Monthly Archives: July 2011

Wetware, nanoelectronics and fuel cells

Some of the computer engineers I worked with years ago used to ‘jokingly’ refer to people as wetware putting us on a continuum with hardware, software, and firmware. Clearly they knew something I didn’t as it seems we’re getting closer to making that joke a reality with the term wetware expanding to include biological systems. Michael Berger in his July 19, 2011 Nanowerk Spotlight essay, Squishy electronics, takes a look at some of the developments in biocompatible electronics [Mar.7.12: duplicate paragraph removed from essay excerpt],

There is a physical and electrical disconnect between the world of electronics and the world of biology. Electronics tend to be rigid, operate using electrons, and are inherently two-dimensional. The brain, as a basis for comparison, is soft, operates using ions, and is three-dimensional. Researchers have therefore been looking to find different routes to create biocompatible devices that work well in wet environments like biological systems.

Berger goes on to highlight some research in North Carolina,

The device fabricated by the NC State team (that included graduate students Ju-Hee So and Hyung-Jun Koo, who also first-authored the paper [research team was led by Orlin Velev and Michael Dickey]) is composed primarily of water-based gels that are, in principle, compatible with biological species including cells, enzymes, proteins, and tissues and thus hold promise for interfacing electronics with biological systems. [emphasis mine]

The novelty of this work is the operating mechanism of the memory device combined with the fact that it is built entirely from materials with properties similar to Jell-O. The memristor-like devices are simple to fabricate and basically consist of two liquid-metal electrodes that sandwich a slab of hydrogel.

This line of work fits in nicely with ‘vampire’ batteries (my latest posting on this topic, July 18k 3011) which can, theoretically, run on blood. Coincidentally, The Scientist  published a June 23, 2011 article,  by Megan Scudellari which focuses on biological fuel cells that can run on bacteria,

This tiny biological fuel cell, the smallest of its kind with a total volume of just 0.3 microliters, was built using microfluidics and relies on bacteria to produce energy. Bacteria colonize the anode, the negatively charged end of the system, and through their natural metabolism produce electrons that flow to the cathode, creating a circuit. Together, the anode and cathode are only a few human hairs wide, but the tiny circuit generates a consistent flow of electricity.

An undated news item on the Carnegie Mellon University website offers this information,

Carnegie Mellon University’s Kelvin B. Gregory and Philip R. LeDuc have created the world’s smallest fuel cell — powered by bacteria.

Future versions of it could be used for self-powered sensing devices in remote locations where batteries are impractical, such as deep ocean or geological environments.

“We have developed a biological fuel cell which uses microbial electricity generation enabled by microfluidic flow control to produce power,” said Gregory, an assistant professor of civil and environmental engineering at CMU.

No bigger than a human hair, the fuel cell generates energy from the metabolism of bacteria on thin gold plates in micro-manufactured channels.

Those injunctions about not mixing liquids with electricity may soon seem a trifle old-fashioned.

Update on 2010 planned attack on Swiss IBM nanotechnology centre

In April 2010, two Italians and a Swiss were caught in an apparent plot to bomb an IBM nanotechnology facility being built in Rueschlikon, near Zurich (there’s slightly more in my April, 26, 2010 posting). The three went on trial today (Tuesday, July 19, 2011) for their offenses. From the Reuters news item,

One Swiss and two Italian suspected far-left militants went on trial on Tuesday accused of planning a foiled bomb attack on an IBM nanotechnology centre in Switzerland.

A group of Italian anarchists gathered outside the Federal Criminal Court in Bellinzona in support of the suspects on Tuesday. A verdict is due on Friday, SDA news agency reported.

Hopefully, I’ll find out what happens on Friday (July 22, 2011).

Growing into your prosthetics

Fusing skin to metal is the secret to making prosthetics more comfortable and usable. In a July 13, 2011 posting, GrrlScientist at the Guardian Science blogs highlights this pioneering research,

… thanks to the work of Professor Gordon Blunn, Head of University College London’s Centre for Bio-Medical Engineering, and his colleagues, including Dr Noel Fitzpatrick, a veterinary surgeon. Professor Blunn has been developing groundbreaking metal prosthetic implants that provide comfort and improved mobility for amputee humans and animals.

… They found that in antlers, the bone structure under the skin is very different to that of the exposed bone.

