Tag Archives: David Pogue

Thoughts on part 4 of (PBS) Nova’s Making Stuff series

Last night (Feb.9.11) PBS aired the final part of the Making Stuff  series as part of its Nova tv programming. It was titled Making Stuff Smarter and did not feature a single bot of any kind or any nanoscale computers or labs on chips thereby frustrating (not in a bad way) some of my expectations but I should have become accustomed to that by now.

There was a focus on something called biomimicry, a term I did not hear used while I was watching (confession: I didn’t watch every single minute of the show), where researchers try to make materials that mimic a process or ability observed in nature. They used sharkskin as an example for making a ‘smarter’ material. Scientists have observed that nanoscale structures on a shark’s skin have antibacterial properties. This is especially important when we have a growing problem with bacteria that are antibiotic resistant. David Pogue’s (the program host) interviewed scientists at Sharklet and highlighted their work producing a plastic with nanostructures similar to those found on sharkskin for use in hospitals, restaurants, etc.  I found this on the Sharklet website (from a rotating graphic on the home page),

The World Health Organization calls antibiotic resistance a leading threat to human health.

Sharkjet provides a non-toxic approach to bacterial control and doesn’t create resistance.

The reason that the material does not create resistance is that it doesn’t kill the bacteria (antibiotics kill most bacteria but cannot kill all of them with the consequence that only the resistant survive and reproduce). Excerpted from Sharklet’s technology page,

While the Sharklet pattern holds great promise to improve the way humans co-exist with microorganisms, the pattern was developed far outside of a laboratory. In fact, Sharklet was discovered via a seemingly unrelated problem: how to keep algae from coating the hulls of submarines and ships. In 2002, Dr. Anthony Brennan, a materials science and engineering professor at the University of Florida, was visiting the U.S. naval base at Pearl Harbor in Oahu as part of Navy-sponsored research. The U.S. Office of Naval Research solicited Dr. Brennan to find new antifouling strategies to reduce use of toxic antifouling paints and trim costs associated with dry dock and drag.

Dr. Brennan was convinced that using an engineered topography could be a key to new antifouling technologies. Clarity struck as he and several colleagues watched an algae-coated nuclear submarine return to port. Dr. Brennan remarked that the submarine looked like a whale lumbering into the harbor. In turn, he asked which slow moving marine animals don’t foul. The only one? The shark.

Dr. Brennan was inspired to take an actual impression of shark skin, or more specifically, its dermal denticles. Examining the impression with scanning electron microscopy, Dr. Brennan confirmed his theory. Shark skin denticles are arranged in a distinct diamond pattern with tiny riblets. Dr. Brennan measured the ribs’ width-to-height ratios which corresponded to his mathematical model for roughness – one that would discourage microorganisms from settling. The first test of Sharklet yielded impressive results. Sharklet reduced green algae settlement by 85 percent compared to smooth surfaces.

There’s more to the story so I encourage you to take a look at the page. What I find compelling about biomimicry is that we are learning from nature and mimicking it rather than try to control or destroy what we view as dangerous to us or, in some cases, not valuable. Interestingly, this program featured the military quite prominently in other segments while, as far as I’m aware, failing to mention biomimcry  which suggests (I’m putting on my semiotic hat) that our ideas about controlling nature and using warlike metaphors to describe scientific and medical efforts are still dominant socially and being reproduced.

I enjoyed (with qualifications regarding some of the subtext) the program series (all three of the shows I managed to watch) but, as I’ve noted previously, I’m not the target market so some of it was a bit too fluffy for me.

I found this fourth installment the most interesting and I was delighted to see that they featured climbing robots (based on geckos and mentioned in my Aug. 2, 2010 posting) and invisibility (mentioned most recently in my Jan. 26, 2011 posting although that features a different approach than the one mentioned in the program) along with a few items that were new to me.

Coincidentally the National Film Board of Canada is featuring a film short titled, Magic Molecule in its Feb. 9, 2011 newsletter. Produced in 1964, it introduces us to the fabulous world of plastics. In some ways, it’s very similar to the Making Stuff series. The tone is upbeat and very much pro plastics and its wonders.

Making Stuff (nanotechnology) on PBS’s Nova tonight

Tonight, PBS’s Nova tv series will broadcast part one of its four-part series on nanotechnology. I first mentioned the programme in my Jan. 7, 2011 posting where I noted that Andrew Maynard (2020 Science blog) had seen a preview and had some reservations about one item in the four-part series. (The host, David Pogue, in a bit intended to be amusing, drinks some milk from a goat that has been injected with spider genes.) I will be watching eagerly tonight (and subsequent nights) to see if the producers have made any changes after receiving some feedback about the ‘humourous’ bit. You can read more about the PBS nanotechnology series here on their Making Stuff page.

