Monthly Archives: February 2013

“Egyptian blue” the first synthetic pigment in history inspires nanomaterials

Some chemists at the University of Georgia (US) have analyzed the blue pigment found in Egyptian monuments and elsewhere to discover that it has some unique properties at the nanoscale which ancient Egyptians and others capitalized on in their artworks. From the Feb. 20, 2013 news item on Nanowerk,

Tina T. Salguero [University of Georgia] and colleagues point out that Egyptian blue, regarded as humanity’s first artificial pigment, was used in paintings on tombs, statues and other objects throughout the ancient Mediterranean world. Remnants have been found, for instance, on the statue of the messenger goddess Iris on the Parthenon and in the famous Pond in a Garden fresco in the tomb of Egyptian “scribe and counter of grain” Nebamun in Thebes.

They describe surprise in discovering that the calcium copper silicate in Egyptian blue breaks apart into nanosheets so thin that thousands would fit across the width of a human hair. The sheets produce invisible infrared (IR) radiation similar to the beams that communicate between remote controls and TVs, car door locks and other telecommunications devices.

The article can be found here,

Nanoscience of an Ancient Pigment by Darrah Johnson-McDaniel, Christopher A. Barrett, Asma Sharafi, and Tina T. Salguero. J. Am. Chem. Soc., 2013, 135 (5), pp 1677–1679 DOI: 10.1021/ja310587c Publication Date (Web): December 10, 2012

Copyright © 2012 American Chemical Society

The article is behind a paywall but the abstract is open to everyone and there is this image,

Credit: Researchers at the University of Georgia [downloaded from http://pubs.acs.org.proxy.lib.sfu.ca/doi/full/10.1021/ja310587c#]

Credit: Researchers at the University of Georgia [downloaded from http://pubs.acs.org.proxy.lib.sfu.ca/doi/full/10.1021/ja310587c#]

If I understand this rightly, Egyptian blue can be categorized as both a traditional pigment and a structural color due to nanoscale structures. (I recently wrote about structure, color, and the nanoscale in a Feb. 7, 2013 posting.)

As these things do from time to time, it reminded me of a song,

Enjoy!

Chad Mirkin, spherical nucleic acids, and a new ‘periodic table’

There was a big splash in July 2012 with the announcement that Chad Mirkin’s team at Northwestern University (Chicago, Illinois) had devised a skin cream that penetrated the skin barrier to deliver medication (my July 4, 2012 posting),

A team led by a physician-scientist and a chemist — from the fields of dermatology and nanotechnology — is the first to demonstrate the use of commercial moisturizers to deliver gene regulation technology that has great potential for life-saving therapies for skin cancers.

The topical delivery of gene regulation technology to cells deep in the skin is extremely difficult because of the formidable defenses skin provides for the body. The Northwestern approach takes advantage of drugs consisting of novel spherical arrangements of nucleic acids. These structures, each about 1,000 times smaller than the diameter of a human hair, have the unique ability to recruit and bind to natural proteins that allow them to traverse the skin and enter cells.

Mirkin has just finished presenting (Feb. 15, 2013 and Feb. 17, 2013) more information about spherical nucleic acids and their implications at the AAAS  (American Association for the Advancement of Science) 2013 meeting in Boston, Massachusetts. From the Feb. 15, 2013 news release on EurekAlert,

Northwestern University’s Chad A. Mirkin, a world-renowned leader in nanotechnology research and its application, has invented and developed a powerful material that could revolutionize biomedicine: spherical nucleic acids (SNAs).

Potential applications include using SNAs to carry nucleic acid-based therapeutics to the brain for the treatment of glioblastoma, the most aggressive form of brain cancer, as well as other neurological disorders such as Alzheimer’s and Parkinson’s diseases. Mirkin is aggressively pursuing treatments for such diseases with Alexander H. Stegh, an assistant professor of neurology at Northwestern’s Feinberg School of Medicine.

“These structures are really quite spectacular and incredibly functional,” Mirkin said. “People don’t typically think about DNA in spherical form, but this novel arrangement of nucleic acids imparts interesting chemical and physical properties that are very different from conventional nucleic acids.”

Spherical nucleic acids consist of densely packed, highly oriented nucleic acids arranged on the surface of a nanoparticle, typically gold or silver.  [emphasis mine] The tiny non-toxic balls, each roughly 15 nanometers in diameter, can do things the familiar but more cumbersome double helix can’t do:

  • SNAs can naturally enter cells and effect gene knockdown, making SNAs a superior tool for treating genetic diseases using gene regulation technology.
  • SNAs can easily cross formidable barriers in the human body, including the blood-brain barrier and the layers that make up skin.
  • SNAs don’t elicit an immune response, and they resist degradation, resulting in longer lifetimes in the body.

“The field of medicine needs new constructs and strategies for treating disease,” Mirkin said. “Many of the ways we treat disease are based on old methods and materials. Nanotechnology offers the ability to rapidly create new structures with properties that are very different from conventional forms of matter.”

