Tag Archives: UK National Graphene Institute

Searchable database for hazardous nanomaterials and a Graphene Verification Programme

I have two relatively recent news bits about nanomaterials, the second being entirely focused on graphene.

Searchable database

A July 9, 2019 news item on Nanowerk announces a means of finding out what hazards may be associated with 300 different nanomaterials (Note: A Link has been removed),

A new search tool for nanomaterials has been published on the European Union Observatory for Nanomaterials (EUON) website. It will enable regulators to form a better view of available data and give consumers access to chemicals safety information.

The tool combines data submitted by companies in their REACH registrations [Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) ], data collected about nanomaterials used as ingredients in cosmetic products under the Cosmetics Regulation and data from the public national nanomaterial inventories of Belgium and France.

A July 3, 2019 EUON press release, which originated the news item, provides a bit more detail,

The EUON’s search brings data from these sources together in one place, allowing users to easily search for nanomaterials that are currently on the EU market. The results are linked to ECHA’s [European Chemicals Agency] database of chemicals registered in the EU and, for the first time, summarised information about the substances, their properties as well as detailed safety and characterisation data can be easily found.

Background

While there are over 300 nanomaterials on the EU market, 37 are currently covered by an existing registration under REACH. The information requirements for REACH were revised last year with explicit obligations for nanomaterials manufactured in or imported to the EU. The new requirements enter into force in January 2020 and will result in more publicly available information.

The EUON aims to increase the transparency of information available to the public on the safety and markets of nanomaterials in the EU. A key aim of the observatory is to create a one-stop shop for information, where EU citizens and stakeholders including NGOs, industry, and regulators can all easily find accessible and relevant safety information on nanomaterials on the EU market.

Here’s the searchable database.

Graphene verification

There was a bit of a scandal about fake graphene in the Fall of 2018 (my May 28, 2019 posting gives details). Dexter Johnson provides additional insight and information about the launch of a new graphene verification programme and news of a slightly older graphene verification programme in his July 9, 2019 article for the Nanoclast blog on the IEEE (Institute of Electrical and Electronics Engineers) website (Note: Links have been removed),

Last year [2018], the graphene community was rocked by a series of critical articles that appeared in some high-profile journals. First there was an Advanced Material’s article with the rather innocuously title: “The Worldwide Graphene Flake Production”. It was perhaps the follow-up article that appeared in the journal Nature that really shook things up with its incendiary title: “The war on fake graphene”.

In these two articles it was revealed that material that had been claimed to be high-quality (and high-priced) graphene was little more than graphite powder. Boosted by their appearance in high-impact journals, these articles threatened the foundations of the graphene marketplace.

But while these articles triggered a lot of hand wringing among the buyers and sellers of graphene, it’s not clear that their impact extended much beyond the supply chain of graphene. Whether or not graphene has aggregated back to being graphite is one question. An even bigger one is whether or not consumers are actually being sold a better product on the basis that it incorporates graphene.

Dexter details some of the issues from the consumer’s perspective (Note: Links have been removed),

Consumer products featuring graphene today include everything from headphones to light bulbs. Consequently, there is already confusion among buyers about the tangible benefits graphene is supposed to provide. And of course the situation becomes even worse if the graphene sold to make products may not even be graphene: how are consumers supposed to determine whether graphene infuses their products with anything other than a buzzword?

Another source of confusion arises because when graphene is incorporated into a product it is effectively a different animal from graphene in isolation. There is ample scientific evidence that graphene when included in a material matrix, like a polymer or even paper, can impart new properties to the materials. “You can transfer some very useful properties of graphene into other materials by adding graphene, but just because the resultant material contains graphene it does not mean it will behave like free-standing graphene, explains Tom Eldridge, of UK-based Fullerex, a consultancy that provides companies with information on how to include graphene in a material matrix

The rest of Dexter’s posting goes on to mention two new graphene verification progammes (producer and product) available through The Graphene Council. As for what the council is, there’s this from council’s About webpage,

The Graphene Council was founded in 2013 with a mission to serve the global community of graphene professionals. Today, The Graphene Council is the largest community in the world for graphene researchers, academics, producers, developers, investors, nanotechnologists, regulatory agencies, research institutes, material science specialists and even the general public. We reach more than 50,000 people with an interest in this amazing material. 

Interestingly the council’s offices are located in the US state of North Carolina. (I would have guessed that its headquarters would be in the UK, given the ‘ownership’ the UK has been attempting to establish over graphene Let me clarify, by ownership I mean the Brits want to be recognized as dominant or preeminent in graphene research and commercialization.)

The council’s first verified graphene producer is a company based in the UK as can be seen in an April 1, 2019 posting by council director Terrance Barkan on the council’s blog,

The Graphene Council is pleased to announce that Versarien plc is the first graphene company in the world to successfully complete the Verified Graphene Producer™ program, an independent, third party verification system that involves a physical inspection of the production facilities, a review of the entire production process, a random sample of product material and rigorous characterization and testing by a first class, international materials laboratory.

The Verified Graphene Producer™ program is an important step to bring transparency and clarity to a rapidly changing and opaque market for graphene materials, providing graphene customers with a level of confidence that has not existed before.

“We are pleased to have worked with the National Physical Laboratory (NPL) in the UK, regarded as one of the absolute top facilities for metrology and graphene characterization in the world.
 
They have provided outstanding analytical expertise for the materials testing portion of the program including Raman Spectroscopy, XPS, AFM and SEM testing services.” stated Terrance Barkan CAE, Executive Director of The Graphene Council.
 
Andrew Pollard, Science Area Leader of the Surface Technology Group, National Physical Laboratory, said: “In order to develop real-world products that can benefit from the ‘wonder material’, graphene, we first need to fully understand its properties, reliably and reproducibly.
 
“Whilst international measurement standards are currently being developed, it is critical that material characterisation is performed to the highest possible level.
 
As the UK’s National Measurement Institute (NMI) with a focus on developing the metrology of graphene and related 2D materials, we aim to be an independent third party in the testing of graphene material for companies and associations around the world, such as The Graphene Council.” 
 
