Category Archives: Vancouver

Quantum; the dance performance about physics in Vancouver, Canada (2 of 2)

Gilles Jobin kindly made time to talk about his arts residency at CERN (European Particle Physics Laboratory) prior to the performances of Quantum (a dance piece resulting from the residency) from Oct. 16 -18, 2014 at Vancouver’s Dance Centre.

Jobin was the first individual to be selected as an artist-in-residence for three months in the CERN/Geneva programme (there is another artist-in-residence programme at the laboratory which is the CERN/Ars Electronica programme). Both these artist-in-residence programmes were announced in the same year, 2011. (You can find out more about the CERN artist-in-residence programmes on the Collide@CERN webpage,

As a main strategy of CERN’s Cultural Policy for Engaging with the Arts, Collide@CERN is a 3-year artist’s residency programme initiated by Arts@CERN in 2011.

By bringing world-class artists and scientists together in a free exchange of ideas, the Collide@CERN residency programme explores elements even more elusive than the Higgs boson: human ingenuity, creativity and imagination.

See below for more information about the Collide@CERN artist residency programmes:

Collide@CERN Geneva Residency

Prix Ars Electronica Collide@CERN Residency

The Collide@CERN prize – an open call to artists working in different art forms to win a fully funded residency – will be awarded annually in two strands (Collide@CERN Geneva and Prix Ars Electronica Collide@CERN) until 2013. It comprises prize money and a residency grant for up to 3 months at CERN.

The winning artists will interact and engage with CERN scientists in order to take their artistic work to new creative dimensions.

The awards are made following two annual international open calls and the jury comprises the cultural partners as well as representatives from Arts@CERN, including scientists.

Planned engagement with artists at CERN is a relatively new concept according to an August 4, 2011 CERN press release,

Today CERN1 launches its cultural policy for engaging with the arts. Called ‘Great Arts for Great Science’, this new cultural policy has a central strategy – a selection process for arts engagement at the level of one of the world’s leading research organizations.

“This puts CERN’s engagement with the arts on a similar level as the excellence of its science,” said Ariane Koek, CERN’s cultural specialist.

CERN’s newly appointed Cultural Board for the Arts will be the advisers and guardians of quality. It is made up of renowned cultural leaders in the arts from CERN’s host-state countries: Beatrix Ruf, Director of the Kunsthalle Zurich; Serge Dorny, Director General of the Lyon Opera House; Franck Madlener, Director of the music institute IRCAM in Paris. Geneva and CERN are represented by Christoph Bollman of ArtbyGenève and Michael Doser, an antimatter scientist. Membership of the board is an honorary position that will change every three years.

The Cultural Board will select one or two art projects a year to receive a CERN letter of approval, enabling these projects to seek external funding for their particle-physics inspired work. This will also build up an international portfolio of CERN-inspired work over the years to come, in conjunction with the Collide@CERN (link sends e-mail) Artists Residency Programme, details of which will be announced in the coming month.

To date, Jobin is the only choreographer to become, so to speak, a member of the CERN community. It was a position that was treated like a job. Jobin went to his office at CERN every day for three months to research particle physics. He had two science advisors, Nicholas Chanon and Michael Doser to help him gain an understanding of the physics being studied in the facility. Here’s Jobin describing his first experiences at CERN (from Jobin’s Collide Nov. 13, 2012 posting),

When I first arrived at Cern, I was captivated by the place and overwhelmed by the hugeness of the subject: Partical [sic] physics… And I had some serious catch up to do… Impressed by the two introduction days in which I had the opportunity to meet many different scientists, Ariane Koeck told me “not to panic” and “to spend my first month following my instinct and not my head…”. …

I found out about the 4 fundamental forces and the fact that gravity was the weakest of all the forces. For a contemporary dancer formed basically around the question of gravity and “groundness” that came as a total shock! I was not a “pile of stuff”, but particles bound together by the strong force and “floating” on the surface of the earth… Me, the earth, you readers, the LHC flying at incredible speed through space, without any of us, (including the physicists!) noticing anything…  Stardust flying into space… I was baffled…

Jobin was required deliver two public lectures, one at the beginning of his residency and the other at the end, as well as, a series of ‘interventions’. He instituted four ‘interventions’, one each in CERN’s library, data centre, anti-matter hall, and cafeteria. Here’s an image and a description of what Jobin was attempting with his library intervention (from his Nov. 13, 2012 posting),

