Tag Archives: Environmental Working Group (EWG)

New digital technologies could unlock greater potential for microbes and fungi and some thoughts on civil society groups

Not sure how this escaped my notice for so long: an August 7, 2024 news item on phys.org presents an intriguing proposition,

Microbes and fungi have long been nature’s helpers in producing fine food, drinks and medicine, but new digital technologies could unlock far greater potential for the European biotech sector.

An August 6, 2024 article by Anthony King for Horizon; The EU Research & *Innovation magazine, which originated the news item, explores the matter further, Note: A link has been removed,

Beer may not be the answer to all of life’s problems, but the science behind it could help decarbonise industrial processes and clean up the environment.

Biotechnology, which uses living organisms to create different products or processes, remains important in today’s production of food and drink. But it is also increasingly used for a wide range of industrial products, including medicines, where it combines ancient principles with cutting-edge technology.

Ancient wisdom, modern processes

‘We’ve used biotechnology for thousands of years to make cheese, to make beer, to make wine,’ said Michael O’Donohue, an expert in microbial enzymes and industrial biotechnology at France’s National Research Institute for Agriculture, Food and Environment (INRAE).

Little workhorses

Biotech has already transformed our lives, far beyond improving the taste of beer. Modern advances started with the use of fungi in the early 20th century to make life-saving antibiotics. Today, biotech remains crucial for making medicines.

As O’Donohue explained, ‘the workhorses of biotechnology at an industrial level are mainly yeast and filamentous fungi.’ 

But because yeasts can be unpredictable in what compound, and how much, they produce, Bioindustry 4.0 [EU-funded project], which runs until December 2026, will use digital technology to improve the consistency of biotech outcomes.

An upside of biotechnology is that it can offer a cleaner alternative to traditional chemical manufacture.

Playing catch-up

Biotech is a major global industry worth €720 billion in 2021, but Europe currently lags behind the US. The European Commission describes biotechnology as “one of the most promising technological areas of this century” and has taken steps to boost it in Europe.

‘The US is the big player. They take 60% of the cake,’ said O’Donohue. ‘We’ve identified several weaknesses in Europe for biotech. We’ve got a fragmented landscape, which makes it quite tricky, if you are developing biotechnology, to know what is available and where.’

Nevertheless, O’Donohue said, the potential is there. ‘Europe was the birthplace of modern biotechnology. We have a lot of infrastructure. We have a lot of expertise.’

Building the market

The concept has already been put to work, assisting young European companies such as Calidris Bio, a Belgian start-up that aims to manufacture high-quality protein using fewer resources. 

‘We want to bring it to the market as an ingredient to replace fishmeal and soy that at the moment is not grown sustainably,’ said Lieve Hoflack, a co-founder of Calidris Bio. 

But producing the protein is just half the battle. A new product must be tested for safety, taste and nutritional value. 

‘With IBISBA, we found a place with the right equipment, the right expertise and also the right mindset to bring our process to the next step,’ said Hoflack.

The European Commission has said it aims to boost biotechnology to combat climate change and resource scarcity. It is working towards an EU Biotech Act and aims to promote regulatory sandboxes to test novel approaches in a controlled environment for a limited amount of time, under regulatory supervision.

IBISBA describes itself as “a pan-European distributed research infrastructure dedicated to industrial biotechnology” on its About webpage.

Civil society groups and their protests

As interesting as King’s August 6, 2024 article is, it doesn’t mention the campaigns against biotechnology, which had a dampening effect on research in many countries. Here’s more about the history of these efforts in an October 9, 2023 article on the Genetic Literacy Project website, Note: Links have been removed,

ETC Group: ‘Extreme’ biotechnology critic campaigns against synthetic biology and other forms of ‘extreme genetic engineering’

screen shot at pm

The ETC group, an international NGO based in Canada, claims it monitors the “impact of emerging technologies” that impact biodiversity, agriculture and human rights. It promotes imposing an extreme version of the ‘precautionary principle’ to all technologies, claiming that many modern innovations, including genetic engineering of crops and medicines, are too risky to implement, and even basic research should be suspended indefinitely.

ETC Group works with other radical environmental groups such as Friends of he Earth, campaigning against nearly every application of genetic engineering, including biotechnology-based disease research, synthetic biology, and most aggressively gene drives, which it refers to as “extreme genetic engineering” an claims it will result in the “end of Nature.” ETC Group calls has criticized increased corporate involvement in food and agriculture, what it calls threats to biodiversity and farmers’ rights, and what it sees as insufficient government regulation.