Since this seem to be my week for television, I did watch Chuck on Monday night (as per my Jan. 17, 2011 posting) and the nanotechnology part of the story was unexceptional largely because it had very little to do with the story. The nanochip everyone was chasing was a ‘McGuffin’ (from the Wikipedia essay),

A MacGuffin (sometimes McGuffin or maguffin) is “a plot element that catches the viewers’ attention or drives the plot of a work of fiction”. The defining aspect of a MacGuffin is that the major players in the story are (at least initially) willing to do and sacrifice almost anything to obtain it, regardless of what the MacGuffin actually is. In fact, the specific nature of the MacGuffin may be ambiguous, undefined, generic, left open to interpretation or otherwise completely unimportant to the plot.

Bumper crop of nano news from NISE Net

The January issue of the NISE Net (Nanoscale Informal Science Education Network) newsletter features information about a new resource for scientists who need to talk or communicate about their work, Mastering Science and Public Presentations is a video. This talk was given by Tim Masters of Spoken Science at Duke University in the summer of 2010.

Larry Bell on his NISE Net blog discusses some of the meetings (National Science Foundation and National Nanotechnology Initiative) he attended in Washington, DC. I found the one about a Periodic Table of Nanoparticles particularly interesting as it includes an image which features the particles in 3 dimensions representing shape, size, and composition.

There’s a very good nanotechnology article by Corinna Wu in the American Association for Engineering Education (ASEE) magazine, PRISM, Peril in Small Places; What dangers lurk in our expanding use of nanotechnology? It does have an ominous title but the writer does a good job of covering the positive and exciting aspects as well as the risks. From the article,

The wonder of nanotechnology is the abundance of materials, devices, and systems made possible by controlling and manipulating matter at the atomic and molecular levels. But with that wonder comes concern that these now ubiquitous nanoparticles could spread new hazardous pollutants that threaten health and the environment. “We’re trying to say, ‘These are new materials. We don’t know if there’s a problem, so let’s ask now,’” says Sally Tinkle, senior science adviser at the National Institute for Environmental Health Sciences, part of the National Institutes of Health. With prodding from the National Research Council and other institutions, inquiry into the health and environmental effects of nanotechnology has gone hand in hand with research on potential applications. The work is interdisciplinary, and engineers play a critical role. By helping to figure out what makes a nanoparticle toxic, they can, for instance, design nanoparticles that kill cancer cells yet don’t harm healthy tissues, or that remove pollutants from soil without poisoning wildlife.

It’s focused on the US scene and, one quibble, I’m not sure about some of the numbers. (For example, Wu gives a value for the number of nanotechnology products on the market but offers no details as to how this number was derived or where it came from.)

There’s a four-part series, Making Stuff, that’s going to be broadcast as part of the NOVA program on PBS. It starts Jan. 19, 2010. From the website,

Invisibility cloaks. Spider silk that is stronger than steel. Plastics made of sugar that dissolve in landfills. Self-healing military vehicles. Smart pills and micro-robots that zap diseases. Clothes that monitor your mood. What will the future bring, and what will it be made of? In NOVA’s four-hour series, “Making Stuff,” popular New York Times technology reporter David Pogue takes viewers on a fun-filled tour of the material world we live in, and the one that may lie ahead. Get a behind-the-scenes look at scientific innovations ushering in a new generation of materials that are stronger, smaller, cleaner, and smarter than anything we’ve ever seen.

Beginning January 19, 2011, NOVA will premiere the new four-hour series on consecutive Wednesday nights at 9 pm ET/PT on PBS (check local listings): “Making Stuff: Stronger, Smaller, Cleaner, Smarter.”

I wonder if they’ve made any changes to the series. After previewing it a few months ago, Andrew Maynard at 2020 Science featured the program in his Nov. 2, 2010 posting and it provoked a bit of a discussion about how to present science. From the posting,

Last week while at the NISE Net network-wide meeting, I was fortunate enough to see a preview of part of NOVA’s forthcoming series Making Stuff. The series focuses on the wonders of modern materials science. But rather than coming away enthralled by the ingenuity of scientists, I found myself breaking out in a cold sweat as I watched something that set my science-engagement alarm-bells ringing: New York Times tech reporter and host David Pogue enthusing about splicing spider genes into a goat so it produces silk protein-containing milk, then glibly drinking the milk while joking about transforming into Spider Man.

I was sitting there thinking, “You start with a spider – not everyone’s favorite creature. And you genetically cross it with a goat – dangerous territory at the best of times. Then you show a middle aged dude drinking the modified milk from a transgenic animal and having a laugh about it. And all this without any hint of a question over the wisdom or ramifications of what’s going on? Man, this is going to go down well!”

Andrew goes on to ask if his reaction was justified. Comments ensued including one from the producer of the series, Chris Schmidt.

Now, the nano haiku. Again this month there are two:

Asian hornets are
powered by nano solar
at the sun’s zenith.

by Frank Kusiak of the Lawrence Hall of Science. This Haiku relates to the BBC article Oriental hornets powered by ‘solar energy’.

After reading about the use of cinnamon in the production of gold nanoparticles, Vrylena Olney got hungry – and creative:

Cinnamon: good for
pumpkin pie, Moroccan stew,
nanoparticles.