CERN library dance intervention Credit: Gilles Jobin

CERN library dance intervention Credit: Gilles Jobin

 My idea was to “melt” our bodies into the timeline of the library. Like time chameleons, we were to adapt our movements and presence to the quiet and studious atmosphere of the library and be practically unnoticed. My postulate was to imagine that the perception of time is relative; there was a special texture to “time” inside the library. How long is an afternoon in a library? Never ending or passing by too quickly? It is a shared space, with the unique density you can feel in studious atmosphere and its user’s different virtual timelines. We melted into the element of the library and as we guessed, our “unusual” presence and actions did not create conflicts with our surroundings and the students at work. It was a bit like entering slowly into water and becoming part of the element without disturbing its balance. The time hypothesis worked… I wanted to do more site specific interventions in Cern because I was learning things differently. Some understanding was going through my body. Being in action into the labs…

It was only after the residency was completed that he started work on Quantum (producing a dance piece was not a requirement of the residency). After the residency, he did bring his science advisors, Chanon and Doser to his studio and brought his studio to CERN. Jobin managed to get rehearsal time in one of the halls that is 100 metres directly above the large hadron collider (LHC) during the time period when scientists were working to confirm the existence of the Higgs Boson). There were a number of announcements ‘confirming’ the Higgs. They started in July 2012 and continued, as scientists refined their tests, to March 2013 (Wikipedia entry)  when a definitive statement was issued. The definitive statement was recently followed with more confirmation as a June, 25, 2014 article by Amir Aczel for Discover declares Confirmed: That Was Definitely the Higgs Boson Found at LHC [large hadron collider].

As scientists continue to check and doublecheck, Jobin presented Quantum in October 2013 for the first time in public, fittingly, at CERN (from Jobin’s Oct. 3, 2013 blog posting),

QUANTUM @ CERN OPEN DAYS CMS-POINT5-CESSY. Credit: Gilles Jobin

QUANTUM @ CERN OPEN DAYS CMS-POINT5-CESSY. Credit: Gilles Jobin

Jobin was greatly influenced by encounters at CERN with Julius von Bismarck who won the 2012 Prix Ars Electronica Collide@CERN Residency and with his science advisors, Dosen and Chanon. Surprisingly, Jobin was also deeply influenced by Richard Feynman (American physicist; 1918 – 1988). “I loved his approach and his humour,” says Jobin while referring to a book Feynman wrote, then adding,  “I used Feynman diagrams, learning to draw them for my research and for my choreographic work on Quantum.”

For those unfamiliar with Feynman diagrams, from the Wikipedia entry (Note: Links have been removed),

In theoretical physics, Feynman diagrams are pictorial representations of the mathematical expressions describing the behavior of subatomic particles. The scheme is named for its inventor, American physicist Richard Feynman, and was first introduced in 1948. The interaction of sub-atomic particles can be complex and difficult to understand intuitively, and the Feynman diagrams allow for a simple visualization of what would otherwise be a rather arcane and abstract formula.

There’s also an engaging Feb. 14, 2010 post by Flip Tanedo on Quantum Diaries with this title, Let’s draw Feynman diagrams! and there’s this paper, by David Kaiser on the Massachusetts Institute of Technology website, Physics and Feynman’s Diagrams; In the hands of a postwar generation, a tool intended to lead quantum electrodynamics out of a decades-long morass helped transform physics. In the spirit of Richard Feynman, both the Tanedo post and Kaiser paper are quite readable. Also, here’s an example (simplified) of what a diagram (from the Quantum Diaries website) can look like,

[downloaded from http://www.quantumdiaries.org/2010/02/14/lets-draw-feynman-diagams/]

[downloaded from http://www.quantumdiaries.org/2010/02/14/lets-draw-feynman-diagams/]

Getting back to Quantum (dance), Jobin describes this choreography as a type of collaboration where the dancers have responsibility for the overall look and feel of the piece. (For more details, Jobin describes his ‘momement generators’ in the radio interview embedded in part 1 of this piece on Quantum.)

In common with most contemporary dance pieces, there is no narrative structure or narrative element to the piece although Jobin does note that there is one bit that could be described as a ‘Higgs moment’ where a dancer is held still by his or her feet, signifying the Higgs boson giving mass to the universe.