“It was very porous, with lots of tiny holes, which the dermis [the inner layer of skin] webs its way into”, explained Professor Blunn. [emphasis mine]

This observation led to their breakthrough development, known as Intraosseous Transcutaneous Amputation Prosthesis (ITAP), which uses a layer of porous and bioactive (hydroxyapatite-coated) surfaces that encourage adhesion by living tissues. This living “seal” prevents bacterial infections, thereby allowing surgeons to provide amputees with securely-attached limbs that carry weight in a natural way.

Currently, battery-powered sensors allow human amputees to consciously control the movement of downstream portions of the prosthetic limb, such as flexing the hand on a prosthetic arm.

As an excuse for including this item here on the blog and until I hear otherwise, I choose to think of those tiny holes as being at the nanoscale . Plus, I’ve written about prosthetics and human enhancement a number of times.  Here’s the first in a four-part series on Robots and Human Enhancement, July 22, 2009 posting.

As for Blunn’s work, GrrlScientist includes a video and pictures as well as more details about it.

Vampire batteries in Germany too?

I posted a very brief item (April 3, 2009) about some research being done at the University of British Columbia (UBC in Vancouver, Canada) on potential medical devices called ‘vampire batteries’, which use blood as fuel. The UBC team is not alone in its pursuit. A July 15, 2011 news item, Electricity from blood sugar, on Nanowerk, highlights similar research in Germany,

Implants that obtain their energy from blood sugar and oxygen: Dr. Sven Kerzenmacher at the Department of Microsystems Engineering (IMTEK) of the University of Freiburg is researching the development of biological fuel cells with the goal of finding an inexhaustible source of power in the human body. He has been awarded the 2011 FAM Research Prize for his dissertation by the Forum for Applied Microsystems Technology (FAM). …

Researchers have yet to find an optimal method for supplying implantable medical microsystems with electrical energy. The batteries of a pacemaker, for instance, need to be replaced after roughly eight years—meaning a strenuous and expensive surgical intervention for the patient. An alternative approach is to use rechargeable batteries. However, the necessity of recharging the batteries greatly reduces the patient’s quality of life. The idea behind Sven Kerzenmacher’s research, on the other hand, is the possibility of using implantable glucose fuel cells on the basis of noble metal catalysts like platinum. Such catalysts are particularly well suited for use in implant systems due to their long-term stability and the fact that they can be sterilized. In the future, systems equipped with these fuel cells could be supplied with power by way of a continuous electrochemical reaction between glucose and oxygen from the tissue fluid.

Here’s what the team at UBC was doing (from the April 1, 2009 New Scientist article by Kurt Kleiner,),

A team at the University of British Columbia in Vancouver, Canada, has created tiny microbial fuel cells by encapsulating yeast cells in a flexible capsule. They went on to show the fuel cells can generate power from a drop of human blood plasma.

There is no mention of clinical trials, human or otherwise in the news item about the work in Germany or at UBC, which makes it difficult to guess how close they are to using these fuel cells in patients but I imagine there are still several years of lab work ahead given this comment from Kleiner’s 2009 article about the UBC team’s work. A colleague at Cornell noted,

The work is a step in the right direction, but huge challenges remain, says Lars Angenent, who works on microbial fuel cells at Cornell University.

For instance, to keep the yeast cells healthy, their waste products will need to be removed without allowing any harmful substances to leach out into the blood stream.

Finding work, finding scientists—the nano way

This job is not for a nanotechnology communicator but I did receive notice of it in my NISENet (Nanoscale Informal Science Education Network) July 2011 newsletter and I suppose one could include some nanoscience activities if one were inclined, so here it is,

The North Carolina Museum of Natural Sciences and affiliated Nature Research Center (NRC) is looking for a new Science Communication Director. The director will be based in Raleigh and communicate science education efforts at the NRC, teach at North Carolina State University, conduct research on museum education/outreach activities, and host interns, citizen scientists, and colleagues on both campuses. For more information about the position, please click here.

Getting back to nanoscience and nanotechnology, the NISE Network has a new program on their website, Find a Scientist; how to find a nano scientist (from the webpage),

Many scientists are willing (and eager) to collaborate locally on educational projects or serve voluntarily as advisors and content experts. To search the NISE Network member directory for a scientist near you:

  • Step 1. Go to Advanced Search
  • Step 2. Choose Professional Category: “Scientist”
  • Step 3. Narrow your choices further by choosing a Region or a State
  • Step 4. Click Submit

It looks like a pretty simple process. The webpage also offers information for scientists who want to sign up for the program.

