, and, based on the data, decide what the studies concluded.

Once they were informed of the correct interpretations of the data, participants were then asked to rate how much they agreed with, found knowledgeable, and trusted the researchers’ correct interpretation.

“Not only were both sides equally likely to seek out attitude confirming scientific conclusions, both were also willing to work harder and longer when doing so got them to a conclusion that fit with their existing attitudes,” says Washburn, the lead author of the study. “And when the correct interpretation of the results did not confirm participants’ attitudes, they were more likely to view the researchers involved with the study as less trustworthy, less knowledgeable, and disagreed with their conclusions more.”

These effects were constant no matter what issue was under consideration, which included six social issues — immigration, gun control, climate change, health care reform, nuclear power and same sex marriage — and one control issue — skin rash treatment.

Rather than strictly a conservative phenomenon, science denial may be a result of a more basic desire of people wanting to see the world in ways that fit with their personal preferences, political or otherwise, according to the researchers.

The results also shed light on science denial in public discourse, Skitka added.

“Before assuming that one group of people or another are anti-science because they disagree with one scientific conclusion, we should make an effort to consider different motivations that are likely at play, which might have nothing to do with science per se,” she said.

This research fits into a larger body of work where researchers are examining what we believe and how we use or dismiss science and fact to support our positions. Chris Mooney’s article “The Science of Why We Don’t Believe Science” for the May/June 2011 issue of Mother Jones examines the issue although it is strongly weighted with examples of research into intransigent opinion associated with right wing politics (climate change, etc.).

Getting back to more recent work, here’s link to and a citation for the paper,

Science Denial Across the Political Divide; Liberals and Conservatives Are Similarly Motivated to Deny Attitude-Inconsistent Science by Anthony N. Washburn, Linda J. Skitka. Social Psychological and Personality Science DOI: https://doi.org/10.1177/1948550617731500 First Published September 14, 2017

This paper is behind a paywall.

Nanoview report published by Germany’s Federal Institute for Risk Assessment

According to a Dec. 13, 2016 posting by Lynn L. Bergeson and Carla N. Hutton for the National Law Review blog the German government has released a report on nanotechnology, perceptions of risk, and communication strategies,

On November 15, 2016, Germany’s Federal Institute for Risk Assessment (BfR) published a report, in English, entitled Nanoview — Influencing factors on the perception of nanotechnology and target group-specific risk communication strategies. In 2007, BfR conducted a survey concerning the public perception of nanotechnology. Given the newness of nanotechnology and that large sections of the population did not have any definite opinions or knowledge of it, BfR conducted a follow-up survey, Nanoview, in 2012. Nanoview also included the additional question of which communication measures for conveying risk information regarding nanotechnology are best suited to reach the majority of the population. …  The report states that, given the findings from the 2007 representative survey, which confirmed gender-specific differences in the perception of nanotechnology, ideal-typical male and ideal-typical female concepts were developed. Focus groups then reviewed and optimized the conceptual considerations.  According to the report, the ideal-typical male concept met the expectations of the male target groups (nano-types “supporters” and “cautious observers”).

…  According to the report, the conceptual approach of the ideal-typical female concept met the expectations of the female target groups (nano-types “sceptics” and “cautious observers”), as well as catering to the information needs of some men (“cautious observers”).  …

The report concludes that, with regard to the central communication measure, creating an information portal on the Internet appears to be the most meaningful strategy. .. The report states: “The ideal-typical male concept is geared towards the provision of information on scientific, technical and application-related aspects of nanotechnology, for example.  The ideal-typical female concept focuses on the provision of information on application-related aspects of nanotechnology and support for everyday (purchase) decisions.”

I have quickly gone through the report and it’s interesting to note that the age range surveyed in 2012 was 16 to 60. Presumably Germany is in a similar position to other European countries, Canada, the US, and others in that the main portion of the population is ageing and that population is living longer; consequently, it seems odd to have excluded people over the age of 60.