“The speed with which those developments are scaling up is often presented in terms of carefully crafted speculative conservation and health benefits while the overwhelming military interest driving these developments, while not hidden, has been very much downplayed,” ETC Group co-executive director Jim Thomas has said, citing the military’s interest in synthetic biology.

ETC Group staff members are often quoted by major media outlets criticizing various applications of genetic engineering. The organization has used Freedom of Information Acts (FOIA) to obtain emails and background information on university and government research, which they provide to journalists.

Obviously, the article was not written as a love letter. While I find the tone a bit harsh, I have seen how at least one civil society group has distorted research results to prove its point. More about that later.

ETC history

From the October 9, 2023 article for the Genetic Literacy Project, Note: A link has been removed,

Originally formed in the late 1970s as Rural Advancement Foundation International (RAFI), the group changed its name to the ETC Group in 2001. Its official name is the Action Group on Erosion, Technology and Concentration.

ETC Group is a registered CSO in Canada and The Netherlands. Friends of ETC Group is a private non-profit organization under section 501(c)3 in the United States.

The group claims to be the “first civil society organization (nationally or internationally) to draw attention to the socioeconomic and scientific issues related to the conservation and use of plant genetic resources, intellectual property and biotechnology.”

According to the group’s website, “In the late 1970s, we were the first CSO to recognize the trend toward life patenting and the first to organize against national plant patenting laws (plant breeders’ rights).” In the 1990s, the ETC Group says its work “expanded to encompass social and environmental concerns related to biotechnology, biopiracy, human genomics and, in the late 1990s, to nanotechnology.” [emphases mine]

Distortions

By the time I started this blog in May/June 2008, the biotechnology protests were winding down. One of the new focal points for civil society groups was nanotechnology and that’s where I observed the distortions.

A Friends of the Earth (FOE) report

My first observation dates as far back as this August 20, 2009 posting, Note: Links have been removed,

In a bit of interesting timing given that it’s on the heels of the publication of a study about two tragic deaths which are being attributed to exposure to nanoparticles, the Friends of the Earth (FOE) organization has released a report titled Nano-Sunscreens: Not Worth the Risk.The media release can be found on Azonano or Nanowerk News.

I have read the report (very quickly) and noted that they do not cite or mention the recently released report on the same topic by the Environmental Working Group (EWG) which stated that after an extensive review of the literature, there was no evidence that the titanium dioxide or zinc oxide nanoparticles used in sunscreens were dangerous. (posting here).

Shortly after the EWG report’s release, a new study (which I mentioned here … if you are inclined, do read the comments as some additional points about reading research critically are brought out)  suggested concerns based on the work of researchers in Japan.  The new study from Japan is cited in the Friends of the Earth report.

While the overall tone of the FOE report is fairly mild (they suggest precaution) they cite only a few studies supporting their concern [emphasis mine] and they damage their credibility (in my book) by ignoring a report from a well respected group that reluctantly admitted that there is no real cause for concern about nanoparticles in sunscreens based on the current evidence.

Zinc dioxide nanoparticles in sunscreens

About a year later in a July 20, 2010 posting I featured some issues with how Friends of the Earth (Georgia Miller, Australian representative, and Ian Illuminato, North American representative) guest blogging on another blog known as “2020 Science” distorted research findings from a study on zinc oxide nanoparticles in sunscreens. Dr. Andrew Maynard, the blog owner, made some critical observations about their posting. In addition, the researcher for the study, along with two other scientists, noted distortions in the Miller and Illumanito critique.

Two Chinese workers, nanoparticles and death

This excerpt from a July 26, 2011 posting is my critique of an article by Alex Roslin in a local newspaper, which relied almost exclusively on a report from the Friends of the Earth,

It’s good to see articles about nanotechnology. The recent, Tiny nanoparticles could be a big problem, article written by Alex Roslin for the Georgia Straight (July 21, 2011 online or July 21-28, 2011 paper edition) is the first I’ve seen on that topic in that particular newspaper. Unfortunately, there are  some curious bits of information included in the article, which render it, in my opinion, difficult to trust.

I do agree with Roslin that nanoparticles/nanomaterials could constitute a danger and there are a number of studies which indicate that, at the least, extreme caution in a number of cases should be taken if we choose to proceed with developing nanotechnology-enabled products.

