Category Archives: Vancouver

Art (Lawren Harris and the Group of Seven), science (Raman spectroscopic examinations), and other collisions at the 2014 Canadian Chemistry Conference (part 3 of 4)

Dramatic headlines (again)

Ignoring the results entirely, Metro News Vancouver, which favours the use of the word ‘fraud’, featured it in the headline of a second article about the testing, “Alleged Group of Seven work a fraud: VAG curator” by Thandi Fletcher (June 5, 2014 print issue); happily the online version of Fletcher’s story has had its headline changed to the more accurate: “Alleged Group of Seven painting not an authentic Lawren Harris, says Vancouver Art Gallery curator.” Fletcher’s article was updated after its initial publication with some additional text (it is worth checking out the online version even if you’re already seen the print version). There had been a second Vancouver Metro article on the testing of the authenticated painting by Nick Wells but that in common, with his June 4, 2014 article about the first test, “A fraud or a find?” is no longer available online. Note: Standard mainstream media practice is that the writer with the byline for the article is not usually the author of the article’s headline.

There are two points to be made here. First, Robertson has not attempted to represent ‘Autumn Harbour’ as an authentic Lawren Harris painting other than in a misguided headline for his 2011 news release.  From Robertson’s July 26, 2011 news release (published by Reuters and published by Market Wired) where he crossed a line by stating that Autumn Harbour is a Harris in his headline (to my knowledge the only time he’s done so),

Lost Lawren Harris Found in Bala, Ontario

Unknown 24×36 in. Canvas Piques a Storm of Controversy

VANCOUVER, BRITISH COLUMBIA–(Marketwire – July 26, 2011) -
Was Autumn Harbour painted by Lawren Harris in the fall of 1912? That summer Lawren Harris was 26 years old and had proven himself as an accomplished and professional painter. He had met J.E.H. MacDonald in November of 1911. They became fast friends and would go on to form the Group of Seven in 1920 but now in the summer of 1912 they were off on a sketching expedition to Mattawa and Temiscaming along the Quebec-Ontario border. Harris had seen the wilderness of the northern United States and Europe but this was potentially his first trip outside the confines of an urban Toronto environment into the Canadian wilderness.

By all accounts he was overwhelmed by what he saw and struggled to find new meaning in his talents that would capture these scenes in oil and canvas. There are only two small works credited to this period, archived in the McMichael gallery in Kleinburg, Ontario. Dennis Reid, Assistant Curator of the National Gallery of Canada stated in 1970 about this period: “Both Harris and (J.E.H.) MacDonald explored new approaches to handling of colour and overall design in these canvases. Harris in particular was experimenting with new methods of paint handling, and Jackson pointed out the interest of the other painters in these efforts, referring to the technique affectionately as ‘Tomato Soup’.” For most authorities the summer and fall of 1912 are simply called his ‘lost period’ because it was common for Harris to destroy, abandon or give away works that did not meet his standards. The other trait common to Harris works, is the lack of a signature and some that are signed were signed on his behalf. The most common proxy signatory was Betsy Harris, his second wife who signed canvases on his behalf when he could no longer do so.

So the question remains. Can an unsigned 24×36 in. canvas dated to 1900-1920 that was found in a curio shop in Bala, Ontario be a long lost Lawren Harris? When pictures were shown to Charles C. Hill, Curator of Canadian Art, National Gallery of Canada, he replied: “The canvas looks like no Harris I have ever seen…” A similar reply also came from Ian Thom, Head Curator for the Vancouver Art Gallery: “I do not believe that your work can be connected with Harris in any way.” [emphases mine] Yet the evidence still persists. The best example resides within the National Art Gallery. A 1919, 50.5 X 42.5 in. oil on rough canvas shows Harris’s style of under painting, broad brush strokes and stilled composition. Shacks, painted in 1919 and acquired the Gallery in 1920 is an exact technique clone of Autumn Harbour. For a list of comparisons styles with known Harris works and a full list of the collected evidence please consult and see for yourself.

If Robertson was intent on perpetrating a fraud, why would he include the negative opinions from the curators or attempt to authenticate his purported Harris? The 2011 website is no longer available but Robertson has established another website,

It’s not a crime (fraud) to have strong or fervent beliefs. After all, Robertson was the person who contacted ProSpect* Scientific to arrange for a test.

Second, Ian Thom, the VAG curator did not call ‘Autumn Harbour’ or David Robertson, a fraud. From the updated  June 5, 2014 article sporting a new headline by Thandi Fletcher,

“I do not believe that the painting … is in fact a Lawren Harris,” said Ian Thom, senior curator at the Vancouver Art Gallery, “It’s that simple.”

It seems Thom feels as strongly as Robertson does; it’s just that Thom holds an opposing opinion.

Monetary value was mentioned earlier as an incentive for Robertson’s drive to prove the authenticity of his painting, from the updated June 5, 2014 article with the new headline by Thandi Fletcher,

Still, Robertson, who has carried out his own research on the painting, said he is convinced the piece is an authentic Harris. If it were, he said it would be worth at least $3 million. [emphasis mine]

“You don’t have to have a signature on the canvas to recognize brushstroke style,” he said.