I found more details about the gender differences expressed regarding nanotechnology, from Nanoview — Influencing factors on the perception of nanotechnology and target group-specific risk communication strategies,

For the following findings, there were numerous significant differences for the variables gender and age:
 Women are on the whole more sceptical towards nanotechnology than men; i.e.
– men tend to be more in favour of nano applications than women
– men  take  a  more  positive  view  than  women  of the  risk-benefit  ratio  in  general  and  in connection with specific applications
– men have a far better feeling about nanotechnology than women
– when  it  comes  to  information  about  nanotechnology, men  have  more faith  in  the government than women; women have more faith than men in environmental organisations as well as health and work safety authorities
– in  some  areas,  men  have  a  far  more  positive  attitude  towards  nanotechnology than women
 Younger  people  are  on  the  whole  more  open-minded  about  nanotechnology than older people; i.e.
-younger people tend to be more in favour of nano applications than older people. The cohort of 16 to 30-year-olds is in some cases far more open-minded than the population overall
– younger people take a (slightly) more positive view than older people of the risk-benefit ratio in general and in connection with specific applications
– in some areas, younger people have a far more positive attitude towards nanotechnology than older people

In  contrast,  there  are few  to  hardly  any  significant  differences for  the  variables  “education”, “size of household”, “income” and “migration background”. [p. 77]

I also found this to be of interest,

In recent years, there has been little or no change in awareness levels among the general population with regard to nanotechnology. This is shown by a comparison of the representative Germany-wide surveys on the risk perception of nanotechnology among the population conducted in 2007 and 2012 (cf. Chapter 0). In response to the open question regarding nanotechnology, around 40% of respondents in the 2012 survey say they had not previously heard of nanotechnology or nanomaterials (cf. Chapter 4.2.2). At the same time, however, those  respondents  who did know about the topic were able to make fairly differentiated statements on individual issues and applications. The risk-benefit ratio of nanotechnology is seen slightly more critically than five years previously, and the general attitude towards nanotechnology has become less favourable. The subjective feeling of being informed about the issue is also still less pronounced than is the case with other innovative technologies. From the point of view  of  consumers,  therefore, this means that an information deficit still exists when it comes to nanotechnology. (p. 83)

It seems to be true everywhere. Awareness of nanotechnology does not seem to change much.

This is a 162 pp. report, which recommends risk communication strategies for nanotechnology,

The findings of the representative survey underline the need to inform the public at the earliest possible date about scientific knowledge as well as the potential and possible risks of nanotechnology. For this reason, the challenge was to develop two alternative target group-specific risk communication concepts. The drafting of these concepts was a two-phase process and took account not only of the prior work done in the research project but also of the insights gained from two group discussions with consumers (focus groups). Against the backdrop of the findings from the representative survey, which  confirmed the gender-specific differences in the perception of nanotechnology, it was decided in consultation with the client to develop an ideal-typical male and an ideal-typical female concept. … (p. 100)

This returns us to the beginning with the Bergeson/Hutton post. For more details you do need to read the report. By the way, the literature survey is quite broad and interesting bringing together more than 20 surveys to provide an international (largely Eurocentric) perspective.

The Center for Nanotechnology in Society at the University of California at Santa Barbara offers a ‘swan song’ in three parts

I gather the University of California at Santa Barbara’s (UCSB) Center for Nanotechnology in Society is ‘sunsetting’ as its funding runs out. A Nov. 9, 2016 UCSB news release by Brandon Fastman describes the center’s ‘swan song’,

After more than a decade, the UCSB Center for Nanotechnology in Society research has provided new and deep knowledge of how technological innovation and social change impact one another. Now, as the national center reaches the end of its term, its three primary research groups have published synthesis reports that bring together important findings from their 11 years of activity.

The reports, which include policy recommendations, are available for free download at the CNS web site at

http://www.cns.ucsb.edu/irg-synthesis-reports.

The ever-increasing ability of scientists to manipulate matter on the molecular level brings with it the potential for science fiction-like technologies such as nanoelectronic sensors that would entail “merging tissue with electronics in a way that it becomes difficult to determine where the tissue ends and the electronics begin,” according to a Harvard chemist in a recent CQ Researcher report. While the life-altering ramifications of such technologies are clear, it is less clear how they might impact the larger society to which they are introduced.

CNS research, as detailed the reports, addresses such gaps in knowledge. For instance, when anthropologist Barbara Herr Harthorn and her collaborators at the UCSB Center for Nanotechnology in Society (CNS-UCSB), convened public deliberations to discuss the promises and perils of health and human enhancement nanotechnologies, they thought that participants might be concerned about medical risks. However, that is not exactly what they found.

Participants were less worried about medical or technological mishaps than about the equitable distribution of the risks and benefits of new technologies and fair procedures for addressing potential problems. That is, they were unconvinced that citizens across the socioeconomic spectrum would share equal access to the benefits of therapies or equal exposure to their pitfalls.

