Tag Archives: Lund University

Norwegians weigh in with research into wood nanocellulose healing application

It’s not just the Norwegians but they certainly seem to be leading the way on the NanoHeal project. Here’s a little more about the intricacies of healing wounds and why wood nanocellulose is being considered for wound healing, from the Aug. 23, 2012 news item on Nanowerk,

Wound healing is a complicated process consisting of several different phases and a delicate interaction between different kinds of cells, signal factors and connective tissue substance. If the wound healing does not function optimally, this can result in chronic wounds, cicatrisation or contractures. By having an optimal wound dressing such negative effects can be reduced. A modern wound dressing should be able to provide a barrier against infection, control fluid loss, reduce the pain during the treatment, create and maintain a moist environment in the wound, enable introduction of medicines into the wound, be able to absorb exudates during the inflammatory phase, have high mechanical strength, elasticity and conformability and allow for easy and painless release from the wound after use.

Nanocellulose is a highly fibrillated material, composed of nanofibrils with diameters in the nanometer scale (< 100 nm), with high aspect ratio and high specific surface area (“Cellulose fibres, nanofibrils and microfibrils: The morphological sequence of MFC components from a plant physiology and fibre technology point of view” [open access article in Nanoscale Research Letters]). Cellulose nanofibrils have many advantageous properties, such as high strength and ability to self-assembly.

Recently, the suitability of cellulose nanofibrils from wood for forming elastic cryo-gels has been demonstrated by scientists from Paper and Fibre Research Institute (PFI) and Lund University (“Cross-linking cellulose nanofibrils for potential elastic cryo-structured gels”  [open access in Nanoscale Research Letters). Cryogelation is a technique that makes it possible to engineer 3-D structures with controlled porosity. A porous structure with interconnected pores is essential for use in modern wound healing in which absorption of exudates, release of medicines into the wound or exchange of cells are essential properties.

The Research Council of Norway recently awarded a grant to the NanoHeal project, from the project page on the PFI (Pulp and Fibre Research Institute) website,

This multi-disciplinary research programme will develop novel material solutions for use in advanced wound healing based on nanofibrillated cellulose structures. This proposal requires knowledge on the effective production and application of sustainable and innovative micro- and nanofibres based on cellulose. The project will assess the ability of these nanofibres to interact with complementary polymers to form novel material structures with optimised adhesion and moulding properties, absorbance, porosity and mechanical performance.  The NanoHeal proposal brings together leading scientists in the fields of nanocellulose technology, polymer chemistry, printing and nanomedicine, to produce biocompatible and biodegradable natural polymers that can be functionalized for clinical applications. As a prototype model, the project will develop materials for use in wound healing. However, the envisaged technologies of synthesis and functionalization will have a diversity of commercial and industrial applications.

The project is funded by the Research Council of Norway/NANO2021, and is a cooperation between several leading R&D partners.

  • PFI
  • NTNU [Norwegian University of Science and Technology], Faculty of medicine
  • Cardiff University
  • Swansea University
  • Lund University
  • AlgiPharma

Project period: 2012-2016

I wonder when I’m going to start hearing about Canadian research into wood nanocellulose  (nanocrystalline cellulose or otherwise) applications.

Nanotechnology and biocompatibility; carbon nanotubes in agriculture; venture capital for nanotechnology

One of the big nanotechnology toxicity issues centers around the question of its biocompatibility i.e. what effect do the particles have on cells in human bodies, plants, and other biological organisms? Right now, the results are mixed. Two studies have recently been published which suggest that there are neutral or even positive responses to nanoparticles.

Researchers at Lund University (Sweden) have conducted tests of nanowires, which they are hoping could be used as electrodes in the future, showing that microglial cells break down the nanowires and almost completely clean them away over a period of weeks. You can read more about the work here on Nanowerk. I would expect they’ll need to do more studies confirming these results as well more tests establishing what happens to the nanowire debris over longer periods of time and what problems, if any, emerge when electrodes are introduced in succession (i.e. how many times can you implant nanowires and have them ‘mostly’ cleaned away?).

The other biocompatibility story centers on food stuffs. Apparently carbon nanotubes can have a positive effect on crops. According to researchers in Arkansas*, Mariya Khodakovskaya, Alexandru Biris, and their colleagues, the treated seeds (tomato) sprouted twice as fast and grew more than twice as much as their untreated neighbours. The news item is here on Nanowerk and there is a more in-depth article about agriculture and nanotechnology here in Nanowerk Spotlight. (Note: I have checked and both of the papers have been published although I believe they’re both behind paywalls.)

It seems be to a Nanowerk day as I’m featuring the site again for this item. They have made a guide to finding venture capital for startup nanotechnology companies available on their site. From the item,

To help potential nanotechnology start-up founders with shaping their plans, Nanowerk, the leading nanotechnology information service, and Nanostart, the world’s leading nanotechnology venture capital company, have teamed up to provide this useful guide which particularly addresses the funding aspects of nanotechnology start-ups, along with answers to some of the most commonly asked questions.

You can read more here.

*’Arkansaa’ corrected to ‘Arkansas’ on Dec. 7, 2017.