Neill Ricketts, CEO of Versarien said: “We are delighted that Versarien is the first graphene producer in the world to successfully complete the Graphene Council’s Verified Graphene Producer™ programme.”
 
“This is a huge validation of our technology and will enable our partners and potential customers to have confidence that the graphene we produce meets globally accepted standards.”
 
“There are many companies that claim to be graphene producers, but to enjoy the benefits that this material can deliver requires high quality, consistent product to be supplied.  The Verified Producer programme is designed to verify that our production facilities, processes and tested material meet the stringent requirements laid down by The Graphene Council.”

“I am proud that Versarien has been independently acclaimed as a Verified Graphene Producer™ and look forward to making further progress with our collaboration partners and numerous other parties that we are in discussions with.”

James Baker CEng FIET, the CEO of Graphene@Manchester (which includes coordinating the efforts of the National Graphene Institute and the Graphene Engineering and Innovation Centre [GEIC]) stated: “We applaud The Graphene Council for promoting independent third party verification for graphene producers that is supported by world class metrology and characterization services.”

“This is an important contribution to the commercialization of graphene as an industrial material and are proud to have The Graphene Council as an Affiliate Member of the Graphene Engineering and Innovation Centre (GEIC) here in Manchester ”.

Successful commercialization of graphene materials requires not only the ability to produce graphene to a declared specification but to be able to do so at a commercial scale.
It is nearly impossible for a graphene customer to verify the type of material they are receiving without going through an expensive and time consuming process of having sample materials fully characterized by a laboratory that has the equipment and expertise to test graphene.

The Verified Graphene Producer™ program developed by The Graphene Councilprovides a level of independent inspection and verification that is not available anywhere else.

As for the “Verified Graphene Product” programme mentioned in Dexter’s article (it’s not included in the excerpts here), I can’t find any sign of it ion the council’s website.

The secret behind the world’s lightest chronograph watch (whisper: it’s graphene)

This latest watch from the Richard Mille company by way of the University of Manchester isn’t the lightest watch the company has ever made but it is their lightest, most complex watch yet at less than 1.5 oz. It also has a breathtaking price tag. More about that later.

An August 29, 2018 news item on Nanowerk announces the publication of research related to the graphene-enhanced watch,

In January 2017 the world’s lightest mechanical chronograph watch was unveiled in Geneva, Switzerland, showcasing innovative composite development by using graphene. Now the research behind the project has been published. The unique precision-engineered watch was a result of collaboration between The University of Manchester [UK], Richard Mille Watches and McLaren Applied Technologies.

An August 29, 2018 University of Manchester press release, which originated the news item, gives further detail,

The RM 50-03 watch was made using a unique composite incorporating graphene to manufacture a strong but lightweight new case to house the watch mechanism which weighed just 40 grams in total, including the strap.

The collaboration was an exercise in engineering excellence, exploring the methods of correctly aligning graphene within a composite to make the most of the two-dimensional materials superlative properties of mechanical stiffness and strength whilst negating the need for the addition of other, weightier materials.

Now the research behind this unique watch has been published in the journal, Composites Part A: Applied Science and Manufacturing. The work was primarily carried out by a group of researchers at The University of Manchester’s National Graphene Institute.

Leading the research Professor Robert Young said: “In this work, through the addition of only a small amount of graphene into the matrix, the mechanical properties of a unidirectionally-reinforced carbon fibre composite have been significantly enhanced.

“This could have future impact on precision-engineering industries where strength, stiffness and product weight are key concerns such in as aerospace and automotive.”

The small amount of graphene used was added to a carbon fibre composite with the goal of improving stiffness and reducing weight by requiring the use of less overall material. Since graphene has high levels of stiffness and strength, its use as a reinforcement

in polymer composites shows huge potential of further enhancing the mechanical properties of composites.

The final results were achieved with only a 2% weight fraction of graphene added to the epoxy resin. The resulting composite with graphene and carbon fibre was then analysed by tensile testing and the mechanisms were revealed primarily by using Raman spectroscopy and X-ray CT scans.

The benefits of this research demonstrate a simple method which can be incorporated into existing industrial processes, allowing for engineering industries to benefit from graphene mechanical properties, such as the manufacture of airplane wings or the body work of high-performance cars.

The research group discovered that when comparing with a carbon fibre equivalent specimen, the addition of graphene significantly improved the tensile stiffness and strength. This occurred when the graphene was dispersed through the material and aligned in in the fibre direction.

Dr Zheling Li, a University of Manchester Research Associate said: “This study presents a way of increasing the axial stiffness and strength of composites by simple conventional processing methods, and clarifying the mechanisms that lead to this reinforcement.”

Aurèle Vuilleumier R&D Manager at Richard Mille said: “This project is a perfect example of technology transfer from the university to the product. The partnership with McLaren Applied Technologies allows a broad diffusion of graphene-enhanced composites in the industry. As a tangible result, a world record light and strong watch was available for our customers: the RM 50-03.”

Dr Broderick Coburn, Senior Mechanical Design Engineer at McLaren Applied Technologies said: “The potential of graphene to enhance composites’ structural properties has been known and demonstrated at a lab-scale for some time now. This application, although niche, is a great example of those structural benefits making it through to a prepreg material, and then into an actual product.”

The University of Manchester will soon be celebrating the opening of its second world-class graphene facility, the Graphene Engineering Innovation Centre (GEIC), set-to open later this year. The GEIC will allow industry to work alongside academic expertise to translate research into prototypes and pilot production and accelerate the commercialisation of graphene.

Here’s a link to and a citation for the paper,

Realizing the theoretical stiffness of graphene in composites through confinement between carbon fibers by Jingwen Chu, Robert J.Young, Thomas J.A.Slater, Timothy L.Burnett, Broderick Coburn, Ludovic Chichignoud, Aurèle Vuilleumier, Zheling Li. Composites Part A: Applied Science and Manufacturing Volume 113, October 2018, Pages 311-317 DOI: https://doi.org/10.1016/j.compositesa.2018.07.032

This paper is open access.

Price tag?