One of my difficulties with the article is the information that has been left out. (Perhaps Roslin didn’t have time to properly research?) At the time (2009) I did read with much concern the reports Roslin mentions about the Chinese workers who were injured and/or died after working with nanomaterials. As Roslin points out,

“Nanotech already appears to be affecting people’s health. In 2009, two Chinese factory workers died and another five were seriously injured in a plant that made paint containing nanoparticles.

The seven young female workers developed lung disease and rashes on their face and arms. Nanoparticles were found deep in the workers’ lungs.

“These cases arouse concern that long-term exposure to some nanoparticles without protective measures may be related to serious damage to human lungs,” wrote Chinese medical researchers in a 2009 study on the incident in the European Respiratory Journal.”

Left undescribed by Roslin are the working conditions; the affected people were working in an unventilated room. From the European Respiratory Journal article (ERJ
September 1, 2009 vol. 34 no. 3 559-567, free access), Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma,

“A survey of the patients’ workplace was conducted. It measures ∼70 m2, has one door, no windows and one machine which is used to air spray materials, heat and dry boards. This machine has three atomising spray nozzles and one gas exhauster (a ventilation unit), which broke 5 months before the occurrence of the disease. The paste material used is an ivory white soft coating mixture of polyacrylic ester.

Eight workers (seven female and one male) were divided into two equal groups each working 8–12 h shifts. Using a spoon, the workers took the above coating material (room temperature) to the open-bottom pan of the machine, which automatically air-sprayed the coating material at the pressure of 100–120 Kpa onto polystyrene (PS) boards (organic glass), which can then be used in the printing and decorating industry. The PS board was heated and dried at 75–100°C, and the smoke produced in the process was cleared by the gas exhauster. In total, 6 kg of coating material was typically used each day. The PS board sizes varied from 0.5–1 m2 and ∼5,000 m2 were handled each workday. The workers had several tasks in the process including loading the soft coating material in the machine, as well as clipping, heating and handling the PS board. Each worker participated in all parts of this process.

Accumulated dust particles were found at the intake of the gas exhauster. During the 5 months preceding illness the door of the workspace was kept closed due to cold outdoor temperatures. The workers were all peasants near the factory, and had no knowledge of industrial hygiene and possible toxicity from the materials they worked with. The only personal protective equipment used on an occasional basis was cotton gauze masks. According to the patients, there were often some flocculi produced during air spraying, which caused itching on their faces and arms. It is estimated that the airflow or turnover rates of indoor air would be very slow, or quiescent due to the lack of windows and the closed door.” [emphases mine]

Here’s the full text from the researchers’ conclusion,

“In conclusion, these cases arouse concern that long-term exposure to some nanoparticles without protective measures may be related to serious damage to human lungs. It is impossible to remove nanoparticles that have penetrated the cell and lodged in the cytoplasm and caryoplasm of pulmonary epithelial cells, or that have aggregated around the red blood cell membrane. Effective protective methods appear to be extremely important in terms of protecting exposed workers from illness caused by nanoparticles.”

There is no question that serious issues about occupational health and safety with regards to nanomaterials were raised. But, we work with dangerous and hazardous materials all the time; precautions are necessary whether you’re working with hydrochloric acid or engineered nanoparticles. (There are naturally occurring nanoparticles too.)

In general, I found the tenor of the article more alarmist than informational and I’m sorry about that as I would like to see more information being shared and, ultimately, public discussion in Canada about nanotechnology and other emerging technologies.

Unintended consequences

After years of concerted effort the Friends of the Earth saw this result in Australia,

Friends of the Earth (FoE) Australia has waged a campaign against the use of nanosunscreens. It seems to have been somewhat successful but in a way that I imagine is upsetting. From the Feb. 9, 2012 news item on physorg.com,

The Cancer Council of Australia reports that we have one of the highest rates of skin cancer in the world, with over 440,000 people receiving medical treatment for skin cancers each year, and over 1,700 people dying of all types of skin cancer annually.

The survey of public attitudes towards sunscreens with nanoparticles, commissioned by the Australian Department of Industry, Innovation, Science, Research and Tertiary Education and conducted last month, showed that about 17% of people in Australia were so worried about the issue, they would rather risk skin cancer by going without sunscreen than use a product containing nanoparticles. [emphasis mine] [please see correction at the end of this posting]

*’17%’ corrected to ‘13%’ on Sept. 22, 2016.