In describing her work, Harthorn explained, “Intuitive assumptions of experts and practitioners about public perceptions and concerns are insufficient to understanding the societal contexts of technologies. Relying on intuition often leads to misunderstandings of social and institutional realities. CNS-UCSB has attempted to fill in the knowledge gaps through methodologically sophisticated empirical and theoretical research.”

In her role as Director of CNS-UCSB, Harthorn has overseen a larger effort to promote the responsible development of sophisticated materials and technologies seen as central to the nation’s economic future. By pursuing this goal, researchers at CNS-UCSB, which closed its doors at the end of the summer, have advanced the role for the social, economic, and behavioral sciences in understanding technological innovation.

Harthorn has spent the past 11 years trying to understand public expectations, values, beliefs, and perceptions regarding nanotechnologies. Along with conducting deliberations, she has worked with toxicologists and engineers to examine the environmental and occupational risks of nanotechnologies, determine gaps in the U.S. regulatory system, and survey nanotechnology experts. Work has also expanded to comparative studies of other emerging technologies such as shale oil and gas extraction (fracking).

Along with Harthorn’s research group on risk perception and social response, CNS-UCSB housed two other main research groups. One, led by sociologist Richard Appelbaum, studied the impacts of nanotechnology on the global economy. The other, led by historian Patrick McCray, studied the technologies, communities, and individuals that have shaped the direction of nanotechnology research.

Appelbaum’s research program included studying how state policies regarding nanotechnology – especially in China and Latin America – has impacted commercialization. Research trips to China elicited a great understanding of that nation’s research culture and its capacity to produce original intellectual property. He also studied the role of international collaboration in spurring technological innovation. As part of this research, his collaborators surveyed and interviewed international STEM graduate students in the United States in order to understand the factors that influence their choice whether to remain abroad or return home.

In examining the history of nanotechnology, McCray’s group explained how the microelectronics industry provided a template for what became known as nanotechnology, examined educational policies aimed at training a nano-workforce, and produced a history of the scanning tunneling microscope. They also penned award-winning monographs including McCray’s book, The Visioneers: How a Group of Elite Scientists Pursued Space Colonies, Nanotechnologies, and Limitless Future.

Reaching the Real World

Funded as a National Center by the US National Science Foundation in 2005, CNS-UCSB was explicitly intended to enhance the understanding of the relationship between new technologies and their societal context. After more than a decade of funding, CNS-UCSB research has provided a deep understanding of the relationship between technological innovation and social change.

New developments in nanotechnology, an area of research that has garnered $24 billion in funding from the U.S. federal government since 2001, impact sectors as far ranging as agriculture, medicine, energy, defense, and construction, posing great challenges for policymakers and regulators who must consider questions of equity, sustainability, occupational and environmental health and safety, economic and educational policy, disruptions to privacy, security and even what it means to be human. (A nanometer is roughly 10,000 times smaller than the diameter of a human hair.)  Nanoscale materials are already integrated into food packaging, electronics, solar cells, cosmetics, and pharmaceuticals. They are far in development for drugs that can target specific cells, microscopic spying devices, and quantum computers.

Given such real-world applications, it was important to CNS researchers that the results of their work not remain confined within the halls of academia. Therefore, they have delivered testimony to Congress, federal and state agencies (including the National Academies of Science, the Centers for Disease Control and Prevention, the Presidential Council of Advisors on Science and Technology, the U.S. Presidential Bioethics Commission and the National Nanotechnology Initiative), policy outfits (including the Washington Center for Equitable Growth), and international agencies (including the World Bank, European Commission, and World Economic Forum). They’ve collaborated with nongovernmental organizations. They’ve composed policy briefs and op eds, and their work has been covered by numerous news organizations including, recently, NPR, The New Yorker, and Forbes. They have also given many hundreds of lectures to audiences in community groups, schools, and museums.

Policy Options

Most notably, in their final act before the center closed, each of the three primary research groups published synthesis reports that bring together important findings from their 11 years of activity. Their titles are:

Exploring Nanotechnology’s Origins, Institutions, and Communities: A Ten Year Experiment in Large Scale Collaborative STS Research

Globalization and Nanotechnology: The Role of State Policy and International Collaboration

Understanding Nanotechnologies’ Risks and Benefits: Emergence, Expertise and Upstream Participation.

A sampling of key policy recommendations follows:

1.     Public acceptability of nanotechnologies is driven by: benefit perception, the type of application, and the risk messages transmitted from trusted sources and their stability over time; therefore transparent and responsible risk communication is a critical aspect of acceptability.