Another new item in the catalog features a TEDx Madtown (independently organized TED event) presentation by Troy Dassler, an elementary school teacher who introduced nanoscience to his students. Here’s the video (approx. 12 mins),

For anyone who’s quite familiar with nanotechnology, you will find the presentation a little slowgoing at the beginning while Dassler’s offering a basic introduction for his audience but if takes off once he starts talking about his classroom work and how the kids investigated a new scientific question. You can find other resources for Nanoscience in Elementary Schools here.

At last,

Nano Haiku

Acid-binding antibodies
And gold nanoshells
Detect latent fingermarks

by Vrylena Olney of the Museum of Science, Boston referring to the news article Nanotechnology is Key to Recovering Usable Fingerprints from Old Evidence

On that note, Happy Monday!

Tim Harper, Cientifica’s CEO, talks about their latest report on global nanotechnology funding and economic impacts

A big thanks to Tim Harper for both his insight and for taking the time to answer questions I had about the report, Report on Global Nanotechnology Funding and Impact (Global Funding of Nanotechnologies and Its Impact) released earlier this week on July 13, 2011.

(a) First, could you tell me a little bit about you and about Cientifica?

My background is hardcore nanotechnology – I spend years building and installing surface science instrumentation for VG Instruments, one of the first companies to commercialise the Scanning Tunnelling Microscope, or at least we did our best. But that was back in the days when a PDP 1-11 was the data system and successfully acquiring an image and interpreting it usually required a trip to Zurich to see Gerd Binnig and Heini Röhring [Note: They won the Nobel prize for their efforts on scanning tunnelling microscope]. I also spent a lot of time on Secondary Ion Mass Spectrometry – hitting surfaces with beams of ions and then collecting what we knocked off.  After that I ran the electron microscopy section at the European Space Agency’s (ESA) labs in Holland before buying a lot of focussed ion beam systems and atomic force microscopes so that we could take things apart atom by atom if we suspected that they may fail half way to Mars!

Cientifica started off as a spin out in 1996 doing contract research for ESA before moving into networking scientists, advising venture capital firms about technology and producing information about nanotechnologies. Over the past ten years our work has been used by most governments, and we have been instrumental in designing or advising on a large number of national nanotechnology projects. After tracking nanotechnology for 12 years and usually being more or less right (blush) we have an increasing number of people who use us as a sanity check for projects and investments. But often the biggest successes are the least visible such as advising a client not to put a few hundred million dollars into manufacturing carbon nanotubes for which there was no channel to market.

(b) Is your latest report, 2011 Global Funding of Nanotechnologies and Its Impact, a successor of sorts (industrial sectors rather than countries are prominently listed) to your 2008 Nanotechnology Opportunities report?

It’s a progression from our first edition of the Nanotechnology Opportunity Report in 2002. In those days people just wanted to know what nanotechnology was, and to cut through a lot of the hype and disinformation. In 2002, 99.9% of people thought that nanotechnology was all about tiny robots. Ten years later it’s probably 90%, but at least the 10% involved in science policy, whether in government or companies know what nanotech really is. What people want now is some usable information  –  how does it affect my business or industry, and how can I take advantage of it. Most of our work is for private clients, who range from start ups through to multinationals and governments, and who tap our expertise in predicting the future impact of technology.

We still do a huge amount of work in industrials sectors, and we have publications in medicine and energy in the pipeline which we hope will allow people to cut through the hype and understand what (and when) the market opportunity will really be.

(c) Why did you choose to focus on nano R&D spending and potential economic impacts? Is it something to do with all of the talk about innovation?

We wanted to look first at the funding in both dollar and purchasing power parity terms as one R&D dollar gets more in China that it does in the US. There is a lot of national pride at stake about who is spending the most, and if you look at per capita spending it gets even more interesting. But getting technology to market isn’t just about making huge amounts of government money available. 90-95% of science funding doesn’t generate anything of any economic use (although it can be very useful for furthering scientific knowledge) so we need to look at how that 5-10% gets to market.  I have had a close relationship with the World Economic Forum for many years which also helps us move away from merely looking at science funding to looking at its economic impact, and we also use a lot of data from the World Bank, OECD [Organisation for Economic Development and Cooperation], and various government studies when we try to model technology diffusion.