Note: In a June 13, 2014 telephone conversation, Robertson used the figure of $1M to denote his valuation of Autumn Harbour and claimed a degree in Geography with a minor in Fine Arts from the University of Waterloo. He also expressed the hope that Autumn Harbour would prove to be a* Rosetta Stone of sorts for art pigments used in the early part of the 20th century.

As for the owner of Hurdy Gurdy and the drama that preceded its test on June 4, 2014, Fletcher had this in her updated and newly titled article,

Robertson said the painting’s owner, local Vancouver businessman Tony Ma, had promised to bring the Harris original to the chemistry conference but pulled out after art curator Thom told him not to participate.

While Thom acknowledged that Ma did ask for his advice, he said he didn’t tell him to pull out of the conference.

“It was more along the lines of, ‘If I were you, I wouldn’t do it, because I don’t think it’s going to accomplish anything,’” said Thom, adding that the final decision is up to Ma. [emphasis mine]

A request for comment from Ma was not returned Wednesday [June 5, 2014].

Thom, who already examined Robertson’s painting a year ago [in 2013? then, how is he quoted in a 2011 news release?], said he has no doubt Harris did not paint it.

“The subject matter is wrong, the handling of the paint is wrong, and the type of canvas is wrong,” he said, adding that many other art experts agree with him.

Part 1

Part 2

Part 4

* ‘ProsPect’ changed to ‘ProSpect’ on June 30, 2014. Minor grammatical change made to sentence: ‘He also expressed the hope that Autumn Harbour would prove to a be of Rosetta Stone of sorts for art pigments used in the early part of the 20th century.’ to ‘He also expressed the hope that Autumn Harbour would prove to be a* Rosetta Stone of sorts for art pigments used in the early part of the 20th century.’ on July 2, 2014.

ETA July 14, 2014 at 1300 hours PDT: There is now an addendum to this series, which features a reply from the Canadian Conservation Institute to a query about art pigments used by Canadian artists and access to a database of information about them.

Lawren Harris (Group of Seven), art authentication, and the Canadian Conservation Insitute (addendum to four-part series)

Art (Lawren Harris and the Group of Seven), science (Raman spectroscopic examinations), and other collisions at the 2014 Canadian Chemistry Conference (part 2 of 4)

Testing the sample and Raman fingerprints

The first stage of the June 3, 2010 test of David Robertson’s Autumn Harbour, required taking a tiny sample from the painting,. These samples are usually a fleck of a few microns (millionths of an inch), which can then be tested to ensure the lasers are set at the correct level assuring no danger of damage to the painting. (Robertson extracted the sample himself prior to arriving at the conference. He did not allow anyone else to touch his purported Harris before, during, or after the test.)

Here’s how ProSpect* Scientific describes the ‘rehearsal’ test on the paint chip,

Tests on this chip were done simply to ensure we knew what power levels were safe for use on the painting.  While David R stated he believed the painting was oil on canvas without lacquer, we were not entirely certain of that.  Lacquer tends to be easier to burn than oil pigments and so we wanted to work with this chip just to be entirely certain there was no risk to the painting itself.

The preliminary (rehearsal) test resulted in a line graph that showed the frequencies of the various pigments in the test sample. Titanium dioxide, for example, was detected and its frequency (spectra) reflected on the graph.

I found this example of a line graph representing the spectra (fingerprint) for a molecule of an ultramarine (blue) pigment along with a general explanation of a Raman ‘fingerprint’. There is no indication as to where the ultramarine pigment was obtained. From the website featuring a section on Pigments through the Ages and a webpage on Spectroscopy,


Ultramarine [downloaded from]

Raman spectra consist of sharp bands whose position and height are characteristic of the specific molecule in the sample. Each line of the spectrum corresponds to a specific vibrational mode of the chemical bonds in the molecule. Since each type of molecule has its own Raman spectrum, this can be used to characterize molecular structure and identify chemical compounds.

Most people don’t realize that the chemical signature (spectra) for pigment can change over time with new pigments being introduced. Finding a pigment that was on the market from 1970 onwards in a painting by Jackson Pollock who died in 1956 suggests strongly that the painting couldn’t have come from Pollock’s hand. (See Michael Shnayerson’s May 2012 article, A Question of Provenance, in Vanity Fair for more about the Pollock painting. The article details the fall of a fabled New York art gallery that had been in business prior to the US Civil War.)

The ability to identify a pigment’s molecular fingerprint means that an examination by Raman spectroscopy can be part of an authentication, a restoration, or a conservation process. Here is how a representative from ProSpect Scientific describes the process,

Raman spectroscopy is non-destructive (when conducted at the proper power levels) and identifies the molecular components in the pigments, allowing characterization of the pigments for proper restoration or validation by comparison with other pigments of the same place/time. It is valuable to art institutions and conservators because it can do this.  In most cases of authentication Raman spectroscopy is one of many tools used and not the first in line. A painting would be first viewed by art experts for technique, format etc, then most often analysed with IR or X-Ray, then perhaps Raman spectroscopy. It is impossible to use Raman spectroscopy to prove authenticity as paint pigments are usually not unique to any particular painter.  Most often Raman spectroscopy is used by conservators to determine proper pigments for appropriate restoration.  Sometimes Raman will tell us that the pigment isn’t from the time/era the painting is purported to be from (anachronisms).