2.     Social risks, particularly issues of equity and politics, are primary, not secondary, drivers of perception and need to be fully addressed in any new technology development. We have devoted particular attention to studying how gender and race/ethnicity affect both public and expert risk judgments.

3.     State policies aimed at fostering science and technology development should clearly continue to emphasize basic research, but not to the exclusion of supporting promising innovative payoffs. The National Nanotechnology Initiative, with its overwhelming emphasis on basic research, would likely achieve greater success in spawning thriving businesses and commercialization by investing more in capital programs such as the Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs, self-described as “America’s seed fund.”

4.     While nearly half of all international STEM graduate students would like to stay in the U.S. upon graduation, fully 40 percent are undecided — and a main barrier is current U.S. immigration policy.

5.     Although representatives from the nanomaterials industry demonstrate relatively high perceived risk regarding engineered nanomaterials, they likewise demonstrate low sensitivity to variance in risks across type of engineered nanomaterials, and a strong disinclination to regulation. This situation puts workers at significant risk and probably requires regulatory action now (beyond the currently favored voluntary or ‘soft law’ approaches).

6.     The complex nature of technological ecosystems translates into a variety of actors essential for successful innovation. One species is the Visioneer, a person who blends engineering experience with a transformative vision of the technological future and a willingness to promote this vision to the public and policy makers.

Leaving a Legacy

Along with successful outreach efforts, CNS-UCSB also flourished when measured by typical academic metrics, including nearly 400 publications and 1,200 talks.

In addition to producing groundbreaking interdisciplinary research, CNS-UCSB also produced innovative educational programs, reaching 200 professionals-in-training from the undergraduate to postdoctoral levels. The Center’s educational centerpiece was a graduate fellowship program, referred to as “magical” by an NSF reviewer, that integrated doctoral students from disciplines across the UCSB campus into ongoing social science research projects.

For social scientists, working side-by-side with science and engineering students gave them an appreciation for the methods, culture, and ethics of their colleagues in different disciplines. It also led to methodological innovation. For their part, scientists and engineers were able to understand the larger context of their work at the bench.

UCSB graduates who participated in CNS’s educational programs have gone on to work as postdocs and professors at universities (including MIT, Stanford, U Penn), policy experts (at organizations like the Science Technology and Policy Institute and the Canadian Institute for Advanced Research), researchers at government agencies (like the National Institute for Standards and Technology), nonprofits (like the Kauffman Foundation), and NGOs. Others work in industry, and some have become entrepreneurs, starting their own businesses.

CNS has spawned lines of research that will continue at UCSB and the institutions of collaborators around the world, but its most enduring legacy will be the students it trained. They bring a true understanding of the complex interconnections between technology and society — along with an intellectual toolkit for examining them — to every sector of the economy, and they will continue to pursue a world that is as just as it technologically advanced.

I found the policy recommendations interesting especially this one:

5.     Although representatives from the nanomaterials industry demonstrate relatively high perceived risk regarding engineered nanomaterials, they likewise demonstrate low sensitivity to variance in risks across type of engineered nanomaterials, and a strong disinclination to regulation. This situation puts workers at significant risk and probably requires regulatory action now (beyond the currently favored voluntary or ‘soft law’ approaches).

Without having read the documents, I’m not sure how to respond but I do have a question.  Just how much regulation are they suggesting?

I offer all of the people associated with the center my thanks for all their hard work and my gratitude for the support I received from the center when I presented at the Society for the Study of Nanotechnologies and Other Emerging Technology (S.Net) in 2012. I’m glad to see they’re going out with a bang.

Germany has released a review of their research strategy for nanomaterials

A Sept. 24, 2016 posting by Lynn L. Bergeson and Carla N. Hutton on The National Law Review blog features a new report from German authorities (Note: A link has been removed),

On September 19, 2016, the Federal Institute for Occupational Safety and Health (BAuA) published a report entitled Review of the joint research strategy of the higher federal authorities — Nanomaterials and other advanced materials:  Application safety and environmental compatibility.  The report states that in a long-term research strategy, the higher federal authorities responsible for human and environmental safety — the German Environment Agency (UBA), the Federal Institute for Risk Assessment (BfR), BAuA, the Federal Institute for Materials Research and Testing (BAM), and the National Metrology Institute (PTB) — are accompanying the rapid pace of development of new materials from the points of view of occupational safety and health, consumer protection, and environmental protection.