“We now can go after a whole new set of diseases,” Mirkin said. “Thanks to the Human Genome Project and all of the genomics research over the last two decades, we have an enormous number of known targets. And we can use the same tool for each, the spherical nucleic acid. We simply change the sequence to match the target gene. That’s the power of gene regulation technology.”

###

A member of President Obama’s Council of Advisors on Science and Technology, Mirkin is known for invention and development of biological and chemical diagnostic systems based upon nanomaterials. He is the inventor and chief developer of Dip-Pen Nanolithography, a groundbreaking nanoscale fabrication and analytical tool, and is the founder of four Chicago-based companies: AuraSense, AuraSense Therapeutics, Nanosphere and NanoInk.

Mirkin, in addition to his work with spherical nucleic acids, has been busy with other nanoparticles and possible dreams of a new ‘periodic table of elements’, from the Feb. 17, 2013 news release on EurekAlert,

Forging a new periodic table using nanostructures

Northwestern University’s Chad A. Mirkin, …, has developed a completely new set of building blocks that is based on nanoparticles and DNA. Using these tools, scientists will be able to build — from the bottom up, just as nature does — new and useful structures.

“We have a new set of building blocks,” Mirkin said. “Instead of taking what nature gives you, we can control every property of the new material we make. We’ve always had this vision of building matter and controlling architecture from the bottom up, and now we’ve shown it can be done.”

Using nanoparticles and DNA, Mirkin has built more than 200 different crystal structures with 17 different particle arrangements. Some of the lattice types can be found in nature, but he also has built new structures that have no naturally occurring mineral counterpart.

Mirkin can make new materials and arrangements of particles by controlling the size, shape, type and location of nanoparticles within a given particle lattice. He has developed a set of design rules that allow him to control almost every property of a material.

New materials developed using his method could help improve the efficiency of optics, electronics and energy storage technologies. “These same nanoparticle building blocks have already found wide-spread commercial utility in biology and medicine as diagnostic probes for markers of disease,” Mirkin added.

With this present advance, Mirkin uses nanoparticles as “atoms” and DNA as “bonds.” He starts with a nanoparticle, which could be gold, silver, platinum or a quantum dot, for example. The core material is selected depending on what physical properties the final structure should have.

He then attaches hundreds of strands of DNA (oligonucleotides) to the particle. The oligonucleotide’s DNA sequence and length determine how bonds form between nanoparticles and guide the formation of specific crystal lattices.

“This constitutes a completely new class of building blocks in materials science that gives you a type of programmability that is extraordinarily versatile and powerful,” Mirkin said. “It provides nanotechnologists for the first time the ability to tailor properties of materials in a highly programmable way from the bottom up.”

If I read these two news releases rightly, the process (nanoparticles as atoms and DNA as bonds), Mirkin uses to create new structures is the same process he has used to create spherical nucleic acids. Given Mirkin’s entrepreneurial inclinations, I am curious as to how many and what kind of patents might be ‘protecting’ this work.

The race to commercialize graphene as per the University of Manchester (UK)

The University of Manchester (UK) has a particular interest in graphene as the material was isolated by future Nobel Prize winners, Andre Gheim and Kostya (Konstantin) Novoselov in the university’s laboratories. There’s a Feb. 18, 2013 news item on Nanowerk highlighting the university’s past and future role in the development of graphene on the heels of the recent research bonanza,

The European Commission has announced that it is providing 1bn euros over 10 years for research and development into graphene – the ‘wonder material’ isolated at The University of Manchester by Nobel Prize winners Professors Andre Geim and Kostya Novoselov.

The University is very active in technology transfer and has an excellent track-record of spinning out technology, but some think that the University has taken a different view when it comes to patenting and commercialising graphene. Others have expressed a broader concern about British Industry lagging behind in the graphene ‘race’, based upon international ‘league tables’ of numbers of graphene patents.

A recent interview with Clive Rowland (CEO of the University’s Innovation Group) addresses the assumptions about the University’s approach and reflects more generally about graphene patenting and about industry up-take of graphene. The interview is summarised below.

Question: Has the University set up any commercial graphene activities?

Answer: The University owns a company, called 2-DTech Limited, which makes and supplies two-dimensional materials and has an interest in another, Graphene Industries Limited, which sells graphene made by a different technique to 2-DTech.

Question: Is the University falling behind in graphene?

Answer: The University is the world’s leading university for graphene research and publications. It led the charge for UK investment into the field and has been awarded The National Graphene Institute, which will be a £61m state-of-the art centre. This Institute will act as a focus for all sorts of commercial graphene activity in Manchester, from industrial research and development laboratories locating “alongside” the Institute, developing new processes and products, to start-up companies. The University championed the major flagship research funding programmes that have been initiated in the UK and Europe and has been awarded a number of prestigious grants. Graphene is still a science-driven research field and not yet a commercialised technology.

The rest of the summary can be found either at Nanowerk or in this University of Manchester Feb. 18, 2013 news release.