Autumn Harbour test

Getting back to the June 3, 2014 tests, once the levels were set then it was time to examine Autumn Harbour itself to determine the spectra for the various pigments.  ProSpect Scientific has provided an explanation of the process,

This spectrometer was equipped with an extension that allowed delivery of the laser and collection of the scattered light at a point other than directly under the microscope. We could also have used a flexible fibre optic probe for this, but this device is slightly more efficient. This allowed us to position the delivery/collection point for the light just above the painting at the spot we wished to test. For this test, we don’t sweep across the surface, we test a small pinpoint that we feel is a pigment of the target colour.

We only use one laser at a time. The system is built so we can easily select one laser or another, depending on what we wish to look at. Some researchers have 3 or 4 lasers in their system because different lasers provide a better/worse raman spectrum depending on the nature of the sample. In this case we principally used the 785nm laser as it is better for samples that exhibit fluorescence at visible wavelengths. 532nm is a visible wavelength.  For samples that didn’t produce good signal we tried the 532nm laser as it produces better signal to noise than 785nm, generally speaking. I believe the usable results in our case were obtained with the 785nm laser.

The graphed Raman spectra shows peaks for the frequency of scattered light that we collect from the laser-illuminated sample (when shining a laser on a sample the vast majority of light is scattered in the same frequency of the laser, but a very small amount is scattered at different frequencies unique to the molecules in the sample). Those frequencies correspond to and identify molecules in the sample. We use a database (on the computer attached to the spectrometer) to pattern match the spectra to identify the constituents.

One would have thought ‘game over’ at this point. According to some informal sources, Canada has a very small (almost nonexistent) data bank of information about pigments used in its important paintings. For example, the federal government’s Canadian Conservation Institute (CCI) has a very small database of pigments and nothing from Lawren Harris paintings [See the CCI's response in this addendum], so the chances that David Robertson would have been able to find a record of pigments used by Lawren Harris roughly in the same time period that Autumn Harbour seems to have been painted are not good.

Everything changes

In a stunning turn of events and despite the lack of enthusiasm from Vancouver Art Gallery (VAG) curator, Ian Thom, on Wednesday, June 4, 2014 the owner of the authenticated Harris, Hurdy Gurdy, relented and brought the painting in for tests.

Here’s what the folks from ProSpect Scientific had to say about the comparison,

Many pigments were evaluated. Good spectra were obtained for blue and white. The blue pigment matched on both paintings, the white didn’t match. We didn’t get useful Raman spectra from other pigments. We had limited time, with more time we might fine tune and get more data.

One might be tempted to say that the results were 50/50 with one matching and the other not, The response from the representative of ProSpect Scientific is more measured,

We noted that the mineral used in the pigment was the same.  Beyond that is interpretation:  Richard offered the view that lapis-lazuli was a typical and characteristic component for blue in that time period (early 1900′s).   We saw different molecules in the whites used in the two paintings, and Richard offered that both were characteristic of the early 1900′s.

Part 1

Part 3

Part 4

* ‘ProsPect’ changed to ‘ProSpect’ on June 30, 2014.

ETA July 14, 2014 at 1300 hours PDT: There is now an addendum to this series, which features a reply from the Canadian Conservation Institute to a query about art pigments used by Canadian artists and access to a database of information about them.

Lawren Harris (Group of Seven), art authentication, and the Canadian Conservation Insitute (addendum to four-part series)


Art (Lawren Harris and the Group of Seven), science (Raman spectroscopic examinations), and other collisions at the 2014 Canadian Chemistry Conference (part 1 of 4)

One wouldn’t expect the 97th Canadian Chemistry Conference held in Vancouver, Canada from  June 1 – 5, 2014 to be an emotional rollercoaster. One would be wrong. Chemists and members of the art scene are not only different from thee and me, they are different from each other.

Setting the scene

It started with a May 30, 2014 Simon Fraser University (SFU) news release,

During the conference, ProSpect Scientific has arranged for an examination of two Canadian oil paintings; one is an original Lawren Harris (Group of Seven) titled “Hurdy Gurdy” while the other is a painting called “Autumn Harbour” that bears many of Harris’s painting techniques. It was found in Bala, Ontario, an area that was known to have been frequented by Harris.

Using Raman Spectroscopy equipment manufactured by Renishaw (Canada), Dr. Richard Bormett will determine whether the paint from both works of art was painted from the same tube of paint.

As it turns out, the news release got it somewhat wrong. Raman spectroscopy testing does not make it possible to* determine whether the paints came from the same tube, the same batch, or even the same brand. Nonetheless, it is an important tool for art authentication, restoration and/or conservation and both paintings were scheduled for testing on Tuesday, June 3, 2014. But that was not to be.

The owner of the authenticated Harris (Hurdy Gurdy) rescinded permission. No one was sure why but the publication of a June 2, 2014 article by Nick Wells for Metro News Vancouver probably didn’t help in a situation that was already somewhat fraught. The print version of the Wells article titled, “A fraud or a find?” showed only one painting “Hurdy Gurdy” and for anyone reading quickly, it might have seemed that the Hurdy Gurdy painting was the one that could be “a fraud or a find.”