Unexpected outcomes

Here’s what happened, eventually, to the EWG and its work on sunscreens, from a June 23, 2020 posting “Sunscreens 2020 and the Environmental Working Group (EWG),”

There must be some sweet satisfaction or perhaps it’s better described as relief for the Environmental Working Group (EWG) now that sunscreens with metallic (zinc oxide and/or titanium dioxide) nanoparticles are gaining wide acceptance. (More about the history and politics EWG and metallic nanoparticles at the end of this posting.)

This acceptance has happened alongside growing concerns about oxybenzone, a sunscreen ingredient that EWG has long warned against. Oxybenzone has been banned from use in Hawaii due to environmental concerns (see my July 6, 2018 posting; scroll down about 40% of the way for specifics about Hawaii). Also, it is one of the common sunscreen ingredients for which the US Food and Drug Administration (FDA) is completing a safety review.

Today, zinc oxide and titanium dioxide metallic nanoparticles are being called minerals, as in, “mineral-based” sunscreens. They are categorized as physical sunscreens as opposed to chemical sunscreens.

A few thoughts on civil societies, business, and technological progress

The description of how sunscreens and other products with engineered nanoparticles were presented in misleading reports and articles is unfortunately not unusual where many civil society groups are concerned. (i found that very disillusioning.)

As for business and industry group, they use the same tactics.

Whether the topic is cigarette smoking, genetically modified organisms, engineered nanoparticles in sunscreens, etc. I keep reminding myself it’s best to consult more than one source and to remember that things change. All we’ve got to work with is the information at hand.

In the end, civil society groups provide an important function as do business and industrial groups. Trusting everything they say, is not a good idea. Something to remember when looking up organizations such as the Genetic Literacy Project and reading people like me.

Sunscreens 2020 and the Environmental Working Group (EWG)

There must be some sweet satisfaction or perhaps it’s better described as relief for the Environmental Working Group (EWG) now that sunscreens with metallic (zinc oxide and/or titanium dioxide) nanoparticles are gaining wide acceptance. (More about the history and politics EWG and metallic nanoparticles at the end of this posting.)

This acceptance has happened alongside growing concerns about oxybenzone, a sunscreen ingredient that EWG has long warned against. Oxybenzone has been banned from use in Hawaii due to environmental concerns (see my July 6, 2018 posting; scroll down about 40% of the way for specifics about Hawaii). Also, it is one of the common sunscreen ingredients for which the US Food and Drug Administration (FDA) is completing a safety review.

Today, zinc oxide and titanium dioxide metallic nanoparticles are being called minerals, as in, “mineral-based” sunscreens. They are categorized as physical sunscreens as opposed to chemical sunscreens.

I believe the most recent sunscreen posting here was my 2018 update (uly 6, 2018 posting) so the topic is overdue for some attention here. From a May 21, 2020 EWG news release (received via email),

As states reopen and Americans leave their homes to venture outside, it’s important for them to remember to protect their skin from the sun’s harmful rays. Today the Environmental Working Group released its 14th annual Guide to Sunscreens.  

This year researchers rated the safety and efficacy of more than 1,300 SPF products – including sunscreens, moisturizers and lip balms – and found that only 25 percent offer adequate protection and do not contain worrisome ingredients such as oxybenzone, a potential hormone-disrupting chemical that is readily absorbed by the body.

Despite a delay in finalizing rules that would make all sunscreens on U.S. store shelves safer, the Food and Drug Administration, the agency that governs sunscreen safety, is completing tests that highlight concerns with common sunscreen ingredients. Last year, the agency published two studies showing that, with just a single application, six commonly used chemical active ingredients, including oxybenzone, are readily absorbed through the skin and could be detected in our bodies at levels that could cause harm.

“It’s quite concerning,” said Nneka Leiba, EWG’s vice president of Healthy Living science. “Those studies don’t prove whether the sunscreens are unsafe, but they do highlight problems with how these products are regulated.”

“EWG has been advocating for the FDA to review these chemical ingredients for 14 years,” Leiba said. “We slather these ingredients on our skin, but these chemicals haven’t been adequately tested. This is just one example of the backward nature of product regulation in the U.S.”