The University of Manchester Innovation Group (aka UMI3) mentioned in connection with Clive Rowland hosts the complete interview (12 pp), which, read from the beginning, provides an enhanced perspective on the university’s graphene commercialization goals,

Graphene – The University of Manchester and Intellectual Property. Dan Cochlin talks to Clive Rowland – The University’s InnovationGroup CEO —‐ about the launch of a new grapheme company at the University, 2–‐DTech Ltd, And grapheme patents and commercialisation.

What is grapheme and why is there so much interest in it?

Graphene is a revolutionary nano material which was first isolated at The University of Manchester By Professors Andre Geim And Konstantin Novoselov. They received the Nobel Prize in 2010 For their ingenious work on graphene. People are excited about it because it has the potential to transform a vast range of products due to its very superior capabilities compared to existing materials.

So what’s the new company about?

It makes and sells CVD graphene, grapheme platelets, grapheme oxide and other advanced materials with amazing properties, which are being called 2–‐D – two dimensional – due to  their single atomic layer thickness. In other words, they’re so thin it’s as if they only have length and breadth dimensions. It will soon have an e–‐commerce site too, where customers can shop on–‐line. The Company will create and develop intellectual property, especially by engaging in interesting assignments such as collaborating with firms on design projects. It will also provide consulting services ,in the field, either directly or by sub–‐contracting to our relevant academic colleagues here at the University. We’re already an international team – with Antiguan, British and Italian people actively involved in the business and a fast developing business agency network in the Far East and the USA.

What’s CVD?

It’s one of the techniques for making grapheme that 2-DTech uses –‐ chemical vapour deposition –‐ which allows us to grow grapheme on foils and films in quite large area sizes for various potential uses, particularly information technology and communications because of graphene’s high quality and unique electronic transport, flexibility and other astounding attributes.

Well why have you only just set this up when others have been doing so for a while now?

The University’s researchers in physics and materials science have been able to make enough grapheme for their own needs until lately, but not any longer. Besides, there has been an expansion of interest across the University in the potential of the material, including from areas such as health and bio–‐sciences. Hence we want to make sure that the University has a regular supply for those colleagues who cannot continue to make it in sufficient quantities or who aren’t familiar with the material.

In addition many of the companies in contact with the University’s Researchers are in a similarly constrained position. So we feel the need to have a University Facility to handle this which is free of the normal academic duties and interests. At the same time we see an international business opportunity.

There’s a strong market demand for high quality grapheme of a consistent nature and a growing interest in other 2–‐D crystals. A number of researchers, especially our CTO Dr Branson Belle, who had been researching 2–‐D Materials and making grapheme for a long time became interested in the business side. …

Thank you Clive Rowland and the University of Manchester for insight into the graphene commercialization efforts on the part of at least one university.  Meanwhile, the comment about producing enough graphene for research reminds me of the queries I get from entrepreneurs about getting access to nanocrystalline cellulose (NCC) or cellulose nanocrystals (CNC). To my knowledge, no one outside the research community has gotten access to the materials. I wonder if despite the fact there are two manufacturing facilities whether this may be due to an inability to produce enough CNC or NCC.

Voice of Young Science expands its activities to the US and ‘asks for evidence’

Last I mentioned the Voice of Young Science (a UK-based effort supported by the Sense about Science charitable trust) was in an Aug. 9, 2012 posting about their ‘public speaking tips’ initiative. A Feb 16, 2013 news item on Nanowerk features a new programme from the Voice of Young Science, Ask for Evidence USA (programme launch page), Note: A link has been removed,

Postdocs and graduate students from all fields of research and science outreach are joining together to launch a campaign to get people questioning the claims they see in newspapers, on TV, in adverts and from policy makers.

We hear all kinds of claims about what is good for our health, bad for the environment, how to avoid cancer, how to improve education, cut crime, cure disease or improve food. Some are based on reliable evidence and scientific rigor. Many are not. How can we tell the difference?

The Voice of Young Science (VoYS) USA network will work alongside members of the public to ask for the evidence.

They are launching the Ask for Evidence campaign after a one day Boot Camp, hosted by MIT [Massachusetts Institute of Technology] Museum in Boston MA. With the launch coming on the eve of Valentine’s Day, some of the early career researchers have already had a quick look at the evidence behind aphrodisiac claims about oysters, rhino horn and more, and produced an alternative Valentine’s greeting. The network is setting its sights on encouraging people to ask about science and evidence in discussions about everything from changing weather patterns to ‘superfoods’, vaccinations, alternative medicine and radiation.

It looks like an interesting programme but a little over elaborate for my taste. For example, there’s a second Ask for Evidence page, (the campaign page itself).

In principle, this business of asking for evidence seems like a good idea and the group has kindly provided hints on how to ask for it. Oddly, they don’t provide any suggestions for how to evaluate the evidence when it’s provided. Also, the interest is focused on health and medicine issues, seemingly to the exclusion of other topics.

Whether or not this particular initiative gains traction is less important than the effort and the passion that have driven it. Success can be measured in many ways. It’s good to see these signs of interest in outreach from ‘young scientists’ and I wish them the best with this and, no doubt, future efforts.