The dramatically titled article no longer seems to be online but there is one (also bylined by Nick Wells) dated June 1, 2014 titled, Chemists in Vancouver to use lasers to verify Group of Seven painting. It features (assuming it is still available online) images of both paintings, the purported Harris (Autumn Harbour) and the authenticated Harris (Hurdy Gurdy),

"Autumn Harbour" [downloaded from]

“Autumn Harbour” [downloaded from]

Heffel Fine Art Auction

Lawren Harris’‚ Hurdy Gurdy, a depiction of Toronto’s Ward district is shown in this handout image. [downloaded from]

David Robertson who owns the purported Harris (Autumn Harbour) and is an outsider vis à vis the Canadian art world, has been trying to convince people for years that the painting he found in Bala, Ontario is a “Lawren Harris” painting. For anyone unfamiliar with the “Group of Seven” of which Lawren Harris was a founding member, this group is legendary to many Canadians and is the single most recognized name in Canadian art history (although some might argue that status for Emily Carr and/or Tom Thomson; both of whom have been, on occasion, honorarily included in the Group).  Robertson’s incentive to prove “Autumn Harbour” is a Harris could be described as monetary and/or prestige-oriented and/or a desire to make history.

The owner of the authenticated Harris “Hurdy Gurdy” could also be described as an outsider of sorts [unconfirmed at the time of publication; a June 26, 2014 query is outstanding], gaining entry to that select group of people who own a ‘Group of Seven’ painting at a record-setting price in 2012 with the purchase of a piece that has a provenance as close to unimpeachable as you can get. From a Nov. 22, 2012 news item on CBC (Canadian Broadcasting Corporation) news online,

Hurdy Gurdy, one of the finest urban landscapes ever painted by Lawren Harris, sold for $1,082,250, a price that includes a 17 per cent buyer’s premium. The pre-sale estimate suggested it could go for $400,000 to $600,000 including the premium.

The Group of Seven founder kept the impressionistic painting of a former Toronto district known as the Ward in his own collection before bequeathing it to his daughter. It has remained in the family ever since.

Occasionally, Harris “would come and say, ‘I need to borrow this back for an exhibition,’ and sometimes she wouldn’t see [the paintings] again,” Heffel vice-president Robert Heffel said. “Harris asked to have this painting back for a show…and she said ‘No, dad. Not this one.’ It was a painting that was very, very dear to her.”

It had been a coup to get access to an authenticated Harris for comparison testing so Hurdy Gurdy’s absence was a major disappointment. Nonetheless, Robertson went through with the scheduled June 3, 2014 testing of his ‘Autumn Harbour’.

Chemistry, spectroscopy, the Raman system, and the experts

Primarily focused on a technical process, the chemists (from ProSpect* Scientific and Renishaw) were unprepared for the drama and excitement that anyone associated with the Canadian art scene might have predicted.  From the chemists’ perspective, it was an opportunity to examine a fabled piece of Canadian art (Hurdy Gurdy) and, possibly, play a minor role in making Canadian art history.

The technique the chemists used to examine the purported Harris, Autumn Harbour, is called Raman spectroscopy and its beginnings as a practical technique date back to the 1920s. (You can get more details about Raman spectroscopy in this Wikiipedia entry then will be given here after the spectroscopy description.)

Spectroscopy (borrowing heavily from this Wikipedia entry) is the process where one studies the interaction between matter and radiated energy and which can be measured as frequencies and/or wavelengths. Raman spectroscopy systems can be used to examine radiated energy with low frequency emissions as per this description in the Raman spectroscopy Wikipedia entry,

Raman spectroscopy (/ˈrɑːmən/; named after Sir C. V. Raman) is a spectroscopic technique used to observe vibrational, rotational, and other low-frequency modes in a system.[1] It relies on inelastic scattering, or Raman scattering, of monochromatic light, usually from a laser in the visible, near infrared, or near ultraviolet range. The laser light interacts with molecular vibrations, phonons or other excitations in the system, resulting in the energy of the laser photons being shifted up or down.

The reason for using Raman spectroscopy for art authentication, conservation, and/or restoration purposes is that the technique, as noted earlier, can specify the specific chemical composition of the pigments used to create the painting. It is a technique used in many fields as a representative from ProSpect Scientific notes,

Raman spectroscopy is a vital tool for minerologists, forensic investigators, surface science development, nanotechnology research, pharmaceutical research and other applications.  Most graduate level university labs have this technology today, as do many government and industry researchers.  Raman spectroscopy is now increasingly available in single purpose hand held units that can identify the presence of a small number of target substances with ease-of-use appropriate for field work by law enforcers, first responders or researchers in the field.

About the chemists and ProSpect Scientific and Renishaw

There were two technical experts attending the June 3, 2014 test for the purported Harris painting, Autumn Harbour, Dr. Richard Bormett of Renishaw and Dr. Kelly Akers of ProSpect Scientific.