Here’s a link to Review of the joint research strategy of the higher federal authorities — Nanomaterials and other advanced materials:  Application safety and environmental compatibility (PDF) and excerpts from the foreword (Note: There are some differences in formatting between what you see here and what you’ll see in the report),

The research strategy builds on the outcomes so far of the joint research strategy of the higher federal authorities launched in 2008 and first evaluated in 2013, “Nanotechnology: Health and Environmental Risks of Nanomaterials”1, while additionally covering other advanced materials where these pose similar risks to humans and the environment or where such risks need to be studied. It also takes up the idea of application safety of chemical products 2 from the New Quality of Work (INQA) initiative of the Federal Ministry of Labour and Social Affairs (BMAS) and the concept of sustainable
chemistry 3 endorsed by the Federal  Ministry  for  the  Environment, Nature Conservation, Building  and Nuclear Safety (BMUB). Application safety and environmental compatibility are aimed for advanced materials and derived products in order to largely rule out unacceptable risks to humans and the environment. This can be achieved by:

Using safe materials without hazardous properties for humans and the environment (direct application safety); or

Product design for low emissions and environmental compatibility over the entire product lifecycle (integrated application safety); or

Product stewardship, where producers support users in taking technical, organizational, and personal safety measures for the safe use and disposal of products (supported application safety).

As a comprising part of the Federal Government’s Nanotechnology Action Plan 2020, the update of the joint research strategy aims to contribute to governmental research in the following main areas:

 characterising and assessing the human and environmental risks of advanced materials
 Supporting research institutions and business enterprises
 Science-based revision of legal requirements and recommendations
 Public acceptance

The research strategy is to be implemented in projects and other research-related activities. These  include  governmental  research,  tendering  and  extramural  research  funding, and participation in mostly publicly supported projects with third-party funding. Additional activities will take place as part of policy advice and the ongoing work of the sovereign tasks of agencies involved. Interdisciplinary and transdisciplinary approaches will be used to better connect risk and safety research with innovation research and material development. In keeping up with the rapid pace of development, the time horizon for the research strategy is up to 2020. The research objectives address the research approaches likely to be actionable in this period. The research strategy will be supported by a working group and be evaluated and revised by the end of the Nanotechnology Action Plan 2020. tegy will be implemented in projects and other research-related activities, including governmental research, tendering and extramural research funding, and participation in mostly publicly supported projects with third-party funding.  Agencies will use interdisciplinary and transdisciplinary approaches to connect better risk and safety research with innovation research and material development. To keep up with the pace of development, the time horizon for the research strategy extends to 2020.  The research objectives in the report address the research approaches likely to be actionable in this period.  The research strategy will be supported by a working group and be evaluated and revised by the end of the Nanotechnology Action Plan 2020.

It’s always interesting to find out what’s happening elsewhere.

2016 Nobel Chemistry Prize for molecular machines

Wednesday, Oct. 5, 2016 was the day three scientists received the Nobel Prize in Chemistry for their work on molecular machines, according to an Oct. 5, 2016 news item on phys.org,

Three scientists won the Nobel Prize in chemistry on Wednesday [Oct. 5, 2016] for developing the world’s smallest machines, 1,000 times thinner than a human hair but with the potential to revolutionize computer and energy systems.

Frenchman Jean-Pierre Sauvage, Scottish-born Fraser Stoddart and Dutch scientist Bernard “Ben” Feringa share the 8 million kronor ($930,000) prize for the “design and synthesis of molecular machines,” the Royal Swedish Academy of Sciences said.

Machines at the molecular level have taken chemistry to a new dimension and “will most likely be used in the development of things such as new materials, sensors and energy storage systems,” the academy said.

Practical applications are still far away—the academy said molecular motors are at the same stage that electrical motors were in the first half of the 19th century—but the potential is huge.

Dexter Johnson in an Oct. 5, 2016 posting on his Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers] website) provides some insight into the matter (Note: A link has been removed),

In what seems to have come both as a shock to some of the recipients and a confirmation to all those who envision molecular nanotechnology as the true future of nanotechnology, Bernard Feringa, Jean-Pierre Sauvage, and Sir J. Fraser Stoddart have been awarded the 2016 Nobel Prize in Chemistry for their development of molecular machines.

The Nobel Prize was awarded to all three of the scientists based on their complementary work over nearly three decades. First, in 1983, Sauvage (currently at Strasbourg University in France) was able to link two ring-shaped molecules to form a chain. Then, eight years later, Stoddart, a professor at Northwestern University in Evanston, Ill., demonstrated that a molecular ring could turn on a thin molecular axle. Then, eight years after that, Feringa, a professor at the University of Groningen, in the Netherlands, built on Stoddardt’s work and fabricated a molecular rotor blade that could spin continually in the same direction.