Global Agenda Council on Emerging Technologies announces its 2013 list of top 10 emerging technologies

On Feb. 18, 2012 I published a list of technologies with life and globe changing impacts supplied by the World Economic Forum’s (WEF) Global Agenda Council on Emerging Technologies and, coincidentally, I’m publishing another such list from the Global Agenda Council on exactly the same day in 2013.  Although I’m not alone, Nanowerk has published a Feb. 18, 2013 news item featuring this year’s list, others published the list last week.

From a Feb. 14, 2013 post by Tim Harper (a member of the Global Agenda Council) on his Cientifica company’s Insight blog,

OnLine Electric Vehicles (OLEV)

Already widely used to exchange digital information, wireless technology can now also deliver electric power to moving vehicles. In next-generation electric cars, pick-up coil sets under the vehicle floor receive power remotely via an electromagnetic field broadcast from cables installed under the road surface. The current also charges an onboard battery used to power the vehicle when it is out of range. As electricity is supplied externally, these vehicles require only a fifth the battery capacity of a standard electric car, and can achieve transmission efficiencies of over 80 percent. Online electric vehicles are currently undergoing road tests in Seoul, South Korea.

3-D printing and remote manufacturing

Three-dimensional printing allows the creation of solid structures from a digital computer file, potentially revolutionising the economics of manufacturing if objects can be printed remotely in the home or office rather than requiring time and energy for transportation. The process involves layers of material being deposited on top of each other in order to create free-standing structures from the bottom up. Blueprints from computer-aided design are sliced into cross-section for print templates, allowing virtually-created objects to be used as models for ‘hard copies’ made from plastics, metal alloys or other materials.

Self-healing materials

One of the defining characteristics of living organisms is the inherent ability to repair physical damage done to them. A growing trend in biomimicry is the creation of non-living structural materials that also have the capacity to heal themselves when cut, torn or cracked. Self-healing materials which can repair damage without external human intervention could give manufactured goods longer lifetimes and reduce the demand for raw materials, as well as improving the inherent safety of structural materials used in construction or to form the bodies of aircraft.

Energy-efficient water purification

Water scarcity is a worsening ecological problem in many parts of the world due to competing demands from agriculture, cities and other human uses. Where freshwater systems are over-used or exhausted, desalination from the sea offers near-unlimited water but at the expense of considerable use of energy – mostly from fossil fuels – to drive evaporation or reverse osmosis systems. Emerging technologies offer the potential for significantly higher energy efficiency in desalination or purification of wastewater, potentially reducing energy consumption by 50 percent or more. Techniques such as forward osmosis can additionally improve efficiency by utilising low-grade heat from thermal power production or renewable heat produced by solar-thermal geothermal installations.

Carbon dioxide (CO2) conversion and use

Long-promised technologies for the capture and underground sequestration of carbon dioxide have yet to be proven commercially viable, even at the scale of a single large power station. New technologies that convert the unwanted CO2 into saleable goods can potentially address both the economic and energetic shortcomings of conventional CCS strategies. One of the most promising approaches uses biologically-engineered photosynthetic bacteria to turn waste CO2 into liquid fuels or chemicals, in low-cost, modular solar converter systems. Whilst only operational today at the acre scale, individual systems are expected to reach hundreds of acres within as little as two years. Being 10 to 100 times as productive per unit of land area, these systems address one of the main environmental constraints on biofuels from agricultural or algal feedstock, and could supply lower carbon fuels for automobiles, aviation or other large-scale liquid fuel users.

Enhanced nutrition to drive health at the molecular level

Even in developed countries millions of people suffer from malnutrition due to nutrient deficiencies in their diets. Efforts to improve the situation by changing diets have met with limited success.  Now modern genomic techniques have been applied to determine at the gene sequence level the vast number of naturally-consumed proteins which are important in the human diet. The proteins identified may have advantages over standard protein supplements in that they can supply a greater percentage of essential amino acids, and have improved solubility, taste, texture and nutritional characteristics. The large-scale production of pure human dietary proteins based on the application of biotechnology to molecular nutrition can deliver health benefits such as in muscle development, managing diabetes or reducing obesity.

Remote sensing

The increasingly widespread use of sensors that allow often passive responses to external stimulae will continue to change the way we respond to the environment, particularly in the area of health. Examples include sensors that continually monitor bodily function – such as heart rate, blood oxygen and blood sugar levels – and if necessary trigger a medical response such as insulin provision. Advances rely on wireless communication between devices, low power sensing technologies and, sometimes, active energy harvesting.  Other examples include vehicle-to-vehicle sensing for improved safety on the road.

Precise drug delivery through nanoscale engineering

Pharmaceuticals which can be precisely delivered at the molecular level within or around the cell offer unprecedented opportunities for more effectively treatments while reducing unwanted side effects. Targeted nanoparticles that adhere to diseased tissue allow for the micro-scale delivery of potent therapeutic compounds while minimizing their impact on healthy tissue, and are now advancing in medical trials. After almost a decade of research, these new approaches are now finally showing signs of clinical utility, through increasing the local concentration and exposure time of the required drug and thereby increasing its effectiveness. As well as improving the effects of current drugs, these advances in nanomedicine promise to rescue other drugs, which would otherwise be rejected due to their dose-limiting toxicity.