Dr. Kelly Akers founded ProSpect Scientific in 1996. Her company represents Renishaw Raman spectroscopy systems for the most part although other products are also represented throughout North America. Akers’ company is located in Orangeville, Ontario. Renishaw, a company based in the UK. offers a wide line of products including Raman spectroscopes. (There is a Renishaw Canada Ltd., headquartered in Mississauga, Ontario, representing products other than Raman spectroscopes.)

ProSpect Scientific runs Raman spectroscopy workshops, at the Canadian Chemistry Conferences as a regular occurrence, often in conjunction with Renishaw’s Bormett,. David Robertson, on learning the company would be at the 2014 Canadian Chemistry Conference in Vancouver, contacted Akers and arranged to have his purported Harris and Hurdy Gurdy, the authenticated Harris, tested at the conference.

Bormett, based in Chicago, Illinois, is Renishaw’s business manager for the Spectroscopy Products Division in North America (Canada, US, & Mexico).  His expertise as a spectroscopist has led him to work with many customers throughout the Americas and, as such, has worked with several art institutions and museums on important and valuable artifacts.  He has wide empirical knowledge of Raman spectra for many things, including pigments, but does not claim expertise in art or art authentication. You can hear him speak at a 2013 US Library of Congress panel discussion titled, “Advances in Raman Spectroscopy for Analysis of Cultural Heritage Materials,” part of the Library of Congress’s Topics in Preservation Series (TOPS), here on the Library of Congress website or here on YouTube. The discussion runs some 130 minutes.

Bormett has a PhD in analytical chemistry from the University of Pittsburgh. Akers has a PhD in physical chemistry from the University of Toronto and is well known in the Raman spectroscopy field having published in many refereed journals including “Science” and the “Journal of Physical Chemistry.”  She expanded her knowledge of industrial applications of Raman spectroscopy substantive post doctoral work in Devon, Alberta at the CANMET Laboratory (Natural Resources Canada).

About Renishaw InVia Reflex Raman Spectrometers

The Raman spectroscopy system used for the examination, a Renishaw InVia Reflex Raman Spectrometer, had

  • two lasers (using 785nm [nanometres] and 532nm lasers for this application),
  • two cameras,
    (ProSpect Scientific provided this description of the cameras: The system has one CCD [Charged Coupled Device] camera that collects the scattered laser light to produce Raman spectra [very sensitive and expensive]. The system also has a viewing camera mounted on the microscope to allow the user to visually see what the target spot on the sample looks like. This camera shows on the computer what is visible through the eyepieces of the microscope.)
  • a microscope,
  • and a computer with a screen,

all of which fit on a tabletop, albeit a rather large one.

For anyone unfamiliar with the term CCD (charged coupled device), it is a sensor used in cameras to capture light and convert it to digital data for capture by the camera. (You can find out more here at on the CCD webpage.)

Part 2

Part 3

Part 4

* ‘to’ added to sentence on June 27, 2014 at 1340 hours (PDT). ‘ProsPect’ corrected to ‘ProSpect’ on June 30, 2014.

ETA July 14, 2014 at 1300 hours PDT: There is now an addendum to this series, which features a reply from the Canadian Conservation Institute to a query about art pigments used by Canadian artists and access to a database of information about them.

Lawren Harris (Group of Seven), art authentication, and the Canadian Conservation Insitute (addendum to four-part series)

Lunar spelunking with robots at Vancouver’s (Canada) June 24, 2014 Café Scientifique

Vancouver’s next Café Scientifique is being held in the back room of the The Railway Club (2nd floor of 579 Dunsmuir St. [at Seymour St.], Vancouver, Canada), on Tuesday, June 24,  2014 at 7:30 pm. Here’s the meeting description (from the June 18, 2014 announcement),

Our speaker for the evening will be John Walker, Rover Development Lead of the Hakuto Google Lunar X-Prize Team.  The title and abstract of his talk is:

Lunar Spelunking

Lava tubes, or caves likely exist on the surface of the moon. Based on recent images and laser distance measurements from the surface of the moon, scientists have selected candidates for further study.

Governmental space agencies and private institutions now have plans to visit these potential caves and investigate them as potential lunar habitat sites, as early as 2015.

I will present some of these candidates and my PhD research, which is supporting a Google Lunar X-Prize team’s attempt to survey one of these caves using robots.

I wasn’t able to find much about John Walker bu there is this Facebook entry noting a talk he gave at TEDxBudapest.

As for the Google Lunar XPRIZE, running a Google search yielded this on June 22, 2014 at 0945 hours PDT. It was the top finding on the search page. links to the site were provided below this definition:

The Google Lunar XPRIZE is a $30 million competition for the first privately funded team to send a robot to the moon, travel 500 meters and transmit video,…

You can find the Google Lunar XPRIZE website here. The Hakuto team, the only one based in Japan (I believe), has a website here. There is some English language material but the bulk would appear to be Japanese language.

