Tag Archives: Bev Betkowski

Canada’s barley crop needs a little help to adapt to climate change

“Building better barley” is the title for a Dec. 12, 2012 news release from the University of Alberta (by Bev Betkowski) on EurekAlert. They might have wanted to add the phrase “in the face of climate change” but that ruins the alliteration. From the news release,

As one of the top 10 barley producers in the world, Canada faces a problem of adapting to the ‘new normal’ of a warmer, drier climate.

The 2012 growing season was considered an average year on the Canadian Prairies, “but we still had a summer water deficit, and it is that type of condition we are trying to work with,” said Scott Chang, a professor of soil science in the University of Alberta’s Department of Renewable Resources in Edmonton, Canada.

The Dec. 5, 2012 article (which originated the news release) by Betkowski for the Faculty of Agricultural, Life and Environmental Sciences at the University of Alberta provides more detail about the why and the how,

Chang began teaming up with fellow crop scientist Anthony Anyia of Alberta Innovates – Technology Futures in 2006, following a severe drought in 2002 that dropped average crop yield in Alberta by about half. They are exploring the genetic makeup of barley and how the grain crop—a Canadian staple used for beer malt and animal feed—can be made more efficient in its water use and more productive. One of their latest studies, published in the journal Theoretical and Applied Genetics, explores how to increase yield in barley crops while using less water.

…The latest study was led by lead author Jing Chen, a former PhD student in Chang and Anyia’s lab. The group planted and harvested two common types of barley plants in test plots around Alberta, then analyzed the plants for genetic traits and other factors such as height, days to maturity and yield.

By studying the carbon isotope compositions of barley plants and their relationship with water-use efficiency, the researchers developed tools that plant breeders can use to improve selection efficiency for more water-efficient varieties. The latest findings stem from an ongoing collaboration that is ultimately aimed at bringing farmers a more stable breed of the plant that has less reliance on water and is less vulnerable to climate change.

Coincidentally (or not), the Canadian federal government in the person of Agriculture Minister Gerry Ritz, within a week of the story and news release by Betkowski, congratulates itself for previous funding and new programs in two separate news releases.

The Harper Government Supports Canadian Barley Industry news release of Dec. 7, 2012 had this comment for the Alberta Barley Commission’s annual general meeting in Banff,

“As the one-year anniversary of the adoption of the Marketing Freedom for Grain Farmers Act approaches, western Canadian grain farmers are already enjoying the economic potential of an open market,” said Minister Ritz. “I would like to thank the Alberta Barley Commission for its long-standing leadership in support of marketing freedom, innovation and a strong future for barley producers.”

Canadian barley, known around the world for its high quality and superior characteristics, generated over $270 million in exports last year—a figure expected to continue to grow with the new marketing freedom options. The Marketing Freedom for Grain Farmers Act, which received Royal Assent on December 15, 2011, allows anyone to buy and sell wheat and barley. By unleashing the sector’s economic potential and entrepreneurial energy, the open grain market continues to usher in a new era of innovation and growth for Western Canada’s grain industry, helping attract investment, encourage innovation, create value-added jobs and build a stronger economy.

Additionally, the Harper government recently announced an AgriMarketing investment of more than $525,000 to enable the Canadian Malting Barley Technical Centre, the Malting Industry Association of Canada, and the Brewing and Malting Barley Research Institute to increase their competitiveness in new and existing markets through innovative marketing and communications and through the development of a Canadian Malt Barley Brand. [emphasis mine] Product testing and evaluations will also be done on new malting barley varieties, the current year’s harvest and cargo shipments to highlight the attributes of the current Canadian crop for international customers.

The Harper government’s long-term strategy to strengthen and modernize the barley industry includes renewing the mandate of the Crop Logistics Working Group, to improve the performance of the supply chain for barley and all crops, and to ensure that the agricultural sector can reap the rewards of a dynamic and growing global marketplace.

On the same day in Calgary, the Harper Government Announces Federal Growing Forward 2 Programs news release of Dec. 7, 2012 proclaims new programs and, presumably, there will be additional funding at some point,

Agriculture Minister Gerry Ritz today unveiled three new federal programs under Canada’s new agricultural policy framework Growing Forward 2 that will streamline investments in the agriculture and agri-food sector. The new programs will focus on strategic initiatives in innovation, competitiveness and market development to further strengthen the sector’s capacity to grow and prosper.

“These new Growing Forward 2 programs will build on the success of existing programs to provide more streamlined support to the sector to help it remain a world leader in agricultural innovation and trade,” said Minister Ritz. “We are making sure farmers and the entire sector have the tools and resources they need to stay ahead of the ever-changing demands of consumers.”