There’s an old saying, ‘if you have to ask, you can’t afford it’. It sprang to mind as I checked out the luxury Swiss watch company’s, Richard MIlle, products. You won’t find a price tag on the company’s RM 50-03’s product page but you will get lots of pictures of the watch mixed in with sports car images alongside chunks of text exhorting the watch and invoking sports car racing, a very expensive sport. And, the sports car images make even more sense when you know that the one of other partners in this academic/commercial venture is a UK leader in the field of motorsport. More from the About page on the McLaren website,

Whatever we apply ourselves to at McLaren, whether in the fields of racing, supercars or technology; we are committed to a journey of relentless improvement that challenges convention, disrupts markets and delivers powerful competitive advantage.

I was not able to find a price list on the Mille or McLaren sites. In fact, the watch does not seem to be mentioned at all on the McLaren website.

Happily, there’s a January 17, 2017 posting by Zach Pina for A Blog To Watch, which kind of reveals the price (Note: Links have been removed),

Forty grams [less than 1.5 oz.]. That’s the total weight, including the strap, of the new Richard Mille RM 50-03 McLaren F1 watch, making it the lightest split-second chronograph with a tourbillon the world has ever seen. Ok, yes – this isn’t exactly an ultra-competitive category – hell, the RM 50-03 is a veritable boat-anchor when compared to the groundbreaking 19-gram [less that .75 oz.] RM 027 Tourbillon Richard Mille built for Rafael Nadal, but that was, by comparison, a much less complicated watch. A mere 40 grams is still an impressive technical feat when you look at just how much is packed into the latest marvel from Richard Mille. The cost for the 40-gram horological wonder? It’ll be seven figures. [The blog post’s title has the price as $1Million.]

Sports cars are expensive and, I guess, so is the technology when it’s adapted to watches. If you’re at all interested, watches, luxury products, and/or the latest high technology, I recommend reading Pina’s entire posting for a lively read,

Richard Mille is no slouch when it comes to passionately creative design and materials (possible understatement of the year, though the year [2017] is still young). However, in breaking new ground for this particular watch, it took a partnership between the Swiss watchmaker, famed British Formula 1 automaker McLaren, and Nobel Prize-winning scientists from the University of Manchester. The product of their collaboration is a case that marries titanium, carbon TPT (thin-ply technology), and a Richard Mille exclusive and apparent watchmaking first: Graph TPT, better known as graphene, that is six times lighter than steel and 200 times as strong. It’s on the cutting edge of materials research and sets the bar for lightweight strength in timepieces.

Should you be hoping for a bargain, I don’t expect they’ve dropped the price in an effort to move product as it reaches its second anniversary since part of the appeal of a luxury product is the cost. In fact, luxury brands destroy product rather than lower the price,

Published on Jul 19, 2018

Burberry is amongst some luxury brands that are burning their stock. Millions of pounds of waste being incinerated to retain exclusivity.

 

Since media have started reporting on this practice, it seems luxury brands are reconsidering their practices.

See Nobel prize winner’s (Kostya Novoselov) collaborative art/science video project on August 17, 2018 (Manchester, UK)

Dr. Konstantin (Kostya) Novoselov, one of the two scientists at the University of Manchester (UK) who were awarded Nobel prizes for their work with graphene, has embarked on an artistic career of sorts. From an August 8, 2018 news item on Nanowwerk,

Nobel prize-winning physicist Sir Kostya Novoselov worked with artist Mary Griffiths to create Prospect Planes – a video artwork resulting from months of scientific and artistic research and experimentation using graphene.

Prospect Planes will be unveiled as part of The Hexagon Experiment series of events at the Great Exhibition of the North 2018, Newcastle, on August 17 [2018].

An August 9, 2018 University of Manchester press release, which originated the news item (differences in the dates are likely due to timezones), describes the art/science project in some detail,

The fascinating video art project aims to shed light on graphene’s unique qualities and potential.

Providing a fascinating insight into scientific research into graphene, Prospect Planes began with a graphite drawing by Griffiths, symbolising the chemical element carbon.

This was replicated in graphene by Sir Kostya Novoselov, creating a microscopic 2D graphene version of Griffiths’ drawing just one atom thick and invisible to the naked eye.

They then used Raman spectroscopy to record a molecular fingerprint of the graphene image, using that fingerprint to map a digital visual representation of graphene’s unique qualities.

The six-part Hexagon Experiment series was inspired by the creativity of the Friday evening sessions that led to the isolation of graphene at The University of Manchester by Novoselov and Sir Andre Geim.

Mary Griffiths, has previously worked on other graphene artworks including From Seathwaite an installation in the National Graphene Institute, which depicts the story of graphite and graphene – its geography, geology and development in the North West of England.

Mary Griffiths, who is also Senior Curator at The Whitworth said: “Having previously worked alongside Kostya on other projects, I was aware of his passion for art. This has been a tremendously exciting and rewarding project, which will help people to better understand the unique qualities of graphene, while bringing Manchester’s passion for collaboration and creativity across the arts, industry and science to life.

“In many ways, the story of the scientific research which led to the creation of Prospect Planes is as exciting as the artwork itself. By taking my pencil drawing and patterning it in 2D with a single layer of graphene atoms, then creating an animated digital work of art from the graphene data, we hope to provoke further conversations about the nature of the first 2D material and the potential benefits and purposes of graphene.”

Sir Kostya Novoselov said: “In this particular collaboration with Mary, we merged two existing concepts to develop a new platform, which can result in multiple art projects. I really hope that we will continue working together to develop this platform even further.”

The Hexagon Experiment is taking place just a few months before the official launch of the £60m Graphene Engineering Innovation Centre, part of a major investment in 2D materials infrastructure across Manchester, cementing its reputation as Graphene City.

Prospect Planes was commissioned by Manchester-based creative music charity Brighter Sound.

The Hexagon Experiment is part of Both Sides Now – a three-year initiative to support, inspire and showcase women in music across the North of England, supported through Arts Council England’s Ambition for Excellence fund.