The world’s smallest machines at Vancouver’s (Canada) May 27, 2014 Café Scientifique

Vancouver’s next Café Scientifique is being held in the back room of the The Railway Club (2nd floor of 579 Dunsmuir St. [at Seymour St.], Vancouver, Canada), on Tuesday, May 27,  2014 at 7:30 pm. Here’s the meeting description (from the May 21, 2014 announcement),

Our speaker is Dr. Nicholas White from UBC Chemistry. The title and abstract of his talk is:

The world’s smallest machines

In the last 50 years, chemists have developed the ability to produce increasingly intricate and complex molecules. One example of this is the synthesis of “interlocked molecules”: two or more separate molecules that are mechanically threaded through one another (like links of a chain). These interlocked molecules offer potential use for a range of different applications. In particular they have been developed for use as molecular machines: devices that are only a few nanometers in size, but can perform physical work in response to a stimulus (e.g. light, heat). This talk will describe the development of interlocked molecules, and explore their potential applications as nano-devices.

Nicholas (Nick) White is a member of the MacLachlan Group. The group’s leader, Mark MacLachlan was mentioned here in a March 25, 2011 post regarding his Café Scientifique talk on beetles, biomimcry, and nanocrystalline cellulose (aka, cellulose nanocrystals). As well, MacLachlan was mentioned in a May 21, 2014 post about the $!.65M grant he received for his NanoMAT: NSERC CREATE Training Program in Nanomaterials Science & Technology.

As for Nick White, there’s this on the MacLachlan Group homepage, (scroll down about 25% of the way),

Nick completed his undergraduate degree at the University of Otago in his home town of Dunedin, New Zealand (working on transition metal complexes with Prof. Sally Brooker). After a short break working and then travelling, he completed his DPhil at the University of Oxford, working with Prof. Paul Beer making rotaxanes and catenanes for anion recognition applications. He is now a Killam Postdoctoral Fellow in the MacLachlan group working on supramolecular materials based on triptycene and silsesquioxanes (although he has difficulty convincing people he’s old enough to be a post-doc). Outside of chemistry, Nick is a keen rock climber, and is enjoying being close to the world-class rock at Squamish. He also enjoys running, playing guitar, listening to music, and drinking good coffee.

I wonder if a Café Scientifique presentation is going to be considered as partial fulfillment for the professional skills-building requirement of the MacLachlan’s NanoMAT: NSERC CREATE Training Program in Nanomaterials Science & Technology.

Musical Acoustics at Vancouver’s (Canada) April 29, 2014 Café Scientifique

Vancouver’s next Café Scientifique is being held in the back room of the The Railway Club (2nd floor of 579 Dunsmuir St. [at Seymour St.], Vancouver, Canada), on Tuesday, April 29,  2014 at 7:30 pm. Here’s the meeting description (from the April 23, 2014 announcement),

Our next café will happen on Tuesday, April 29, 7:30pm at The Railway Club. Our speaker is Dr. Chris Waltham from UBC Physics and Astronomy. The title and abstract of his talk is:

Musical Acoustics: What do soundboxes do and how do they work? 

Nearly all string instruments have soundboxes to radiate the vibrational energy of the strings. These wooden boxes tend to be objects of beauty and of iconic shapes (think of a violin or guitar), but seldom is any thought given to how they work. A large part of the field of musical acoustics is the analysis of sound boxes, and although the question of “quality” remains elusive, much progress has been made. For example, pretty much every feature of a violin’s morphology can be understood in terms of vibroacoustics and ergonomics, rather than visual aesthetics (with the possible exception of the scroll, of course). Although Andrea Amati would not have used the language and methods of mechanical engineering, the form he perfected most definitely follows its function.

I like to talk about acoustics and violins. Also harps, guitars, guqins and guzhengs.

For anyone curious about Andrea Amati, there’s this from his Wikipedia entry (Note: Links have been removed),

Andrea Amati was a luthier, from Cremona, Italy.[1][2] Amati is credited with making the first instruments of the violin family that are in the form we use today.[3] According to the National Music Museum in Vermillion, South Dakota:

It was in the workshop of Andrea Amati (ca. 1505-1577) in Cremona, Italy, in the middle of the 16th century that the form of the instruments of the violin family as we know them today first crystallized.

Several of his instruments survive to the present day, and some of them can still be played.[3][4] Many of the surviving instruments were among a consignment of 38 instruments delivered to Charles IX of France in 1564.

As for guqins and guzhengs, they are both Chinese stringed instruments of 7 strings and 18 or more strings, respectively.

Vancouver (Canada) and a city conversation about science that could have been better

Institutional insularity is a problem one finds everywhere. Interestingly, very few people see it that way due in large part to self-reinforcing loopbacks. Take universities for example and more specifically, Simon Fraser University’s April 17, 2014 City Conversation (in Vancouver, Canada) featuring Dr. Arvind Gupta (as of July 2014, president of the University of British Columbia) in a presentation titled: Creativity! Connection! Innovation!

Contrary to the hope I expressed in my April 14, 2014 post about the then upcoming event, this was largely an exercise in self-reference. Predictably with the flyer they used to advertise the event (the text was reproduced in its entirety in my April 14, 2014 posting), over 90% in the audiences (Vancouver, Burnaby, and Surrey campuses) were associated with one university or another.  Adding to the overwhelmingly ‘insider’ feel of this event, the speaker brought with him two students who had benefited from the organization he currently leads, Mitacs (a Canadian not-for-profit organization that offers funding for internships and fellowships at Canadian universities and formerly a mathematics NCE (Networks of Centres of Excellence of Canada program; a Canadian federal government program).