Oxybenzone remains a commonly used active ingredient, found in more than 40 percent of the non-mineral sunscreens in this year’s guide. Oxybenzone is allergenic and a potential endocrine disruptor, and has been detected in human breast milk, amniotic fluid, urine and blood.

According to EWG’s assessment, fewer than half of the products in this year’s guide contain active ingredients that the FDA has proposed are safe and effective.

“Based on the best current science and toxicology data, we continue to recommend sunscreens with the mineral active ingredients zinc dioxide and titanium dioxide, because they are the only two ingredients the FDA recognized as safe or effective in their proposed draft rules,” said Carla Burns, an EWG research and database analyst who manages the updates to the sunscreen guide.

Most people select sunscreen products based on their SPF, or sunburn protection factor, and mistakenly assume that bigger numbers offer better protection. According to the FDA, higher SPF values have not been shown to provide additional clinical benefit and may give users a false sense of protection. This may lead to overexposure to UVA rays that increase the risk of long-term skin damage and cancer. The FDA has proposed limiting SPF claims to 60+.

EWG continues to hone our recommendations by strengthening the criteria for assessing sunscreens, which are based on the latest findings in the scientific literature and commissioned tests of sunscreen product efficacy. This year EWG made changes to our methodology in order to strengthen our requirement that products provide the highest level of UVA protection.

“Our understanding of the dangers associated with UVA exposure is increasing, and they are of great concern,” said Burns. “Sunburn during early life, especially childhood, is very dangerous and a risk factor for all skin cancers, but especially melanoma. Babies and young children are especially vulnerable to sun damage. Just a few blistering sunburns early in life can double a person’s risk of developing melanoma later in life.”

EWG researchers found 180 sunscreens that meet our criteria for safety and efficacy and would likely meet the proposed FDA standards. Even the biggest brands now provide mineral options for consumers.  

Even for Americans continuing to follow stay-at-home orders, wearing an SPF product may still be important. If you’re sitting by a window, UVA and UVB rays can penetrate the glass.  

It is important to remember that sunscreen is only one part of a sun safety routine. People should also protect their skin by covering up with clothing, hats and sunglasses. And sunscreen must be reapplied at least every two hours to stay effective.

EWG’s Guide to Sunscreens helps consumers find products that get high ratings for providing adequate broad-spectrum protection and that are made with ingredients that pose fewer health concerns.

The new guide also includes lists of:

Here are more quick tips for choosing better sunscreens:

  • Check your products in EWG’s sunscreen database and avoid those with harmful ingredients.
  • Avoid products with oxybenzone. This chemical penetrates the skin, gets into the bloodstream and can affect normal hormone activities.
  • Steer clear of products with SPF higher than 50+. High SPF values do not necessarily provide increased UVA protection and may fool you into thinking you are safe from sun damage.
  • Avoid sprays. These popular products pose inhalation concerns, and they may not provide a thick and uniform coating on the skin.
  • Stay away from retinyl palmitate. Government studies link the use of retinyl palmitate, a form of vitamin A, to the formation of skin tumors and lesions when it is applied to sun-exposed skin.
  • Avoid intense sun exposure during the peak hours of 10 a.m. to 4 p.m.

Shoppers on the go can download EWG’s Healthy Living app to get ratings and safety information on sunscreens and other personal care products. Also be sure to check out EWG’s sunscreen label decoder.

One caveat, these EWG-recommended products might not be found in Canadian stores or your favourite product may not have been reviewed for inclusion, as a product to be sought out or avoided, in their database. For example, I use a sunscreen that isn’t listed in the database, although at least a few other of the company’s sunscreen products are. On the plus side, my sunscreen doesn’t include oxybenzone or retinyl palmitate as ingredients.

To sum up the situation with sunscreens containing metallic nanoparticles (minerals), they are considered to be relatively safe but should new research emerge that designation could change. In effect, all we can do is our best with the information at hand.