Over the years we have developed a quite sophisticated model that allows us to translate these various inputs into fairly good, and quite specific, market predictions. In the past 12 years some people have described our market forecasts as cynical or ultra conservative, but if you look back at what we’ve said and what actually happened, I think you’ll find that we were just being realistic. I know that some people want to see big numbers, but it must be all those years as a scientist that makes me satisfied with accurate numbers, no matter what the magnitude!

Innovation isn’t a problem, the academic system is stuffed to the gills with bright and innovative people, but convincing the rest of the world that they need your innovation is the stumbling block. When we looked at the ability of countries to take advantage of their technology funding, countries such as the US and Germany scored highly as they have plenty of commercial-facing research, a strong tradition of industry-academic partnerships, good government support for technology (and whatever individual academics may say it could be far far worse) and domestic industry hungry for technology to maintain their competitive advantage. What surprised us was the low ranking of the UK. While possessing some of the best universities in the world, the UK economy is predominantly service-based, and real estate and coffee shops tend to be less enthusiastic consumers of nanotechnology than chemical companies and auto manufacturers.

(d) It seems most countries are concerned/worried about the levels of their nano science research, their innovation, and consequent economic prospects. Is there any country that seems confident about its nano economic prospects and why do you think that is?

That is partly true, but most governments do not have a joined up strategy which can cause significant structural problems in the future. Post financial crisis, the emphasis has shifted to trimming budgets rather than making long term strategic investments, which is what nanotechnology is, and this gives us two major problems.

Firstly, there just isn’t enough support for early stage spin outs. There is a financial desert to cross between being a full time academic and having a company with enough proof of concept to attract angel or VC [venture capital] funding. Unless governments address this aspect it really doesn’t matter how much innovation is produced by the academic sector, most of it will go nowhere (other than the parts cherry picked by large companies). We really need to start thinking about the path that innovation takes to market, and to make that as smooth as possible.

Secondly, and more seriously, we are approaching a dangerous time in human history. Science and technology are moving faster than ever before thanks to the automation of lab systems and almost real time sharing of results through online journals. At the same time, people are increasingly distrustful of technology, perhaps as a result of it being so far removed from everyday life, which leads to whole areas of science such as GMOs [genetically modified organisms] or nuclear energy becoming tainted. So while we have increasing pressure on food, water, energy, health and every other resource caused by a rising global population, we are being denied the tools which could help improve the conditions of people across the globe. I’m deeply involved in an initiative that sprung from our emerging technologies work at the World Economic Forum, which involves the setting up of a global Centre for Emerging Technologies Intelligence, with the aim of ensuring that we can and will develop the technologies needed to provide clean water, better health and cheap food to the world, whether that comes from nanotechnology, industrial biotechnology, or any other emerging technology.  But the project is less about the technology than making sure that the importance of technology is recognised by governments and international organisations. It is no good running around firefighting crises when we could be thinking ahead and averting them. There’s still a long way to go, but we are talking to a number of governments who are keen to host the centre.

(e) I find it interesting that regions/countries (Alberta, Texas, Iran, and increasingly, other Middle Eastern countries) that have been dependent on oil as a source of wealth are heavily invested in nanotechnology. Are there any conclusions to be drawn from that?

Diversification is the name of the game. It is very dangerous for local or national economies to be dependent on a single sector, even when it is one as lucrative as oil & gas. We have done a lot of work in the Middle East, and the issue there is also one of employment. Most of the expertise for oil & gas is imported and in Gulf countries that have gone from fishing villages to major international cities within a generation there is a real need to provide employment for their youthful populations. Nanotechnology and life sciences are seen as industries of the future and are increasingly central to strategy in the Gulf.

Iran is a different case, and it’s a place I have visited several times to discuss nanotechnologies. While the world may have some issues with the Iranian government, the scientists and business people I deal with are just like the rest of us. Iran has some great science going on, and the US embargo has meant that they have had to be quite ingenious to get access to even basic instrumentation such as electron microscopes. However, there’s a large domestic market, and the Iranians are manufacturing everything from scientific instruments to nanomaterials. When the political issues are solved, I think a few people will be surprised by the level of sophistication of Iranian nanoscience. [Note: For an example of what Tim is referring to, see the Fast Company article (Using 3-D Printers To Mock Up New Teeth) by Morgan Glendaniel, as it mentions the impact that Iranian scientists have had on this new nano-enabled technology.)