As to why Vancouver, Canada is being treated to a performance of Quantum, Jobin has this to say, “When I knew the company was traveling to New York City and then San Francisco, I contacted my friend and colleague, Mirna Zagar, who I met at a Croatian Dance Week Festival that she founded and produces every year.”  She’s also the executive director for Vancouver’s Dance Centre. “After that it was easy.”

Performances are Oct. 16 – 18, 2014 at 8 pm with a Post-show artist talkback on October 17, 2014.

Compagnie Gilles Jobin

$30/$22 students, seniors, CADA members/$20 Dance Centre members
Buy tickets online or call Tickets Tonight: 604.684.2787 (service charges apply to telephone bookings)

You can find part 1 of this piece about Quantum in my Oct. 15, 2014 posting. which includes a video, a listing of the rest of the 2014 tour stops, a link to an interview featuring Jobin and his science advisor, Michael Doser, on a US radio show, and more.

Finally, company dancers are posting video interviews (the What’s Up project mentioned in part 1) with dancers they meet in the cities where the tour is stopping will be looking for someone or multiple someones in Vancouver. These are random acts of interviewing within the context of the city’s dance community.

Vancouver’s Georgia Straight has featured an Oct. 15, 2014 article by Janet Smith about Jobin and his particle physics inspiration for Quantum.

The Higgs boson on its own has inspired other creativity as noted in my Aug. 1, 2012 posting (Playing and singing the Higgs Boson).

As noted in my Oct. 8, 2013 post, Peter Higgs (UK) after whom the particle was named  and François Englert (Belgium) were both awarded the 2013 Nobel Prize in Physics for their contributions to the theory of the Higgs boson and its role in the universe.

Quantum; an upcoming dance performance in Vancouver, Canada (1 of 2)

Oct. 16 – 18, 2014 are the Vancouver (Canada) dates when you can catch Compagnie Gilles Jobin performing its piece, Quantum, based on choreographer Gilles Jobin’s residency CERN (Europe’s particle physics laboratory). The Vancouver stop is part of a world tour which seems to have started in New York City (US) and San Francisco (US).

News flash: There is a special lecture by Gilles Jobin at TRIUMF, Canada’s National Laboratory for Particle and Nuclear Physics at 11 am on Oct. 15, 2014 in the auditorium. Instructions for getting to TRIUMF can be found here.

Back to the tour, here’s what the dance company has planned for the rest of October and November (Chile is Chili, Brazil is Brésil, Switzerland is Suisse and Peru is Pérou in French), from the gillesjobin.com Tour webpage,

- 21 octobre
QUANTUM
Festival Danzalborde – Centro Cultural Matucana 100 – Santiago de Chile – Chili

– 23 octobre
QUANTUM
Festival Danzalborde – Parque Cultural de Valparaiso, Valparaiso – Chili

– 26 octobre
QUANTUM
Bienal Internacional de dança do Ceará – Fortaleza – Brésil

– 29 et 30 octobre
En collaboration avec swissnex Brésil au Forum Internacional de dança FID, Centro Cultural Banco do Brasil – Belo Horizonte – Brésil

– 2 novembre
En collaboration avec swissnex Brésil au Festival Panorama, Teatro Carlos Gomes – Rio de Janeiro – Brésil

– Du 6 au 9 novembre
QUANTUM
Arsenic – Lausanne – Suisse

– Du 13 au 15 novembre
A+B=X
Arsenic – Lausanne – Suisse

– 21 et 22 novembre
QUANTUM
Festival de Artes Escenicas de Lima FAEL – Teatro Municipal, Lima – Pérou

As ambitious as this touring programme seems, it can’t be any more ambitious than trying to represent modern physics in dance. Here’s more about Quantum from the (Vancouver) Dance Centre’s events page,

Art and science collide in QUANTUM, the result of Gilles Jobin’s artistic residency at the largest particle physics laboratory in the world – CERN in Geneva, where he worked with scientists to investigate principles of matter, gravity, time and space in relation to the body. Six dancers power through densely textured, sculptural choreography, to evoke the subtle balance of forces that shape our world. Illuminated by Julius von Bismarck’s light-activated kinetic installation built from industrial lamps, and accompanied by an electronic score by Carla Scaletti which incorporates data from the Large Hadron Collider, QUANTUM epitomizes the adventurous, searching spirit of artistic and scientific inquiry.