History and politics of metallic nanoparticles in sunscreens

In 2009 it was a bit of a shock when the EWG released a report recommending the use of sunscreens with metallic nanoparticles in the list of ingredients. From my July 9, 2009 posting,

The EWG (Environmental Working Group) is, according to Maynard [as of 20202: Dr. Andrew Maynard is a scientist and author, Associate Director of Faculty in the ASU {Arizona State University} School for the Future of Innovation in Society, also the director of the ASU Risk Innovation Lab, and leader of the Risk Innovation Nexus], not usually friendly to industry and they had this to say about their own predisposition prior to reviewing the data (from EWG),

When we began our sunscreen investigation at the Environmental Working Group, our researchers thought we would ultimately recommend against micronized and nano-sized zinc oxide and titanium dioxide sunscreens. After all, no one has taken a more expansive and critical look than EWG at the use of nanoparticles in cosmetics and sunscreens, including the lack of definitive safety data and consumer information on these common new ingredients, and few substances more dramatically highlight gaps in our system of public health protections than the raw materials used in the burgeoning field of nanotechnology. But many months and nearly 400 peer-reviewed studies later, we find ourselves drawing a different conclusion, and recommending some sunscreens that may contain nano-sized ingredients.

My understanding is that after this report, the EWG was somewhat ostracized by collegial organizations. Friends of the Earth (FoE) and the ETC Group both of which issued reports that were published after the EWG report and were highly critical of ‘nano sunscreens’.

The ETC Group did not continue its anti nanosunscreen campaign for long (I saw only one report) but FoE (in particular the Australian arm of the organization) more than made up for that withdrawal and to sad effect. My February 9, 2012 post title was this: Unintended consequences: Australians not using sunscreens to avoid nanoparticles?

An Australian government survey found that 13% of Australians were not using any sunscreen due to fears about nanoparticles. In a country with the highest incidence of skin cancer in the world and, which spent untold millions over decades getting people to cover up in the sun, it was devastating news.

FoE immediately withdrew all their anti nanosunscreen materials in Australia from circulation while firing broadsides at the government. The organization’s focus on sunscreens with metallic nanoparticles has diminished since 2012.

Research

I have difficulty trusting materials from FoE and you can see why here in this July 26, 2011 posting (Misunderstanding the data or a failure to research? Georgia Straight article about nanoparticles). In it, I analyze Alex Roslin’s profoundly problematic article about metallic nanoparticles and other engineered nanoparticles. All of Roslin’s article was based on research and materials produced by FoE which misrepresented some of the research. Roslin would have realized that if he had bothered to do any research for himself.

EWG impressed me mightily with their refusal to set aside or dismiss the research disputing their initial assumption that metallic nanoparticles in sunscreens were hazardous. (BTW, there is one instance where metallic nanoparticles in sunscreens are of concern. My October 13, 2013 posting about anatase and rutile forms of titanium dioxide at the nanoscale features research on that issue.)

EWG’s Wikipedia entry

Whoever and however many are maintaining this page, they don’t like EWG at all,

The accuracy of EWG reports and statements have been criticized, as has its funding by the organic food industry[2][3][4][5] Its warnings have been labeled “alarmist”, “scaremongering” and “misleading”.[6][7][8] Despite the questionable status of its work, EWG has been influential.[9]

This is the third paragraph in the Introduction. At its very best, the information is neutral, otherwise, it’s much like that third paragraph.

Even John D. Rockeller’s entry is more flattering and he was known as the ‘most hated man in America’ as this show description on the Public Broadcasting Service (PBS) website makes clear,

American Experience

The Rockefellers Chapter One

Clip: Season 13 Episode 1 | 9m 37s

John D. Rockefeller was the world’s first billionaire and the most hated man in America. Watch the epic story of the man who monopolized oil.

Fun in the sun

Have fun in the sun this summer. There’s EWG’s sunscreen database, the tips listed in the news release, and EWG also has a webpage where they describe their methodology for how they assess sunscreens. It gets a little technical (for me anyway) but it should answer any further safety questions you might have after reading this post.

It may require a bit of ingenuity given the concerns over COVID-19 but I’m constantly amazed at the inventiveness with which so many people have met this pandemic. (This June 15, 2020 Canadian Broadcasting Corporation article by Sheena Goodyear features a family that created a machine that won the 2020 Rube Goldberg Bar of Soap Video challenge. The article includes an embedded video of the winning machine in action.)