(f) Is there anything that you couldn’t include in the report but wanted to? For example, a country that doesn’t register yet in terms of its spending or innovation quotient numbers but that you think is quietly gearing up.

Our dataset is very large, and this report is just the tip of the iceberg as we have clients who pay for the detailed information. As a result the published report just concentrates on the top level numbers for the major economies. There are a few places that really stand out though, such as Singapore. The science and technology infrastructure in Singapore is world class, but it is a small country with no real domestic market so the challenge will be commercialising the fruits of its nanotechnology projects. The current strategy is based on licensing to multinationals but that alone won’t justify the investment so I suspect we will see a lot more partnering around the region, leveraging Singaporean technology in regional markets as, for example, SingTel has successfully done.

A real disappointment is India, with their leading Scientist, CNR Rao, being recently quoted as thinking that the country is in danger of missing the boat. [Note: You can find some of the quotes in this July 8, 2011 posting.]  I have spent large amounts of time in India and I know the raw talent is there, but the creaky infrastructure and lack of political will means that they are currently performing way below their potential.

(g) I will be asking a question or two about the Canada and nanotechnology from a global perspective but I’d like to learn a little bit about the project/workshop you delivered for the Canadian government some years ago. As I recall, it was an analysis of the Canadian effort at that point in time. And, are there any plans for future presentations in Canada?

We did some work for the NRC [National Research Council] a few years ago and also attended a few conferences in Canada in the early part of the decade [2000s] but since then I haven’t been back, although judging from the activity that is going on and looking at where Canada is on the rankings then maybe I should spend more time there!

(h) Generally, how would you describe Canada and its role in the global nanotechnology effort?

Our numbers indicate that it is a good place to be, similar to Australia, The Netherlands, Singapore and the Nordic economies, which is what you would expect.  The US, Russia and China are way out in front with huge funding programs, so the way to compete is obviously to be smarter and find niches rather than trying to cover every aspect of what is a huge field. Knowing where you want the economy to go and nurturing the technologies that will help you achieve that is always a good strategy. But governments are usually terrible at picking winners. Most politicians and civil servants are often ill equipped to advise people on how to run a business, so creating the right environment for innovation and then letting entrepreneurs get on with it is probably the best option.

(i) Are there any suggestions you’d make to Canadian policymakers as to improving Canada’s situation?

Think I just answered that above. 😉 In a nutshell it’s not about how much; it’s about how effective the funding is.

(j) How much work is it to write a report like 2011 Global Funding of Nanotechnologies and Its Impact?

It is harder than it looks.  We have been collecting these numbers for the last 10 years but that’s only part of it. We also have to build and maintain relationships with a huge network of government agencies and scientists around the world so that we can understand which numbers are real.  A lot of governments are very happy to announce funding for nanotechnology, but that doesn’t actually mean that it is available and much of what what we try to do is confirm that all the funding we track is real cash and not just a political announcement.

(k) Is there anything you’d like to add?

After 12 years and almost $70 billion in funding we have to keep thinking about why we do science and how we can encourage its results to be translated into both economic and social well-being. The technology transfer process is very inefficient and the path is strewn with many obstacles. If this was a business process someone would have found a way to streamline it by now.

Thank you Tim Harper for going ‘over and above’ in answering my questions.

One final note, in addition to being a ‘serial tech entrepreneur’ (ETA July 18, 2011: I added the word tech to ‘serial entrepreneur’] and CEO (chief executive officer) of Cientifica, Tim co-owns a fashion boutique, Foxbat in the Spitalfields district of London, UK  (proving that people involved in nanotechnology have a broad set of interests).