It took some searching but I’ve found the specific Hexagon event featuring Sir Novoselov’s and Mary Griffin’s work. From ‘The Hexagon Experiment #3: Adventures in Flatland’ webpage,

Lauren Laverne is joined by composer Sara Lowes and visual artist Mary Griffiths to discuss their experiments with music, art and science. Followed by a performance of Sara Lowes’ graphene-inspired composition Graphene Suite, and the unveiling of new graphene art by Mary Griffiths and Professor Kostya Novoselov. Alongside Andre Geim, Novoselov was awarded the Nobel Prize in Physics in 2010 for his groundbreaking experiments with graphene.


About The Hexagon Experiment

Music, art and science collide in an explosive celebration of women’s creativity

A six-part series of ‘Friday night experiments’ featuring live music, conversations and original commissions from pioneering women at the forefront of music, art and science.

Inspired by the creativity that led to the discovery of the Nobel-Prize winning ‘wonder material’ graphene, The Hexagon Experiment brings together the North’s most exciting musicians and scientists for six free events – from music made by robots to a spectacular tribute to an unsung heroine.

Presented by Brighter Sound and the National Graphene Institute at The University of Manchester, as part of the Great Exhibition of the North.

Buy tickets here.

One final comment, the title for the evening appears to have been inspired by a novella, from the Flatland Wikipedia entry (Note: Links have been removed),

Flatland: A Romance of Many Dimensions is a satirical novella by the English schoolmaster Edwin Abbott Abbott, first published in 1884 by Seeley & Co. of London.

Written pseudonymously by “A Square”,[1] the book used the fictional two-dimensional world of Flatland to comment on the hierarchy of Victorian culture, but the novella’s more enduring contribution is its examination of dimensions.[2]

That’s all folks.

ETA August 14, 2018: Not quite all. Hopefully this attempt to add a few details for people not familiar with graphene won’t lead increased confusion. The Hexagon event ‘Advetures in Flatland’ which includes Novoselov’s and Griffiths’ video project features some wordplay based on graphene’s two dimensional nature.

World’s first ever graphene-enhanced sports shoes/sneakers/running shoes/runners/trainers

Regardless of what these shoes are called, they contain, apparently, some graphene. As to why you as a consumer might find that important, here’s more from a June 20, 2018 news item on Nanowerk,

The world’s first-ever sports shoes to utilise graphene – the strongest material on the planet – have been unveiled by The University of Manchester and British brand inov-8.

Collaborating with graphene experts at National Graphene Institute, the brand has been able to develop a graphene-enhanced rubber. They have developed rubber outsoles for running and fitness shoes that in testing have outlasted 1,000 miles and are scientifically proven to be 50% harder wearing.

The National Graphene Institute (located at the UK’s University of Manchester) June 20, 2018 press release, which originated the news item, provides a few details, none of them particularly technical or scientific, no mention of studies, etc.  (Note: Links have been removed),

Graphene is 200 times stronger than steel and at only a single atom thick it is the thinnest possible material, meaning it has many unique properties. inov-8 is the first brand in the world to use the superlative material in sports footwear, with its G-SERIES shoes available to pre-order from June 22nd [2018] ahead of going on sale from July 12th [2018].

The company first announced its intent to revolutionise the sports footwear industry in December last year. Six months of frenzied anticipation later, inov-8 has now removed all secrecy and let the world see these game-changing shoes.

Michael Price, inov-8 product and marketing director, said: “Over the last 18 months we have worked with the National Graphene Institute at The University of Manchester to bring the world’s toughest grip to the sports footwear market.

“Prior to this innovation, off-road runners and fitness athletes had to choose between a sticky rubber that works well in wet or sweaty conditions but wears down quicker and a harder rubber that is more durable but not quite as grippy. Through intensive research, hundreds of prototypes and thousands of hours of testing in both the field and laboratory, athletes now no longer need to compromise.”

Dr Aravind Vijayaraghavan, Reader in Nanomaterials at The University of Manchester, said: “Using graphene we have developed G-SERIES outsole rubbers that are scientifically tested to be 50% stronger, 50% more elastic and 50% harder wearing.

“We are delighted to put graphene on the shelves of 250 retail stores all over the world and make it accessible to everyone. Graphene is a versatile material with limitless potential and in coming years we expect to deliver graphene technologies in composites, coatings and sensors, many of which will further revolutionise sports products.”

The G-SERIES range is made up of three different shoes, each meticulously designed to meet the needs of athletes. THE MUDCLAW G 260 is for running over muddy mountains and obstacle courses, the TERRAULTRA G 260 for running long distances on hard-packed trails and the F-LITE G 290 for crossfitters working out in gyms. Each includes graphene-enhanced rubber outsoles and Kevlar – a material used in bulletproof vests – on the uppers.

Commenting on the patent-pending technology and the collaboration with The University of Manchester, inov-8 CEO Ian Bailey said: “This powerhouse forged in Northern England is going to take the world of sports footwear by storm. We’re combining science and innovation together with entrepreneurial speed and agility to go up against the major sports brands – and we’re going to win.

“We are at the forefront of a graphene sports footwear revolution and we’re not stopping at just rubber outsoles. This is a four-year innovation project which will see us incorporate graphene into 50% of our range and give us the potential to halve the weight of running/fitness shoes without compromising on performance or durability.”

Graphene is produced from graphite, which was first mined in the Lake District fells of Northern England more than 450 years ago. inov-8 too was forged in the same fells, albeit much more recently in 2003. The brand now trades in 68 countries worldwide.

The scientists who first isolated graphene from graphite were awarded the Nobel Prize in 2010. Building on their revolutionary work, a team of over 300 staff at The University of Manchester has pioneered projects into graphene-enhanced prototypes, from sports cars and medical devices to aeroplanes. Now the University can add graphene-enhanced sports footwear to its list of world-firsts.

A picture of the ‘shoes’ has been provided,

Courtesy: National Graphene Institute at University of Manchester

You can find the company inov-8 here. As for more information about their graphene-enhanced show, there’s this,from the company’s ‘graphene webpage‘,

1555Graphite was first mined in the Lake District fells of Northern England

2004Scientists at The University of Manchester isolate graphene from graphite.