Organic electronics and photovoltaics

Organic electronics – a type of printed electronics – is the use of organic materials such as polymers to create electronic circuits and devices. In contrast to traditional (silicon based) semiconductors that are fabricated with expensive photolithographic techniques, organic electronics can be printed using low-cost, scalable processes such as ink jet printing- making them extremely cheap compared with traditional electronics devices, both in terms of the cost per device and the capital equipment required to produce them. While organic electronics are currently unlikely to compete with silicon in terms of speed and density, they have the potential to provide a significant edge in terms of cost and versatility. The cost implications of printed mass-produced solar photovoltaic collectors for example could accelerate the transition to renewable energy.

Fourth-generation reactors and nuclear waste recycling

Current once-through nuclear power reactors only utilise 1% of the potential energy available in uranium, leaving the rest radioactively contaminated as nuclear ‘waste’. Whilst the technical challenge of geological disposal is manageable, the political challenge of nuclear waste seriously limits the appeal of this zero-carbon and highly scaleable energy technology. Spent-fuel recycling and breeding uranium-238 into new fissile material – known as ‘Nuclear 2.0’ – would extend already-mined uranium resources for centuries while dramatically reducing the volume and long-term toxicity of wastes, whose radioactivity will drop below the level of the original uranium ore on a timescale of centuries rather millennia. This makes geological disposal much less of a challenge (and arguably even unnecessary) and nuclear waste a minor environmental issue compared to hazardous wastes produced by other industries. Fourth-generation technologies, including liquid metal-cooled fast reactors, are now being deployed in several countries and are offered by established nuclear engineering companies.

You can also find the list in the World Economic Forum’s Feb. 14, 2013 posting by David King (currently the chair of the Global Agenda Council on Emerging Technologies). There’s also more information about the Global Agenda Council here.

Simon Fraser University’s (Vancouver, Canada) Feb. 19, 2013 Café Scientifique

There are two very different descriptions of this upcoming event, first from Simon Fraser University’s Café Scientifique webpage description,

Tuesday, February 19
Café Scientifique

Time: 7-8:30pm

Place: CBC, 700 Hamilton St.

Cost: Free, email cafesci@sfu.ca to reserve your spot

The Chemistry behind how Bird’s Nest soup led to Influenza drugs Influenza type A viral infection continues to be a serious health problem facing the human population as it continually changes how it is seen by the immune system by making modifications to the proteins that cover its surface. Dr. Andrew Bennet of SFU’s Chemistry Dept. will discuss how inhibition of one of the viral surface proteins that is called neuraminidase (the N in H5N1) is proving to be a suitable approach in the design of anti-viral drugs. Moderated by Stephen Quinn, CBC Radio. [Canadian Broadcasting Corporation] Everyone welcome, refreshments served. Please email cafesci@sfu.ca to reserve your free seat. 7:00 – 8:30 pm, CBC, 700 Hamilton St. Vancouver

Then there’s this from SFU’s Café Scientifique 2012 – 2013 List of Speakers webpage,

Tuesday, February 19, 2013

The Chemistry Behind How Bird’s Nest Soup Led to Influenza Drugs

Speaker:  Dr. Andy Bennett, Department of Chemistry, SFU

Influenza type A viral infection continues to be a serious health problem facing the human population worldwide as it continually changes how it is seen by the immune system by making modifications to the proteins that cover its surface.  Inhibition of one of the viral surface proteins that is called neuraminidase (the N in H5N1) has proved to be a suitable approach in the design of anti-viral drugs.

Note the location is the CBC Studio at 700 Hamilton Street, Vancouver

Please RSVP to cafe_sci@sfu.ca

Frankly, this seems like less fun that a talk at the Railway Club, which is where one of the other Cafe Scientifique groups usually meets. The Railway Club has a casual informal atmosphere; you can get a beer and some very interesting science conversation and, yes, someone does speak but the whole dynamic changes when you’ve got that beer in hand.  This SFU/CBC setup reminds me too much of sitting in lecture halls.

Study tracks evolution of world’s first 500 bio-nano firms

Elicia Maine, a professor at Simon Fraser University’s Beedie School of Business, is presenting right now (9:45 am – 12:45 pm EST, Feb. 18, 2013) at the AAAS (American Association for the Advancement of Science) 2013 meeting in Boston, Massachusetts in a session titled, Confluence of Streams of Knowledge: Biotechnology and Nanotechnology, about her study on bio-nano firms. Here’s more about her and her work in a Feb. 15, 2013 news release from Simon Fraser University (SFU), Note: I have removed a link,

Elicia Maine, an SFU associate professor of technology management and strategy at the Beedie School of Business, has co-authored a study that puts bio-nano firms under the microscope.

They are a new breed of business at the intersection of biotechnology and nanotechnology.

Maine will unveil a groundbreaking study on bio-nano firms in a seminar she has co-organized (with James Utterback, a Massachusetts Institute of Technology professor) at the world’s largest science research meeting.