FPInnovations and a $25M investment from Natural Resources Canada

The federal government’s Minister of Natural Resources, Joe Oliver, made a big announcement in Vancouver on July 14, 2011 (from the FPInnovations news release),

Canada’s  forestry  innovation  hub,  FPInnovations,  today  welcomed  Federal  Natural  Resources  Minister  Joe  Oliver’s  announcement  of  $25.5‐million  towards  the  2011‐2012  Transformative  Technologies  Research  Program  (TTP).  This  program  focuses  on  the  development,  adaptation,  and  deployment  of  emerging  and  breakthrough  technologies  relating  to  forest  biomass  utilization,  forest  biotechnology,  nanotechnology,  green  chemistry,  bio‐materials,  innovative  wood‐based  building  systems  as  well  as  information  and  communications  technologies.

“Today’s  announcement  extends  a  unique  industry/government  partnership  that  is  transforming  the  forest  sector  through  innovation.  This  announcement  will  help  build  and  strengthen  an  innovative  and  diversified  forest  products  sector  in  Canada.   That  is  good  news  for  job  growth  and  new  economic  opportunities  for  hard  hit  forestry  communities,”  stated  Alan  Potter,  Vice‐President  of  FPInnovations.

I have posted about FPInnovations and their nanocrystalline cellulose (NCC) research previously. I was hoping that there might be some information about whether these funds will be applied to NCC research but no details were given.

Science broadcasting, product placement, and Intel

The Discovery Channel (US broadcast television outlet) has announced a new television show, Curiosity, which will have only four sponsors. Intel has agreed to commit at least $10M over 60 episodes. The first airing is Aug. 7, 2011 in the US with global broadcasting (210 countries and territories) to start in Sept. 2011. From Brad Steinberg’s July 13, 2011 article in AdAge MEDIAWORKS,

Intel has committed at least $10 million to sponsor Discovery Channel’s new series “Curiosity,” which will feature ads from only four advertisers in total.

“Curiosity” represents something of a change for Discovery, whose highest-profile programs until now have comprised big-budget documentaries such as “Life” in 2010 or “Planet Earth” in 2006. “Curiosity” is more akin to “60 Minutes,” exploring topics from intelligence to neuroscience to nanotechnology. [emphasis mine]

Intel will serve as a “presenting partner” of “Curiosity,” said Nancy Bhagat, VP-marketing strategy at Intel. In addition to running elements in four premiere episodes of the show and appearing on its website, Curiosity.com, Intel will participate in initiatives from Discovery’s education unit designed to involve students. Social media and mobile marketing are also part of the mix.

Intel hopes to avoid the hard sell, said Ms. Bhagat. “It’s not about us launching a new ad campaign,” she said. “It’s really about the content behind the idea of ‘Curiosity’ itself.”

But viewers will find it difficult to avoid Intel’s messages. Discovery will create short-form vignettes featuring Intel employees discussing what sparks their curiosity. Intel will also be the centerpiece of a show segment called “What Makes Us Curious.” The Intel-backed content will prod viewers to go online to learn more about specific topics. Intel will make use of “Curiosity” in more than 40 countries.

Yes, I imagine it will be awfully hard for viewers to miss Intel’s messages.

Splitting light to make events invisible

It’s always about bending light so that an object becomes invisible when you hear about scientists working on invisibility cloaks. Dexter Johnson (Nanoclast blog on the IEEE [Institute of Electrical and Electronics Engineers] website) recently featured some of the newest work in this area in his July 7, 2011 posting about a graphene cloaking device (based on the concept of ‘mantle cloaking’) proposed by researchers at the University of Texas at Austin.

Ian Sample in his July 13, 2011 posting on The Guardian Science blogs describes an entirely different approach, one that focusses on cloaking events rather than objects. From Samples’s posting,

The theoretical prospect of a “space-time” cloak – or “history editor” – was raised by Martin McCall and Paul Kinsler at Imperial College in a paper published earlier this year. The physicists explained that when light passes through a material, such as a lens, the light waves slow down. But it is possible to make a lens that splits the light in two, so that half – say the shorter wavelengths – speed up, while the other half, the longer wavelengths, slow down. This opens a gap in the light in which an event can be hidden, because half the light arrives before it has happened, and the other half arrives after the event.

In their paper, McCall and Kinsler outline a scenario whereby a video camera would be unable to record a crime being committed because there was a means of splitting the light such that 1/2 of it reached the camera before the crime occurred and the other 1/2  reached the camera afterwards. Fascinating, non?