Sunscreens: 2018 update

I don’t usually concern myself with SPF numbers on sunscreens as my primary focus has been on the inclusion of nanoscale metal particles (these are still considered safe). However, a recent conversation with a dental hygienist and coincidentally tripping across a June 19, 2018 posting on the blog shortly after the convo. has me reassessing my take on SPF numbers (Note: Links have been removed),

So, what’s the deal with SPF? A recent interview of Dr Steven Q Wang, M.D., chair of The Skin Cancer Foundation Photobiology Committee, finally will give us some clarity. Apparently, the SPF number, be it 15, 30, or 50, refers to the amount of UVB protection that that sunscreen provides. Rather than comparing the SPFs to each other, like we all do at the store, SPF is a reflection of the length of time it would take for the Sun’s UVB radiation to redden your skin (used exactly as directed), versus if you didn’t apply any sunscreen at all. In ideal situations (in lab settings), if you wore SPF 30, it would take 30 times longer for you to get a sunburn than if you didn’t wear any sunscreen.

What’s more, SPF 30 is not nearly half the strength of SPF 50. Rather, SPF 30 allows 3% of UVB rays to hit your skin, and SPF 50 allows about 2% of UVB rays to hit your skin. Now before you say that that is just one measly percent, it actually is much more. According to Dr Steven Q. Wang, SPF 30 allows around 1.5 times more UV radiation onto your skin than SPF 50. That’s an actual 150% difference [according to Wang’s article “… SPF 30 is allowing 50 percent more UV radiation onto your skin.”] in protection.

(author of the ‘eponymous’ blog) offers a good overview of the topic in a friendly, informative fashion albeit I found the ‘percentage’ to be a bit confusing. (S)he also provides a link to a previous posting about the ingredients in sunscreens (I do have one point of disagreement with regarding oxybenzone) as well as links to Dr. Steven Q. Wang’s May 24, 2018 Ask the Expert article about sunscreens and SPF numbers on skincancer.org. You can find the percentage under the ‘What Does the SPF Number Mean?’ subsection, in the second paragraph.

Ingredients: metallic nanoparticles and oxybenzone

The use of metallic nanoparticles  (usually zinc oxide and/or (titanium dioxide) in sunscreens was loathed by civil society groups, in particular Friends of the Earth (FOE) who campaigned relentlessly against their use in sunscreens. The nadir for FOE was in February 2012 when the Australian government published a survey showing that 13% of the respondents were not using any sunscreens due to their fear of nanoparticles. For those who don’t know, Australia has the highest rate of skin cancer in the world. (You can read about the debacle in my Feb. 9, 2012 posting.)

At the time, the only civil society group which supported the use of metallic nanoparticles in sunscreens was the Environmental Working Group (EWG).  After an examination of the research they, to their own surprise, came out in favour (grudgingly) of metallic nanoparticles. (The EWG were more concerned about the use of oxybenzone in sunscreens.)

Over time, the EWG’s perspective has been adopted by other groups to the point where sunscreens with metallic nanoparticles are commonplace in ‘natural’ or ‘organic’ sunscreens.

As for oxybenzones, in a May 23, 2018 posting about sunscreen ingredients notes this (Note: Links have been removed),

Oxybenzone – Chemical sunscreen, protects from UV damage. Oxybenzone belongs to the chemical family Benzophenone, which are persistent (difficult to get rid of), bioaccumulative (builds up in your body over time), and toxic, or PBT [or: Persistent, bioaccumulative and toxic substances (PBTs)]. They are a possible carcinogen (cancer-causing agent), endocrine disrupter; however, this is debatable. Also could cause developmental and reproductive toxicity, could cause organ system toxicity, as well as could cause irritation and potentially toxic to the environment.

It seems that the tide is turning against the use of oxybenzones (from a July 3, 2018 article by Adam Bluestein for Fast Company; Note: Links have been removed),

On July 3 [2018], Hawaii’s Governor, David Ig, will sign into law the first statewide ban on the sale of sunscreens containing chemicals that scientists say are damaging the Earth’s coral reefs. Passed by state legislators on May 1 [2018], the bill targets two chemicals, oxybenzone and octinoxate, which are found in thousands of sunscreens and other skincare products. Studies published over the past 10 years have found that these UV-filtering chemicals–called benzophenones–are highly toxic to juvenile corals and other marine life and contribute to the fatal bleaching of coral reefs (along with global warming and runoff pollutants from land). (A 2008 study by European researchers estimated that 4,000 to 6,000 tons of sunblock accumulates in coral reefs every year.) Also, though both substances are FDA-approved for use in sunscreens, the nonprofit Environmental Working Group notes numerous studies linking oxybenzone to hormone disruption and cell damage that may lead to skin cancer. In its 2018 annual sunscreen guide, the EWG found oxybenzone in two-thirds of the 650 products it reviewed.