Maine’s presentation, followed by a panel discussion, will take place at the annual American Association for the Advancement of Science (AAAS) convention in Boston, Massachusetts on Monday, Feb. 18, 9:45 a.m.-12:45 p.m. (Pacific time) Location: Room 300, Hynes Convention Centre.

The study, the first of its kind, tracks the evolution of the world’s first 500 bio-nano firms from their inception until now. “We are interested in seeing when these firms developed or acquired nanotechnology and biotechnology capabilities, and what they have done with those capabilities in terms of integrating the knowledge into new products and processes,” says Maine.

“We’ve classified the pioneers of this new breed of firms at the confluence of biotechnology and nanotechnology based on their primary role in innovation. They cover the areas of biopharma, drug delivery, diagnostics, biomaterials, medical devices, suppliers and instrumentation, and bioinformatics.”

Unfortunately, this is an unpublished study (I haven’t been able to find any reference to it online) but there is a video of Maine talking about her research on bio-nano firms,

ETA Feb. 21, 2012, There was a second news release from SFU dated Feb. 18, 2012, which provided some additional information and quotes about Maine’s research,

The study’s authors have identified, classified and analysed more than 500 of the world’s first companies in the emerging bio-nano sector. Their data shows these companies are taking hold not just in technology hotbeds such as California’s Silicon Valley and the northeastern United States but also across the country, and in Europe.

“We have watched the ecosystem emerge in terms of the number and type of firms entering,” says Maine.  “This confluence of technology silos in the emerging bio-nano sector is enabling radical innovation, new products and connections that didn’t exist before. Some of the things we’re talking about are targeted drug delivery, tissue engineering, enhanced medical diagnostics and new therapeutics.”

Between 2005 and 2011, the number of bio-nano firms nearly doubled to 507, with more than 100 of them emerging in North America alone.

‘Touching’ infrared light, if you’re a rat followed by announcement of US FDA approval of first commercial artificial retina (bionic eye)

Researcher Miguel Nicolelis and his colleagues at Duke University have implanted a neuroprosthetic device in the portion of a rat’s brain related to touch that allows the rats to see infrared light. From the Feb. 12, 2013 news release on EurekAlert,

Researchers have given rats the ability to “touch” infrared light, normally invisible to them, by fitting them with an infrared detector wired to microscopic electrodes implanted in the part of the mammalian brain that processes tactile information. The achievement represents the first time a brain-machine interface has augmented a sense in adult animals, said Duke University neurobiologist Miguel Nicolelis, who led the research team.

The experiment also demonstrated for the first time that a novel sensory input could be processed by a cortical region specialized in another sense without “hijacking” the function of this brain area said Nicolelis. This discovery suggests, for example, that a person whose visual cortex was damaged could regain sight through a neuroprosthesis implanted in another cortical region, he said.

Although the initial experiments tested only whether rats could detect infrared light, there seems no reason that these animals in the future could not be given full-fledged infrared vision, said Nicolelis. For that matter, cortical neuroprostheses could be developed to give animals or humans the ability to see in any region of the electromagnetic spectrum, or even magnetic fields. “We could create devices sensitive to any physical energy,” he said. “It could be magnetic fields, radio waves, or ultrasound. We chose infrared initially because it didn’t interfere with our electrophysiological recordings.”

Interestingly, the research was supported by the US National Institute of Mental Health (as per the news release).

The researchers have more to say about what they’re doing,

“The philosophy of the field of brain-machine interfaces has until now been to attempt to restore a motor function lost to lesion or damage of the central nervous system,” said Thomson, [Eric Thomson] first author of the study. “This is the first paper in which a neuroprosthetic device was used to augment function—literally enabling a normal animal to acquire a sixth sense.”

Here’s how they conducted the research,

The mammalian retina is blind to infrared light, and mammals cannot detect any heat generated by the weak infrared light used in the studies. In their experiments, the researchers used a test chamber that contained three light sources that could be switched on randomly. Using visible LED lights, they first taught each rat to choose the active light source by poking its nose into an attached port to receive a reward of a sip of water.

After training the rats, the researchers implanted in their brains an array of stimulating microelectrodes, each roughly a tenth the diameter of a human hair. The microelectrodes were implanted in the cortical region that processes touch information from the animals’ facial whiskers.

Attached to the microelectrodes was an infrared detector affixed to the animals’ foreheads. The system was programmed so that orientation toward an infrared light would trigger an electrical signal to the brain. The signal pulses increased in frequency with the intensity and proximity of the light.

The researchers returned the animals to the test chamber, gradually replacing the visible lights with infrared lights. At first in infrared trials, when a light was switched on the animals would tend to poke randomly at the reward ports and scratch at their faces, said Nicolelis. This indicated that they were initially interpreting the brain signals as touch. However, over about a month, the animals learned to associate the brain signal with the infrared source. They began to actively “forage” for the signal, sweeping their heads back and forth to guide themselves to the active light source. Ultimately, they achieved a near-perfect score in tracking and identifying the correct location of the infrared light source.