2010The Nobel Prize is awarded to the scientists for their ground-breaking experiments with graphene.

2018inov-8 launch the first-ever sports footwear to utilise graphene, delivering the world’s toughest grip.

Ground-breaking technology

One atom thick carbon sheet

200 x stronger than steel

Thin, light, flexible, with limitless potential

inov-8 COLLABORATION WITH THE NATIONAL GRAPHENE INSTITUTE

Previously athletes had to choose between a sticky rubber that works well in wet or sweaty conditions but wears down quicker, and a harder rubber that is more durable but not quite as grippy. Through intensive research, hundreds of prototypes and thousands of hours of testing in both the field and laboratory, athletes now no longer need to compromise. The new rubber we have developed with the National Graphene Institute at The University of Manchester allows us to smash the limits of grip [sic]

The G-SERIES range is made up of three different shoes, each meticulously designed to meet the needs of athletes. Each includes graphene-enhanced rubber outsoles that deliver the world’s toughest grip and Kevlar – a material used in bulletproof vests – on the uppers.

Bulletproof material for running shoes?

As for Canadians eager to try out these shoes, you will likely have to go online or go to the US.  Given how recently (June 19, 2018) this occurred, I’m mentioning the US president’s (Donald Trump) comments that Canadians are notorious for buying shoes in the US and smuggling them across the border back into Canada. (Revelatory information for Canadians everywhere.) His bizarre comments occasioned this explanatory June 19, 2018 article by Jordan Weissmann for Slate.com,

During a characteristically rambling address before the National Federation of Independent Businesses on Tuesday [June 19, 2018], Donald Trump darted off into an odd tangent in which he suggested that Canadians were smuggling shoes across the U.S. border in order to avoid their country’s high tariffs.

There was a story two days ago in a major newspaper talking about people living in Canada coming into the United States and smuggling things back into Canada because the tariffs are so massive. The tariffs to get common items back into Canada are so high that they have to smuggle ‘em in. They buy shoes, then they wear ‘em. They scuff ‘em up. They make ‘em sound old or look old. No, we’re treated horribly. [emphasis mine]

Anyone engaged in this alleged practice would be avoiding payment to the Canadian government. How this constitutes poor treatment of the US government and/or US retailers is a bit a of puzzler.

Getting back to Weissman and his article, he focuses on the source of the US president’s ‘information’.

As for graphene-enhanced ‘shoes’, I hope they are as advertized.

A new wave of physics: electrons flow like liquid in graphene

Unfortunately I couldn’t find a credit for the artist for the graphic (I really like it) which accompanies the news about a new physics and graphene,

Courtesy: University of Manchester

From an Aug. 22, 2017 news item on phys.org (Note: A link has been removed),

A new understanding of the physics of conductive materials has been uncovered by scientists observing the unusual movement of electrons in graphene.

Graphene is many times more conductive than copper thanks, in part, to its two-dimensional structure. In most metals, conductivity is limited by crystal imperfections which cause electrons to frequently scatter like billiard balls when they move through the material.

Now, observations in experiments at the National Graphene Institute have provided essential understanding as to the peculiar behaviour of electron flows in graphene, which need to be considered in the design of future Nano-electronic circuits.

An Aug. 22, 2017 University of Manchester press release, which originated the news item, delves further into the research (Note: Links have been removed),

Appearing today in Nature Physics, researchers at The University of Manchester, in collaboration with theoretical physicists led by Professor Marco Polini and Professor Leonid Levitov, show that Landauer’s fundamental limit can be breached in graphene. Even more fascinating is the mechanism responsible for this.

Last year, a new field in solid-state physics termed ‘electron hydrodynamics’ generated huge scientific interest. Three different experiments, including one performed by The University of Manchester, demonstrated that at certain temperatures, electrons collide with each other so frequently they start to flow collectively like a viscous fluid.

The new research demonstrates that this viscous fluid is even more conductive than ballistic electrons. The result is rather counter-intuitive, since typically scattering events act to lower the conductivity of a material, because they inhibit movement within the crystal. However, when electrons collide with each other, they start working together and ease current flow.

This happens because some electrons remain near the crystal edges, where momentum dissipation is highest, and move rather slowly. At the same time, they protect neighbouring electrons from colliding with those regions. Consequently, some electrons become super-ballistic as they are guided through the channel by their friends.

Sir Andre Geim said: “We know from school that additional disorder always creates extra electrical resistance. In our case, disorder induced by electron scattering actually reduces rather than increase resistance. This is unique and quite counterintuitive: Electrons when make up a liquid start propagating faster than if they were free, like in vacuum”.

The researchers measured the resistance of graphene constrictions, and found it decreases upon increasing temperature, in contrast to the usual metallic behaviour expected for doped graphene.

By studying how the resistance across the constrictions changes with temperature, the scientists revealed a new physical quantity which they called the viscous conductance. The measurements allowed them to determine electron viscosity to such a high precision that the extracted values showed remarkable quantitative agreement with theory.

Here’s a link to and a citation for the paper,

Superballistic flow of viscous electron fluid through graphene constrictions by R. Krishna Kumar, D. A. Bandurin, F. M. D. Pellegrino, Y. Cao, A. Principi, H. Guo, G. H. Auton, M. Ben Shalom, L. A. Ponomarenko, G. Falkovich, K. Watanabe, T. Taniguchi, I. V. Grigorieva, L. S. Levitov, M. Polini, & A. K. Geim. Nature Physics (2017) doi:10.1038/nphys4240 Published online 21 August 2017

This paper is behind a paywall.

Desalination of sea water with a graphene sieve

The proposed use of graphene membranes for water purification and remediation isn’t new (I have a July 20, 2015 posting which covers some of this field of interest). However, there’s this April 3, 2017 news item on ScienceDaily announcing some new work on graphene and desalination at the University of Manchester,

Graphene-oxide membranes have attracted considerable attention as promising candidates for new filtration technologies. Now the much sought-after development of making membranes capable of sieving common salts has been achieved.

New research demonstrates the real-world potential of providing clean drinking water for millions of people who struggle to access adequate clean water sources.