It seems researchers at Cornell University have developed a device that can in a rudimentary fashion cloak events (from Samples’s posting),

The latest device, which has been shown to work for the first time by Moti Fridman and Alexander Gaeta at Cornell University, goes beyond the more familiar invisibility cloak, which aims to hide objects from view, by making entire events invisible.

Fridman’s and Gaeta’s research is to be published in Nature magazine at some time in the future and I look forward to hearing more about how this ‘space/time invisibility cloak’ works and whether or not other scientists can replicate the effect.

One final comment, Samples mentioned a special July 2011 issue (freeish download)  of Physics World devoted to invisibility. Excerpted from Matin Durrani’s July 8, 2011 posting on the Physics World blog,

It is perhaps a little-known fact that Griffin – the main character in H G Wells’ classic novel The Invisible Man – was a physicist. In the 1897 book, Griffin explains how he quit medicine for physics and developed a technique that made himself invisible by reducing his body’s refractive index to match that of air.

While Wells’ novel is obviously a work of fiction, the quest for invisibility has made real progress in recent years – and is the inspiration for this month’s special issue of Physics World, which you can download for free via this link [they do  want your contact details].

Kicking off the issue is Sidney Perkowitz, who takes us on a whistle-stop tour of invisibility through the ages – from its appearance in Greek mythology to camouflaging tanks on the battlefield – before bringing us up to date with recent scientific developments.

While it’s not yet possible to hear more Fridman’s and Gaeta’s device until Nature publishes their research, Sample offers more details based on materials, Demonstration of temporal cloaking, the researchers submitted to the arvix database on Monday, July 11, 2011.

I wonder what would happen if you had both kinds of invisibility cloaks at work. It brings to mind a Zen koan (I’ve paraphrased it), If a tree falls in the forest and no one is there, does it make a sound?

Or in this case: If you can’t see the object (light bending cloak), and you never saw the event (temporal cloak), did it exist and did it happen?

http://physicsworld.com/cws/download/jul2011

Canada’s National Institute of Nanotechnology gets first Hitachi H-95000 microscope outside of Japan

Canada’s National Institute of Nanotechnology (NINT) has just opened a facility (which was mentioned as a future project in my July 20, 2009 posting) with three new Hitachi microscopes in a $15M funding partnership. From the July 13, 2011 article by Dave Cooper for the Edmonton Journal,

The Hitachi Electron Microscopy Products Centre [HEMiC; Note: This was formerly called the Hitachi Electron Microscopy Products Development Centre] at NINT opened Tuesday, a $15-million partnership between the federal and provincial governments and Hitachi, that marks the entry of Edmonton as the North American microscope leader.

One of the three new machines -the H-9500 environmental transmission electron microscope -is so new it is only the second in the world after one at a Toyota research centre in Japan.

“This technology suite (of three new microscopes) has enabled Alberta and Canada to establish a centre that will be the leading edge of nanotechnology research and development for many years to come,” Hidehito Obayashi, chairman of Hitachi High Technologies, said Tuesday.

I found some more information about the H-9500 microscope in this July 13, 2011 news item on Nanowerk,

The Hitachi H-9500 Environmental transmission electron microscope (ETEM) can study in-situ chemical reactions of samples in liquids and gases. It will offer a very low background pressure (in the 10-8 torr region) ensuring low sample contamination rate and low effect of background gases on the in-situ experiment. Its capabilities include the possibility to heat the sample to temperatures exceeding 1500° C while exposed to various gases or study liquid samples at temperatures exceeding 300° C. The analytical capabilities of the instrument include electron energy loss spectroscopy and energy dispersive X-ray spectrometry for chemical analysis. This instrument offers standard TEM imaging and diffraction capabilities allowing the investigation of sample structure and morphology.

As for the HEMiC facility (more from the news item on Nanowerk),

HEMiC will have two streams of activity: the provision of a wide range of electron microscopy services to industrial and academic clients; and a research collaboration between NINT and Hitachi researchers that will develop new electron microscope tools and techniques. The Centre will also be a Hitachi reference site, allowing Hitachi to showcase its latest microscopes, giving potential clients from North America an opportunity to gain hands-on experience with new instruments and techniques before buying.

I have mused on this before but I really do wonder what happens when there’s a scheduling conflict between research interests and commercial interests. In other words, what happens when you need to use the microscope for research purposes at the same time the sales people want to show it to potential customers? What is the protocol and who decides?