Despite the fact that this was billed as a ‘city conversation’ the talk focused largely on universities and their role in efforts to make Canada more productive and the wonderfulness of Mitacs. Unfortunately, what I wanted to hear and talk about was how Gupta, the students, and audience members saw the role of universities in cities, with a special reference to science.

It was less ‘city’ conversation and more ‘let’s focus on ourselves and our issues’ conversation. Mitacs, Canada’s productivity, and discussion about universities and innovation is of little inherent interest to anyone outside a select group of policy wonks (i.e., government and academe).

The conversation was self-referential until the very end. In the last minutes Gupta mentioned cities and science in the context of how cities in other parts of the world are actively supporting science. (For more about this interest elsewhere, you might find this Oct. 21, 2010 posting which features an article by Richard Van Noorden titled, Cities: Building the best cities for science; Which urban regions produce the best research — and can their success be replicated? as illuminating as I did.)

i wish Gupta had started with the last topic he introduced because Vancouverites have a lot of interest in science. In the last two years, TRIUMF, Canada’s national laboratory for particle and nuclear physics, has held a number of events at Science World and elsewhere which have been fully booked with waiting lists. The Peter Wall Institute for Advanced Studies has also held numerous science-themed events which routinely have waiting lists despite being held in one of Vancouver’s largest theatre venues.

If universities really want to invite outsiders into their environs and have city conversations, they need to follow through on the promise (e.g. talking about cities and science in a series titled “City Conversations”), as well as, do a better job of publicizing their events, encouraging people to enter their sacred portals, and addressing their ‘outsider’ audiences.

By the way, I have a few hints for the student speakers,

  • don’t scold your audience (you may find Canadians’ use of space shocking but please keep your indignation and sense of superiority to yourself)
  • before you start lecturing (at length) about the importance of interdisciplinary work, you might want to assess your audience’s understanding, otherwise you may find yourself preaching to the choir and/or losing your audience’s attention
  • before you start complaining that there’s no longer a mandatory retirement age and suggesting that this is the reason you can’t get a university job you may want to consider a few things: (1) your audience’s average age, in this case, I’d estimate that it was at least 50 and consequently not likely to be as sympathetic as you might like (2) the people who work past mandatory retirement may need the money or are you suggesting your needs are inherently more important? (3) whether or not a few people stay on past their ‘retirement’ age has less to do with your university job prospects than demographics and that’s a numbers game (not sure why I’d have to point that out to someone who’s associated with a mathematics organization such as Mitacs)

I expect no one has spoken or will speak to the organizers, Gupta, or the students other than to give them compliments. In fact, it’s unlikely there will be any real critique of having this presentation as part of a series titled “City Conversations” and that brings this posting back to institutional insularity. This problem is everywhere not just in universities and I’m increasingly interested in approaches to mitigating the tendency. If there’s anyone out there who knows of any examples where insularity has been tackled, please do leave a comment and, if possible, links.

From the quantum to the cosmos; an event at Vancouver’s (Canada) Science World

ARPICO (Society of Italian Researchers & Professionals in Western Canada) sent out an April 9, 2014 announcement,


May 7 [2014] “Unveiling the Universe” lecture registration now open:

Join Science World and TRIUMF on Wednesday, May 7, at Science World at TELUS World of Science in welcoming Professor Edward “Rocky” Kolb, the Arthur Holly Compton Distinguished Service Professor of Astronomy and Astrophysics at the University of Chicago, for his lecture on how the laws of quantum physics at the tiniest distances relate to structures in the universe at the largest scales. He also will highlight recent spectacular results into the nature of the Big Bang from the orbiting Planck satellite and the South Pole-based BICEP2 telescope.

Doors open at 6:15pm and lecture starts at 7pm. It will be followed by an audience Q&A session.

Tickets are free but registration is required. Details on the registration page (link below)
See for more information.

You can go here to the Science World website for more details and another link for tickets,

Join Science World, TRIUMF and guest speaker Dr Rocky Kolb on Wednesday, May 7 [2014], for another free Unveiling the Universe public lecture about the inner space/outer space connection that may hold the key to understanding the nature of dark matter, dark energy and the mysterious seeds of structure that grew to produce everything we see in the cosmos.

I notice Kolb is associated with the Fermi Lab, which coincidentally is where TRIUMF’s former director, Nigel Lockyer is currently located. You can find out more about Kolb on his personal webpage, where I found this description from his repertoire of talks,

Mysteries of the Dark Universe
Ninety-five percent of the universe is missing! Astronomical observations suggest that most of the mass of the universe is in a mysterious form called dark matter and most of the energy in the universe is in an even more mysterious form called dark energy. Unlocking the secrets of dark matter and dark energy will illuminate the nature of space and time and connect the quantum with the cosmos.