The new findings from a group of scientists at The University of Manchester were published today in the journal Nature Nanotechnology. Previously graphene-oxide membranes have shown exciting potential for gas separation and water filtration.

An April 3, 2017 University of Manchester press release (also on EurekAlert), which originated the news item, expands on the theme,

Graphene-oxide membranes developed at the National Graphene Institute have already demonstrated the potential of filtering out small nanoparticles, organic molecules, and even large salts. Until now, however, they couldn’t be used for sieving common salts used in desalination technologies, which require even smaller sieves.

Previous research at The University of Manchester found that if immersed in water, graphene-oxide membranes become slightly swollen and smaller salts flow through the membrane along with water, but larger ions or molecules are blocked.

The Manchester-based group have now further developed these graphene membranes and found a strategy to avoid the swelling of the membrane when exposed to water. The pore size in the membrane can be precisely controlled which can sieve common salts out of salty water and make it safe to drink.

As the effects of climate change continue to reduce modern city’s water supplies, wealthy modern countries are also investing in desalination technologies. Following the severe floods in California major wealthy cities are also looking increasingly to alternative water solutions.

When the common salts are dissolved in water, they always form a ‘shell’ of water molecules around the salts molecules. This allows the tiny capillaries of the graphene-oxide membranes to block the salt from flowing along with the water. Water molecules are able to pass through the membrane barrier and flow anomalously fast which is ideal for application of these membranes for desalination.

Professor Rahul Nair, at The University of Manchester said: “Realisation of scalable membranes with uniform pore size down to atomic scale is a significant step forward and will open new possibilities for improving the efficiency of desalination technology.

“This is the first clear-cut experiment in this regime. We also demonstrate that there are realistic possibilities to scale up the described approach and mass produce graphene-based membranes with required sieve sizes.”

Mr. Jijo Abraham and Dr. Vasu Siddeswara Kalangi were the joint-lead authors on the research paper: “The developed membranes are not only useful for desalination, but the atomic scale tunability of the pore size also opens new opportunity to fabricate membranes with on-demand filtration capable of filtering out ions according to their sizes.” said Mr. Abraham.

By 2025 the UN expects that 14% of the world’s population will encounter water scarcity. This technology has the potential to revolutionise water filtration across the world, in particular in countries which cannot afford large scale desalination plants.

It is hoped that graphene-oxide membrane systems can be built on smaller scales making this technology accessible to countries which do not have the financial infrastructure to fund large plants without compromising the yield of fresh water produced.

Courtesy of the University of Manchester

I believe the previous image is an artist’s rendering of the graphene-oxide membrane trapping salt as water moves through it.

Here’s a link to and a citation for the paper,

Tunable sieving of ions using graphene oxide membranes by Jijo Abraham, Kalangi S. Vasu, Christopher D. Williams, Kalon Gopinadhan, Yang Su, Christie T. Cherian, James Dix, Eric Prestat, Sarah J. Haigh, Irina V. Grigorieva, Paola Carbone, Andre K. Geim, & Rahul R. Nair. Nature Nanotechnology (2017) doi:10.1038/nnano.2017.21 Published online 03 April 2017

This paper is open access provided you sign up (or have already signed up) for a free registration with nature.com.

Graphene Stakeholders Association (GSA) formed

I’m not sure why a new not-for-profit association is needed to promote graphene since that nanomaterial is receiving ample interest these days. My reservations notwithstanding, a group of business types disagrees with me and have formed the Graphene Stakeholders Association (GSA) according to the Apr. 19, 2013 news item on Azonano,

A new non-profit organization was launched this month to promote the responsible development and commercialization of graphene and graphene-enabled products. The Graphene Stakeholders Association (GSA) is a 501(c)6 enterprise headquartered in Buffalo, NY.

The GSA’s founders include Keith Blakely, a 35 year veteran of the advanced materials and nanotechnology community, Dr. Alan Rae, CEO of the Nano Materials Innovation Center, Vincent Caprio, Executive Director of the NanoBusiness Commercialization Association, and Stephen Waite, Managing Partner of SoundView Technology Group. Mr. Waite and Mr. Blakely will serve as co-Executive Directors of the GSA.

Here are some of the activities the GSA is planning, from the website’s Mission page,

The GSA will work primarily by regular web conferences timed for the convenience of members and will hold at least one plenary conference per year to review progress and develop action plans.

The GSA intends to collaborate closely with the NanoBusiness Commercialization Association and to organize meetings and presentations around certain of their events to enable our members to make the most efficient use of their time with respect to technical and business conference meetings.

It seems to me the proposed GSA plenary conferences are likely to emerge as a conference held within the context of  the larger NanoBusiness Commercialization Association’s conference. I think it’s an emerging trend whereby there’s a conference portal and within that context one or more conferences, which will attract likeminded attendees, are grouped together under one banner and have either overlapping dates or are run on parallel dates in the same locations.

The site does offer some interesting information. For example, there’s this from their Graphene Industry Information page,

China has published more graphene patents than any other country, at 2,204, ahead of 1,754 for the U.S., 1,160 for South Korea, and 54 for the U.K.

South Korea’s Samsung has more graphene patents than any single company.

Nokia is part of the 74-company Graphene Flagship Consortium that is receiving a €1 billion ($1.35 billion) grant that the E.U. announced in January 2013.

Nokia, Philips, U.K. invention stalwart Dyson, weapons and aerospace company BAE Systems, and others have committed £13 million ($20.5 million) to a graphene development center [Cambridge Graphene Centre as per my Jan. 24, 2013 posting] at Cambridge University, to go along with £12 million ($18.9 million) from the British government. [Also, there’s a new National Graphene Institute being built in Manchester, UK {my Jan. 14, 2013 posting}.]

….

Graphene is prohibitively expensive to make today. As recently as 2008, it cost $100 million to produce a single cubic centimeter of graphene.

Researchers are working on methods to reduce the cost of manufacturing and help make graphene a ubiquitous fabrication material.