The Hawaii ban won’t take effect until January 2021, but it’s already causing a wave of disruption that’s affecting sunscreen manufacturers, retailers, and the medical community.

For starters, several other municipalities have already or could soon join Hawaii’s effort. In May [2018], the Caribbean island of Bonaire announced a ban on chemicals sunscreens, and nonprofits such as the Sierra Club and Surfrider Foundation, along with dive industry and certain resort groups, are urging legislation to stop sunscreen pollution in California, Colorado, Florida, and the U.S. Virgin Islands. Marine nature reserves in Mexico already prohibit oxybenzone-containing sunscreens, and the U.S. National Park Service website for South Florida, Hawaii, U.S. Virgin Islands, and American Samoa recommends the use of “reef safe” sunscreens, which use natural mineral ingredients–zinc oxide or titanium oxide–to protect skin.

Makers of “eco,” “organic,” and “natural” sunscreens that already meet the new standards are seizing on the news from Hawaii to boost their visibility among the islands’ tourists–and to expand their footprint on the shelves of mainland retailers. This past spring, for example, Miami-based Raw Elements partnered with Hawaiian Airlines, Honolulu’s Waikiki Aquarium, the Aqua-Aston hotel group (Hawaii’s largest), and the Sheraton Maui Resort & Spa to get samples of its reef-safe zinc-oxide-based sunscreens to their guests. “These partnerships have had a tremendous impact raising awareness about this issue,” says founder and CEO Brian Guadagno, who notes that inquiries and sales have increased this year.

As Bluestein notes there are some concerns about this and other potential bans,

“Eliminating the use of sunscreen ingredients considered to be safe and effective by the FDA with a long history of use not only restricts consumer choice, but is also at odds with skin cancer prevention efforts […],” says Bayer, owner of the Coppertone brand, in a statement to Fast Company. Bayer disputes the validity of studies used to support the ban, which were published by scientists from U.S. National Oceanic & Atmospheric Administration, the nonprofit Haereticus Environmental Laboratory, Tel Aviv University, the University of Hawaii, and elsewhere. “Oxybenzone in sunscreen has not been scientifically proven to have an effect on the environment. We take this issue seriously and, along with the industry, have supported additional research to confirm that there is no effect.”

Johnson & Johnson, which markets Neutrogena sunscreens, is taking a similar stance, worrying that “the recent efforts in Hawaii to ban sunscreens that contain oxybenzone may actually adversely affect public health,” according to a company spokesperson. “Science shows that sunscreens are a key factor in preventing skin cancer, and our scientific assessment of the lab studies done to date in Hawaii show the methods were questionable and the data insufficient to draw factual conclusions about any impact on coral reefs.”

Terrified (and rightly so) about anything scaring people away from using sunblock, The American Academy of Dermatology, also opposes Hawaii’s ban. Suzanne M. Olbricht, president of the AADA, has issued a statement that the organization “is concerned that the public’s risk of developing skin cancer could increase due to potential new restrictions in Hawaii that impact access to sunscreens with ingredients necessary for broad-spectrum protection, as well as the potential stigma around sunscreen use that could develop as a result of these restrictions.”

The fact is that there are currently a large number of widely available reef-safe products on the market that provide “full spectrum” protection up to SPF50–meaning they protect against both UVB rays that cause sunburns as well as UVA radiation, which causes deeper skin damage. SPFs higher than 50 are largely a marketing gimmick, say advocates of chemical-free products: According to the Environmental Working Group, properly applied SPF 50 sunscreen blocks 98% of UVB rays; SPF 100 blocks 99%. And a sunscreen lotion’s SPF rating has little to do with its ability to shield skin from UVA rays.

I notice neither Bayer nor Johnson & Johnson nor the American Academy of Dermatology make mention of oxybenzone’s possible role as a hormone disruptor.

Given the importance that coral reefs have to the environment we all share, I’m inclined to support the oxybenzone ban based on that alone. Of course, it’s conceivable that metallic nanoparticles may also have a deleterious effect on coral reefs as their use increases. It’s to be hoped that’s not the case but if it is, then I’ll make my decisions accordingly and hope we have a viable alternative.

As for your sunscreen questions and needs, the Environment Working Group (EWG) has extensive information including a product guide on this page (scroll down to EWG’s Sunscreen Guide) and a discussion of ‘high’ SPF numbers I found useful for my decision-making.