To ensure that the animals were really using the infrared detector and not their eyes to sense the infrared light, the researchers conducted trials in which the light switched on, but the detector sent no signal to the brain. In these trials, the rats did not react to the infrared light.

Their finding could have an impact on notions of mammalian brain plasticity,

A key finding, said Nicolelis, was that enlisting the touch cortex for light detection did not reduce its ability to process touch signals. “When we recorded signals from the touch cortex of these animals, we found that although the cells had begun responding to infrared light, they continued to respond to whisker touch. It was almost like the cortex was dividing itself evenly so that the neurons could process both types of information.

This finding of brain plasticity is in contrast with the “optogenetic” approach to brain stimulation, which holds that a particular neuronal cell type should be stimulated to generate a desired neurological function. Rather, said Nicolelis, the experiments demonstrate that a broad electrical stimulation, which recruits many distinct cell types, can drive a cortical region to adapt to a new source of sensory input.

All of this work is part of Nicolelis’ larger project ‘Walk Again’ which is mentioned in my March 16, 2012 posting and includes a reference to some ethical issues raised by the work. Briefly, Nicolelis and an international team of collaborators are developing a brain-machine interface that will enable full mobility for people who are severely paralyzed. From the news release,

The Walk Again Project has recently received a $20 million grant from FINEP, a Brazilian research funding agency to allow the development of the first brain-controlled whole body exoskeleton aimed at restoring mobility in severely paralyzed patients. A first demonstration of this technology is expected to happen in the opening game of the 2014 Soccer World Cup in Brazil.

Expanding sensory abilities could also enable a new type of feedback loop to improve the speed and accuracy of such exoskeletons, said Nicolelis. For example, while researchers are now seeking to use tactile feedback to allow patients to feel the movements produced by such “robotic vests,” the feedback could also be in the form of a radio signal or infrared light that would give the person information on the exoskeleton limb’s position and encounter with objects.

There’s more information including videos about the work with infrared light and rats at the Nicolelis Lab website.  Here’s a citation for and link to the team’s research paper,

Perceiving invisible light through a somatosensory cortical prosthesis by Eric E. Thomson, Rafael Carra, & Miguel A.L. Nicolelis. Nature Communications Published 12 Feb 2013 DOI: 10.1038/ncomms2497

Meanwhile, the US Food and Drug Administraton (FDA) has approved the first commercial artificial retina, from the Feb. 14, 2013 news release,

The U.S. Food and Drug Administration (FDA) granted market approval to an artificial retina technology today, the first bionic eye to be approved for patients in the United States. The prosthetic technology was developed in part with support from the National Science Foundation (NSF).

The device, called the Argus® II Retinal Prosthesis System, transmits images from a small, eye-glass-mounted camera wirelessly to a microelectrode array implanted on a patient’s damaged retina. The array sends electrical signals via the optic nerve, and the brain interprets a visual image.

The FDA approval currently applies to individuals who have lost sight as a result of severe to profound retinitis pigmentosa (RP), an ailment that affects one in every 4,000 Americans. The implant allows some individuals with RP, who are completely blind, to locate objects, detect movement, improve orientation and mobility skills and discern shapes such as large letters.

The Argus II is manufactured by, and will be distributed by, Second Sight Medical Products of Sylmar, Calif., which is part of the team of scientists and engineers from the university, federal and private sectors who spent nearly two decades developing the system with public and private investment.

Scientists are often compelled to do research in an area inspired by family,

“Seeing my grandmother go blind motivated me to pursue ophthalmology and biomedical engineering to develop a treatment for patients for whom there was no foreseeable cure,” says the technology’s co-developer, Mark Humayun, associate director of research at the Doheny Eye Institute at the University of Southern California and director of the NSF Engineering Research Center for Biomimetic MicroElectronic Systems (BMES). …”

There’s also been considerable government investment,

The effort by Humayun and his colleagues has received early and continuing support from NSF, the National Institutes of Health and the Department of Energy, with grants totaling more than $100 million. The private sector’s support nearly matched that of the federal government.

“The retinal implant exemplifies how NSF grants for high-risk, fundamental research can directly result in ground-breaking technologies decades later,” said Acting NSF Assistant Director for Engineering Kesh Narayanan. “In collaboration with the Second Sight team and the courageous patients who volunteered to have experimental surgery to implant the first-generation devices, the researchers of NSF’s Biomimetic MicroElectronic Systems Engineering Research Center are developing technologies that may ultimately have as profound an impact on blindness as the cochlear implant has had for hearing loss.”

Leaving aside controversies about cochlear implants and the possibility of such controversies with artificial retinas (bionic eyes), it’s interesting to note that this device is dependent on an external camera,

The researchers’ efforts have bridged cellular biology–necessary for understanding how to stimulate the retinal ganglion cells without permanent damage–with microelectronics, which led to the miniaturized, low-power integrated chip for performing signal conversion, conditioning and stimulation functions. The hardware was paired with software processing and tuning algorithms that convert visual imagery to stimulation signals, and the entire system had to be incorporated within hermetically sealed packaging that allowed the electronics to operate in the vitreous fluid of the eye indefinitely. Finally, the research team had to develop new surgical techniques in order to integrate the device with the body, ensuring accurate placement of the stimulation electrodes on the retina.