Speaking of the Nobel committee’s selection, Donna Nelson, a chemist and president of the American Chemical Society told Scientific American: “I think this topic is going to be fabulous for science. When the Nobel Prize is given, it inspires a lot of interest in the topic by other researchers. It will also increase funding.” Nelson added that this line of research will be fascinating for kids. “They can visualize it, and imagine a nanocar. This comes at a great time, when we need to inspire the next generation of scientists.”

The Economist, which appears to be previewing an article about the 2016 Nobel prizes ahead of the print version, has this to say in its Oct. 8, 2016 article,

BIGGER is not always better. Anyone who doubts that has only to look at the explosion of computing power which has marked the past half-century. This was made possible by continual shrinkage of the components computers are made from. That success has, in turn, inspired a search for other areas where shrinkage might also yield dividends.

One such, which has been poised delicately between hype and hope since the 1990s, is nanotechnology. What people mean by this term has varied over the years—to the extent that cynics might be forgiven for wondering if it is more than just a fancy rebranding of the word “chemistry”—but nanotechnology did originally have a fairly clear definition. It was the idea that machines with moving parts could be made on a molecular scale. And in recognition of this goal Sweden’s Royal Academy of Science this week decided to award this year’s Nobel prize for chemistry to three researchers, Jean-Pierre Sauvage, Sir Fraser Stoddart and Bernard Feringa, who have never lost sight of nanotechnology’s original objective.

Optimists talk of manufacturing molecule-sized machines ranging from drug-delivery devices to miniature computers. Pessimists recall that nanotechnology is a field that has been puffed up repeatedly by both researchers and investors, only to deflate in the face of practical difficulties.

There is, though, reason to hope it will work in the end. This is because, as is often the case with human inventions, Mother Nature has got there first. One way to think of living cells is as assemblies of nanotechnological machines. For example, the enzyme that produces adenosine triphosphate (ATP)—a molecule used in almost all living cells to fuel biochemical reactions—includes a spinning molecular machine rather like Dr Feringa’s invention. This works well. The ATP generators in a human body turn out so much of the stuff that over the course of a day they create almost a body-weight’s-worth of it. Do something equivalent commercially, and the hype around nanotechnology might prove itself justified.

Congratulations to the three winners!

Nanotechnology in the house; a guide to what you already have

A July 4, 2016 essay by Cameron Shearer of Flinders University (Australia) on The Conversation website describes how nanotechnology can be found in our homes (Note: Links have been removed),

All kitchens have a sink, most of which are fitted with a water filter. This filter removes microbes and compounds that can give water a bad taste.

Common filter materials are activated carbon and silver nanoparticles.

Activated carbon is a special kind of carbon that’s made to have a very high surface area. This is achieved by milling it down to a very small size. Its high surface area gives more room for unwanted compounds to stick to it, removing them from water.

The antimicrobial properties of silver makes it one of the most common nanomaterials today. Silver nanoparticles kill algae and bacteria by releasing silver ions (single silver atoms) that enter into the cell wall of the organisms and become toxic.

It is so effective and fashionable that silver nanoparticles are now used to coat cutlery, surfaces, fridges, door handles, pet bowls and almost anywhere else microorganisms are unwanted.

Other nanoparticles are used to prepare heat-resistant and self-cleaning surfaces, such as floors and benchtops. By applying a thin coating containing silicon dioxide or titanium dioxide nanoparticles, a surface can become water repelling, which prevents stains (similar to how scotch guard protects fabrics).

Nanoparticle films can be so thin that they can’t be seen. The materials also have very poor heat conductivity, which means they are heat resistant.

The kitchen sink (or dishwasher) is used for washing dishes with the aid of detergents. Detergents form nanoparticles called micelles.

A micelle is formed when detergent molecules self-assemble into a sphere. The centre of this sphere is chemically similar to grease, oils and fats, which are what you want to wash off. The detergent traps oils and fats within the cavity of the sphere to separate them from water and aid dish washing.

Your medicine cabinet may include nanotechnology similar to micelles, with many pharmaceuticals using liposomes.

A liposome is an extended micelle where there is an extra interior cavity within the sphere. Making liposomes from tailored molecules allows them to carry therapeutics inside; the outside of the nanoparticle can be made to target a specific area of the body.

Shearer’s essay goes on to cover the laundry, bathroom, closets, and garage. (h/t July 5, 2016 news item on phys.org)