Three new federal programs will come into effect on April 1, 2013:

  • The AgriInnovation Program will focus on investments to expand the sector’s capacity to develop and commercialize new products and technologies.
  • The AgriMarketing Program will help industry improve its capacity to adopt assurance systems, such as food safety and traceability, to meet consumer and market demands. It will also support industry in maintaining and seizing new markets for their products through branding and promotional activities.
  • The AgriCompetitiveness Program will target investments to help strengthen the agriculture and agri-food industry’s capacity to adapt and be profitable in domestic and global markets.

Agriculture and Agri-Food Canada is proactively providing information to farmers and the industry so that they are familiar with the kind of support that will be available and so they may plan their applications well in advance. The AgriInnovation Program will begin accepting applications immediately, while AgriMarketing and AgriCompetitiveness will begin accepting applications early in the new year.

Growing Forward 2 represents a $3 billion investment over five years in strategic initiatives for innovation, competitiveness and market development, in addition to a full and comprehensive suite of business risk management programs that will continue to help farmers withstand severe market volatility and disasters. Investments in the three priority areas are critical to facilitating the sector’s expansion and leveraging of provincial-territorial and industry investments to increase productivity, growth and jobs.

Canadian Prime Minister Stephen Harper, for those who do not know, is from the province of Alberta.

This is an interesting example, whether the announcements are coincidental or not, of the relationship between research taking place in the universities, government and its programmes, and the international marketplace. For those interested in Chang’s research, here’s the citation for the paper from his webpage,

Chen, J., Chang, S.X. and Anya, A.O. 2012. Quantitative trait loci for water-use efficiency in barley (Hordeum vulgare L.) measured by carbon isotope discrimination under rain-fed conditions on the Canadian Prairies, Theoretical and Applied Genetics 125: 71–90.

Springer, publisher for the journal Theoretical and Applied Genetics, is offering a free preview during the month of December 2012 so you can view the article or any other one in the journal ’til Dec. 31, 2012.

University of Alberta scientists sniff dirty clothes

Bev Betkowski’s June 22, 2012 news item on physorg.com notes,

Using state-of-the-art techniques for molecular separations in a U of A [University of Alberta] chemistry lab to analyze a pile of sweaty T-shirts worn and washed by 18 study participants, lead researchers Rachel McQueen and James Harynuk joined forces to tackle the problem of stinky workout gear.

The news item which originated in a June 22, 2012 news release from the University of Alberta describes the experiment,

McQueen, an assistant professor in the Department of Human Ecology, teamed with Harynuk, an assistant professor in the Department of Chemistry, to put specially designed T-shirts—two for each participant—to the test in a field trial lasting 10 weeks.

The stack of 36 shirts was specially sewn with two test fabrics—untreated cotton matched either with untreated polyester or with cotton treated with a silver-chloride antimicrobial, designed to fight odour-causing bacteria in sweat. Participants wore the bisymmetrical shirts when exercising, then washed them after each workout.

For the research, the underarms were cut from each T-shirt. The washed and unwashed versions were analyzed for bacterial counts. Using high-tech methods—gas chromatography and mass spectrometry— in Harynuk’s lab, the odorous molecules were also examined.

The compounds in the sweat were separated and analyzed, with individual molecules being identified. The analysis revealed between 1,000 and 2,000 compounds in the odour profiles of each shirt.

“We may find ways to target compounds in the process of designing textiles that don’t retain certain odour-causing molecules.”  [said Harynuk]

Here’s what they discovered,

Their research showed that, for less reek in workout gear, cotton is better than polyester. The experiment also revealed that the T-shirts treated with the antimicrobial finish were not effective in cutting body odour.

“Fabric options vary for workout clothing, but for anyone concerned about body odour, cotton would be a preferable choice,” said McQueen.

That finding about silver nanoparticles definitely contradicts what I understood to be true.  Their conclusion is also a little unexpected,

“Ultimately, the ideal is to find a formula for an odour-resistant textile that can be washed less frequently between workouts, resulting in a more sustainable garment,” she added.

The challenge is in changing the perception of soiled clothing, she noted. [emphasis mine]

“An item may not look dirty, but it smells dirty when people do the ‘sniff test.’ If clothing didn’t look or smell soiled, people might be willing to wear something more than once or twice before throwing it in the laundry—which would really be better for the environment.”

So, changing how clothes smell after a few wearings could help save the environment. If that works, why not do it?