“The artificial retina is a great engineering challenge under the interdisciplinary constraint of biology, enabling technology, regulatory compliance, as well as sophisticated design science,” adds Liu.  [Wentai Liu of the University of California, Los Angeles] “The artificial retina provides an interface between biotic and abiotic systems. Its unique design characteristics rely on system-level optimization, rather than the more common practice of component optimization, to achieve miniaturization and integration. Using the most advanced semiconductor technology, the engine for the artificial retina is a ‘system on a chip’ of mixed voltages and mixed analog-digital design, which provides self-contained power and data management and other functionality. This design for the artificial retina facilitates both surgical procedures and regulatory compliance.”

The Argus II design consists of an external video camera system matched to the implanted retinal stimulator, which contains a microelectrode array that spans 20 degrees of visual field. [emphasis mine] …

“The external camera system-built into a pair of glasses-streams video to a belt-worn computer, which converts the video into stimulus commands for the implant,” says Weiland [USC researcher Jim Weiland], “The belt-worn computer encodes the commands into a wireless signal that is transmitted to the implant, which has the necessary electronics to receive and decode both wireless power and data. Based on those data, the implant stimulates the retina with small electrical pulses. The electronics are hermetically packaged and the electrical stimulus is delivered to the retina via a microelectrode array.”

You can see some footage of people using artificial retinas in the context of Grégoire Cosendai’s TEDx Vienna presentation. As I noted in my Aug. 18, 2011 posting where this talk and developments in human enhancement are mentioned, the relevant material can be seen at approximately 13 mins., 25 secs. in Cosendai’s talk.

Second Sight Medical Devices can be found here.

Some talk about nanotechnology-enabled medical devices and regulatory requirements

Jim Butschli suggests a ‘new-to-me’ question in regard to nanotechnology-enabled devices and regulatory frameworks in his Feb. 12, 2013 article for Packaging World,

The projected worldwide market for nanotech-enabled products could range between $500 billion and $3 trillion by 2015, according to “Nanotechnology and nanomaterials medical devices—The regulatory frontier,” a presentation by Mary Gray, manager of regulatory affairs with DePuy Synthes—Johnson & Johnson, during MD&M West.

Gray said that medical devices and multiple industrial sectors could be improved through nanotech applications. She pointed to nano-based coatings that could be applied to medical device surfaces to optimize and improve health outcomes. Nanotechnology applications involve medical devices and consumer products, as well as their packaging.

Why would a company want to introduce combination products given their potentially onerous regulatory challenges? A key reason: enhanced therapeutic results and better patient outcomes.

That was an important takeaway from another presentation at MDM West given by Winifred Wu, president of Strategic Regulatory Partners LLC, entitled, “Strategies for the combination product pathway: Submission and approval.”

Wu cited a Research & Markets report that said the drug-device combination product market was growing 11.8% annually between 2010 and 2014.

Wu spent time discussing the U.S. Food and Drug Administration’s Office of Combination Products, noting that OCP tends to work closely with other FDA centers. She noted that there is still considerable debate around what products are combination products. [emphasis mine] The definition and scope continues to evolve as more therapies are developed.

Further investigation about combination products yielded this definition from the US Food and Drug Administration (FDA),

Combination products are defined in 21 CFR 3.2(e).  The term combination product includes:

(1) A product comprised of two or more regulated components, i.e., drug/device, biologic/device, drug/biologic, or drug/device/biologic, that are physically, chemically, or otherwise combined or mixed and produced as a single entity;

(2) Two or more separate products packaged together in a single package or as a unit and comprised of drug and device products, device and biological products, or biological and drug products;

(3) A drug, device, or biological product packaged separately that according to its investigational plan or proposed labeling is intended for use only with an approved individually specified drug, device, or biological product where both are required to achieve the intended use, indication, or effect and where upon approval of the proposed product the labeling of the approved product would need to be changed, e.g., to reflect a change in intended use, dosage form, strength, route of administration, or significant change in dose; or

(4) Any investigational drug, device, or biological product packaged separately that according to its proposed labeling is for use only with another individually specified investigational drug, device, or biological product where both are required to achieve the intended use, indication, or effect.

I wish there was a bit more detail about the area of debate regarding what constitutes a combination product but Butschli seemed a little more interested in regulatory strategies,

Morton’s [Michael Morton, senior director of global regulatory affairs with Medtronic] speech, “Regulatory strategies for 2013: The art of framing a successful submission,” touched on some familiar observations, including the following:

• Determining the intended use of the product seems obvious, but uses can become difficult to define clearly among multiple stakeholders.

• Understand the indicated patient population and be clear about a product’s benefit claims. …

There’s more about nanotechnology and regulatory strategies in Butschli’s article.

The MD&M (medical devices and manufacturing) West 2013 conference where these talks were presented ended on Feb. 14, 2013.