Perhaps this along with the next bit gives you a clearer idea of what Kolb will be discussing. He will also be speaking at TRIUMF, Canada’s national laboratory of particle and nuclear physics, from the events page,

Wed ,2014-05-07    14:00    Colloquium    Rocky Kolb, Fermilab     Auditorium    The Decade of the WIMP
Abstract:    The bulk of the matter in the present universe is dark. The most attractive possibility for the nature of the dark matter is a new species of elementary particle known as a WIMP (a Weakly Interacting Massive Particle). After a discussion of how a WIMP might fit into models of particle physics, I will review the current situation with respect to direct detection, indirect detection, and collider production of WIMPs. Rapid advances in the field should enable us to answer by the end of the decade whether our universe is dominated by WIMPs.

You may want to get your tickets soon as other lectures in the Unveiling the Universe series have gone quickly.

Creativity—Connection—Innovation—Dr. Arvind Gupta leads a City (Vancouver, Canada) Conversation this Thursday, April 17, 2014

There’s a lot of excitement about Simon Fraser University’s (SFU) upcoming City Conversation’s April 17, 2014 session featuring Dr. Arvind Gupta, computer scientist and newly appointed president of the University of British Columbia (UBC). Being held at 12:30 pm at SFU’s Harbour Centre campus, the event will be broadcast (this is a first for the City Conversations program) to both the Burnaby and Surrey campuses as well.  Here’s a description of the event and of the speaker, along with more details about the locations (from the April 13, 2014 announcement; Note: Links have been removed),,

This week’s City Conversation [titled: Creativity! Connection! Innovation!] will feature Dr. Arvind Gupta, who will discuss the world of research collaborations and innovation, and the role universities and student entrepreneurs play while bringing their ideas to market.

The event will take place at SFU’s Vancouver campus (Harbour Centre, 515 West Hastings St., Room 7000), from 12:30-1:30pm on April 17, and for the first time City Conversations will be simulcast and open to audiences at SFU’s Burnaby (IRMACS Theatre, ASB 10900) and Surrey (Room 5380) campuses.

Participants at SFU’s satellite locations will be able to comment and ask questions of the presenters through video conferencing, with SFU associate vice president, External Relations Joanne Curry (Burnaby) and SFU Surrey executive director Steve Dooley (Surrey) serving as moderators.

Dr. Gupta, former SFU professor and current CEO and scientific director of Mitacs [Canadian not-for-profit organization that offers funding for internships and fellowships at Canadian universities and formerly a mathematics NCE (Networks of Centres of Excellence of Canada) program {a Canadian federal government program}]. Launched at SFU in 1999, Mitacs supports national innovation by coordinating collaborative industry-university research projects with human capital development at its core.

I understand from City Conversations organizer, Michael Alexander, audio will be recorded and a file will be available. I’m not sure what the timing is but the City Conversations Past Event and Recordings webpage is where you can check for the audio file.

I noticed the talk seems to be oriented to the interests of students and staff but am hopeful that some reference will be made to the impact that creativity, connection, and innovation have on a city and how we in Vancouver could participate.

One biographical note of my own here, for two years I tried to contact Michael Alexander with an idea of a City Conversation. We had that conversation March 31, 2014. It was largely focused on my desire to have some science-oriented City Conversations and this is the outcome (and fingers crossed not the last one). I am thrilled to bits.  For anyone wondering what Gupta’s talk has to do with science, innovation is, usually and internationally, code for applied science and technology.

Fierce mice and brain disorders topic at at Vancouver’s (Canada) Café Scientifique March 2014 get together

Vancouver’s next Café Scientifique is being held in the back room of the The Railway Club (2nd floor of 579 Dunsmuir St. [at Seymour St.], Vancouver, Canada), on Tuesday, March 25,  2014 at 7:30 pm. Here’s the meeting description (from the March. 18, 2014 announcement),

Our speaker for the evening will be Dr. Elizabeth Simpson.  The title of her talk is:

“Fierce Mice” and “Good Viruses” are Impacting Brain Disorders

Mental illness accounts for over 15 percent of the burden of disease in the developed world, which is higher than all cancers combined. Nevertheless, from a research perspective, these “brain and behaviour” disorders are relatively underserved. Combinations of both genetic and environmental factors cause brain and behaviour disorders, and the Simpson laboratory is focused on exploring the genetic cause.

Dr. Simpson’s group was the first to find that the human gene (NR2E1) can correct violent behaviour in the fierce mouse; a model of pathological aggression. NR2E1 is involved in controlling stem cell proliferation in the brain, and the Simpson group has found an association between this gene and bipolar disorder (manic-depressive psychosis), a brain illness that is usually diagnosed in late teens to early twenties, but likely initiates in childhood.

Working to open a new therapeutic door for mental illness and other brain disorders, Dr. Simpson is leading a large genomics project to build MiniPromoters; tools designed to deliver therapeutic genes to defined regions of the brain. This technology will enable virus-based-gene therapies for many different brain disorders regardless of the underlying cause. Thus, the Simpson laboratory is bringing new technologies to childhood and adult brain and behaviour disorders, all of which are underserved by traditional therapeutic approaches.

You canl see this description of Simpson’s talk is taken from her page on the Centre for Molecular Medicine and Therapeutics webspace on the University of British Columbia website.