Graphene film companies face major commercialization hurdles, including reducing costs, scaling-up the substrate transfer process, overcoming current deposition area limitations, and besting other emerging material solutions.

GSA is looking for members from around the world according to the Apr. 19, 2013 news item on Azonano.

The race to commercialize graphene as per the University of Manchester (UK)

The University of Manchester (UK) has a particular interest in graphene as the material was isolated by future Nobel Prize winners, Andre Gheim and Kostya (Konstantin) Novoselov in the university’s laboratories. There’s a Feb. 18, 2013 news item on Nanowerk highlighting the university’s past and future role in the development of graphene on the heels of the recent research bonanza,

The European Commission has announced that it is providing 1bn euros over 10 years for research and development into graphene – the ‘wonder material’ isolated at The University of Manchester by Nobel Prize winners Professors Andre Geim and Kostya Novoselov.

The University is very active in technology transfer and has an excellent track-record of spinning out technology, but some think that the University has taken a different view when it comes to patenting and commercialising graphene. Others have expressed a broader concern about British Industry lagging behind in the graphene ‘race’, based upon international ‘league tables’ of numbers of graphene patents.

A recent interview with Clive Rowland (CEO of the University’s Innovation Group) addresses the assumptions about the University’s approach and reflects more generally about graphene patenting and about industry up-take of graphene. The interview is summarised below.

Question: Has the University set up any commercial graphene activities?

Answer: The University owns a company, called 2-DTech Limited, which makes and supplies two-dimensional materials and has an interest in another, Graphene Industries Limited, which sells graphene made by a different technique to 2-DTech.

Question: Is the University falling behind in graphene?

Answer: The University is the world’s leading university for graphene research and publications. It led the charge for UK investment into the field and has been awarded The National Graphene Institute, which will be a £61m state-of-the art centre. This Institute will act as a focus for all sorts of commercial graphene activity in Manchester, from industrial research and development laboratories locating “alongside” the Institute, developing new processes and products, to start-up companies. The University championed the major flagship research funding programmes that have been initiated in the UK and Europe and has been awarded a number of prestigious grants. Graphene is still a science-driven research field and not yet a commercialised technology.

The rest of the summary can be found either at Nanowerk or in this University of Manchester Feb. 18, 2013 news release.

The University of Manchester Innovation Group (aka UMI3) mentioned in connection with Clive Rowland hosts the complete interview (12 pp), which, read from the beginning, provides an enhanced perspective on the university’s graphene commercialization goals,

Graphene – The University of Manchester and Intellectual Property. Dan Cochlin talks to Clive Rowland – The University’s InnovationGroup CEO —‐ about the launch of a new grapheme company at the University, 2–‐DTech Ltd, And grapheme patents and commercialisation.

What is grapheme and why is there so much interest in it?

Graphene is a revolutionary nano material which was first isolated at The University of Manchester By Professors Andre Geim And Konstantin Novoselov. They received the Nobel Prize in 2010 For their ingenious work on graphene. People are excited about it because it has the potential to transform a vast range of products due to its very superior capabilities compared to existing materials.

So what’s the new company about?

It makes and sells CVD graphene, grapheme platelets, grapheme oxide and other advanced materials with amazing properties, which are being called 2–‐D – two dimensional – due to  their single atomic layer thickness. In other words, they’re so thin it’s as if they only have length and breadth dimensions. It will soon have an e–‐commerce site too, where customers can shop on–‐line. The Company will create and develop intellectual property, especially by engaging in interesting assignments such as collaborating with firms on design projects. It will also provide consulting services ,in the field, either directly or by sub–‐contracting to our relevant academic colleagues here at the University. We’re already an international team – with Antiguan, British and Italian people actively involved in the business and a fast developing business agency network in the Far East and the USA.

What’s CVD?

It’s one of the techniques for making grapheme that 2-DTech uses –‐ chemical vapour deposition –‐ which allows us to grow grapheme on foils and films in quite large area sizes for various potential uses, particularly information technology and communications because of graphene’s high quality and unique electronic transport, flexibility and other astounding attributes.

Well why have you only just set this up when others have been doing so for a while now?

The University’s researchers in physics and materials science have been able to make enough grapheme for their own needs until lately, but not any longer. Besides, there has been an expansion of interest across the University in the potential of the material, including from areas such as health and bio–‐sciences. Hence we want to make sure that the University has a regular supply for those colleagues who cannot continue to make it in sufficient quantities or who aren’t familiar with the material.

In addition many of the companies in contact with the University’s Researchers are in a similarly constrained position. So we feel the need to have a University Facility to handle this which is free of the normal academic duties and interests. At the same time we see an international business opportunity.

There’s a strong market demand for high quality grapheme of a consistent nature and a growing interest in other 2–‐D crystals. A number of researchers, especially our CTO Dr Branson Belle, who had been researching 2–‐D Materials and making grapheme for a long time became interested in the business side. …

Thank you Clive Rowland and the University of Manchester for insight into the graphene commercialization efforts on the part of at least one university.  Meanwhile, the comment about producing enough graphene for research reminds me of the queries I get from entrepreneurs about getting access to nanocrystalline cellulose (NCC) or cellulose nanocrystals (CNC). To my knowledge, no one outside the research community has gotten access to the materials. I wonder if despite the fact there are two manufacturing facilities whether this may be due to an inability to produce enough CNC or NCC.

Another day, another graphene centre in the UK as the Graphene flagship consortium’s countdown begins

The University of Cambridge has announced a Cambridge Graphene Centre due to open by the end of 2013 according to a Jan. 24, 2012 news item on Nanowerk,

The Cambridge Graphene Centre will start its activities on February 1st 2013, with a dedicated facility due to open at the end of the year. Its objective is to take graphene to the next level, bridging the gap between academia and industry. It will also be a shared research facility with state-of-the-art equipment, which any scientist researching graphene will have the opportunity to use.

The University of Cambridge Jan. 24, 2013 news release, which originated the news item, describes the plans for graphene research and commercialization,

The first job for those working in the Cambridge Graphene Centre will be to find ways of manufacturing and optimising graphene films, dispersions and inks so that it can be used to good effect.

Professor Andrea Ferrari, who will be the Centre’s Director, said: “We are now in the second phase of graphene research, following the award of the Nobel Prize to Geim and Novoselov. That means we are targeting applications and manufacturing processes, and broadening research to other two-dimensional materials and hybrid systems. The integration of these new materials could bring a new dimension to future technologies, creating faster, thinner, stronger, more flexible broadband devices.”

One such project, led by Dr Stephan Hofmann, a Reader and specialist in nanotechnology, will look specifically at the manufacturability of graphene and other, layered, 2D materials. At the moment, sheets of graphene that are just one atom thick are difficult to grow in a controllable manner, manipulate, or connect with other materials.

Dr Hofmann’s research team will focus on a growth method called chemical vapour deposition (CVD), which has already opened up other materials, such as diamond, carbon nanotubes and gallium nitride, to industrial scale production.

“The process technology will open up new horizons for nanomaterials, built layer by layer, which means that it could lead to an amazing range of future devices and applications,” Dr Hofmann said.

The Government funding for the Centre is complemented by strong industrial support, worth an additional £13 million, from over 20 partners, including Nokia, Dyson, Plastic Logic, Philips and BaE systems. A further £11M of European Research Council funding will support activities with the Graphene Institute in Manchester, and Lancaster University. [emphasis mine]

Its work will focus on taking graphene from a state of raw potential to a point where it can revolutionise flexible, wearable and transparent electronics. The Centre will target the manufacture of graphene on an industrial scale, and applications in the areas of flexible electronics, energy, connectivity and optoelectronics.

Professor Yang Hao, of Queen Mary, University of London, will lead Centre activities targeting connectivity, so that graphene can be integrated into networked devices, with the ultimate vision of creating an “internet of things”.

Professor Clare Grey, from Cambridge’s Department of Chemistry, will lead the activities targeting the use of graphene in super-capacitors and batteries for energy storage. The research could, ultimately, provide a more effective energy storage for electric vehicles, storage on the grid, as well as boosting the energy storage possibilities of personal devices such as MP3 players and mobile phones.

The announcement of a National Graphene Institute in Manchester was mentioned in my Jan. 14, 2013 posting and both the University of Manchester and the Lancaster University are part of the Graphene Flagship consortium along with the University of Cambridge and Sweden’s Chalmers University, which is the lead institution, and others competing against three other Flagship projects for one of two 1B Euro prizes.

These two announcements (Cambridge Graphene Centre and National Graphene Institute come at an interesting time, the decision as to which two projects will receive 1B Euros for research is being announced Jan. 28, 2013 in Brussels, Belgium. The Jan. 15, 2013 article by Frank Jordans on the R&D website provides a few more details,

Teams of scientists from across the continent [Europe] are vying for a funding bonanza that could see two of them receive up to €1 billion ($1.33 billion) over 10 years to keep Europe at the cutting edge of technology.

The contest began with 26 proposals that were whittled down to six last year. Just four have made it to the final round.

They include a plan to develop digital guardian angels that would keep people safe from harm; a massive data-crunching machine to simulate social, economic and technological change on our planet; an effort to craft the most accurate computer model of the human brain to date; and a team working to find better ways to produce and employ graphene—an ultra-thin material that could revolutionize manufacturing of everything from airplanes to computer chips.

Jordans’ article goes on to further explain the reasoning for this extraordinary contest. All four groups must be highly focused on Monday’s (Jan. 28, 2013) announcement from EU (European Union) officials, after all, two prizes and four competitors means that the odds of winning are 50/50. Good luck!

National Graphene Institute at the UK’s University of Manchester

It will house the UK’s graphene research efforts according to the Jan. 14, 2013 news item Nanowerk,

This is the first glimpse of the new £61m research institute into wonder material graphene, which is to be built at The University of Manchester.

The stunning, glass-fronted National Graphene Institute (NGI) will be the UK’s home of research into the world’s thinnest, strongest and most conductive material, providing the opportunity for researchers and industry to work together on a huge variety of potential applications.

The University of Manchester Jan. 14, 2013 news release, which originated the news item, spells out some of the hopes and dreams along with descriptions of the building plans,

It is hoped the centre will initially create around 100 jobs, with the long-term expectation of many thousands more in the North West and more widely in the UK.

The 7,600 square metre building will house state-of-the-art facilities, including two ‘cleanrooms’ – one which will take up the whole of the lower ground floor – where scientists can carry out experiments and research without contamination.

The Institute will also feature a 1,500 square metre research lab for University of Manchester graphene scientists to collaborate with their colleagues from industry and other UK universities.

Funding for the NGI will come from £38m from the Government, as part of £50m allocated for graphene research, and the University has applied for £23m from the European Research and Development Fund (ERDF). The NGI will operate as a ‘hub and spoke’ model, working with other UK institutions involved in graphene research.

Some of the world’s leading companies are also expected to sign up to work at the NGI, where they will be offered the chance to work on cutting edge projects, across various sectors, with Nobel Laureates and other leading members of the graphene team.

Graphene, isolated for the first time at The University of Manchester by Professor Andre Geim and Professor Kostya Novoselov in 2004, has the potential to revolutionise a huge number of diverse applications; from smartphones and ultrafast broadband to drug delivery and computer chips.


Professor Colin Bailey, Vice-President and Dean of the Faculty of Engineering and Physical Sciences, added: “The National Graphene Institute will be the world’s leading centre of graphene research, combining the expertise of University of Manchester academics with their counterparts at other UK universities and with leading global commercial organisations.

“The potential for its impact on the city and the North West is huge, and will be one of the most exciting centres of cutting edge research in the UK.”

Work is set to start on the five-story NGI, which will have its entrance on Booth Street East, in March, and is expected to be completed in early 2015.

UK National Graphene Institute (NGI) Illustration courtesy of the University of Manchester, UK

UK National Graphene Institute (NGI) Illustration courtesy of the University of Manchester, UK

The University of Manchester is one of the institutions that forms the Graphene Flagship consortium which is currently competing for one of two European Union prizes of 1 Billion Euros for research to be awarded later this year.