Response to the performances in New York City were interesting, that is to say, not rapturous but intriguing nonetheless. From an Oct. 3, 2014 review by Gia Kourlas for the New York Times,

Performed Thursday night [Oct. 2, 2014] at the Fishman Space at BAM Fisher — and included in the French Institute Alliance Française’s Crossing the Line festival — this spare 45-minute work is a duet of movement and light. Instead of dramaturges, there are scientific advisers. Jean-Paul Lespagnard’s jumpsuits reimagine particles as a densely patterned uniform of green, purple and white. (They’re cute in a space-camp kind of way.) Carla Scaletti’s crackling, shimmering score incorporates data from the Large Hadron Collider, CERN’s powerful particle accelerator.

But in “Quantum,” translating scientific ideas, however loosely, into dance vocabulary is where the trouble starts. A lunge is still a lunge.

Robert P Crease in an Oct. 7, 2014 posting (for Physics World on the Institute of Physics website) about one of the performances in New York City revealed something about his relationship to art/science and about Gilles Jobin’s work,

I’m fascinated by the interactions between science and culture, which is what led me to the Brooklyn Academy of Music (BAM), which was hosting the US première of a dance piece called Quantum that had previously debuted where it had been created, at CERN. …

I ran into Gilles Jobin, who had choreographed Quantum during an artist’s residency at CERN. I asked him the following question: “If a fellow choreographer who knew nothing about the piece were to watch it, is there anything in the movement or structure of the work that might cause that person to say ‘That choreographer must have spent several months at a physics lab!’?” Gilles paused, then said “No.” The influence of the laboratory environment, he said, was in inspiring him to come up with certain kinds of what he called “movement generators”, or inspirations for the dancers to create their own movements. “For instance, all those symmetries – like ghost symmetries – that I didn’t even know existed!” he said. I asked him why he had chosen the work’s title. “I considered other names,” he said. “Basically, Quantum was just a convenient tag that referred to the context – the CERN laboratory environment – in which I had created the work.”

Jobin and Michael Doser (Senior research physicist at CERN) talked to Ira Flatow host of US National Public Radio’s (NPR) Science Friday programme in an Oct. 3, 2014 broadcast which is available as a podcast on the Dance and Physics Collide in ‘Quantum’ webpage. It’s fascinating to hear both the choreographer and one of the CERN scientists discussing Jobin’s arts residency and how they had to learn to talk to each other.

NPR also produced a short video highlighting moments from one of the performances and showcasing Jobin’s commentary,

Produced by Alexa Lim, Associate Producer (NPR, Science Friday)

The Dance Centre (Vancouver) has an Oct. 7, 2014 post featuring Jobin on its blog,

How did you get involved with dance?

I wanted to be an actor and thought it was a good idea to take dance classes. Later, back at acting classes I realized how comfortable I was with movement and uncomfortable with words. I must admit that I was a teenager at the time and the large majority of girls in the dance classes was also a great motivation…

Have you always been interested in science?

I was an arty kid that did not have any interest in science. I was raised in an artistic family – my father was a geometrical painter – I thought science was not for me. Art, literature, “soft” science, theatre, that was my thing. It was only at the age of 48, in one of the greatest laboratories there is, that I started to see that I could become “science able”. I realized that particle physics was not only about math, but also had great philosophical questions: that I could get the general sense of what was going down there and follow with passion the discovery. Science is like contemporary art, you need to find the door, but when you get in you can take everything on and make up your own mind about it without being a specialist or a geek.

If you didn’t have a career in dance, what might you be doing?

Ski instructor!

Adding their own measure of excitement to this world tour of Quantum, the company’s dancers are producing videos of interviews with choreographers and dancers local to the city the company is visiting (from the What’s Up project page or the gillesjobin.com website),

WHAT’S UP est un projet des danseurs de la Cie Gilles Jobin : Catarina Barbosa, Ruth Childs, Susana Panadés Díaz, Bruno Cezario, Stanislas Charré et Denis Terrasse .

Dans chaque ville visitée pendant la tournée mondiale de QUANTUM, ils partent à la rencontre des danseurs/chorégraphes pour connaître le contexte de la danse contemporaine locale et partager leurs différentes réalités.

Retrouvez ici toutes les interviews

The latest interview is an Oct. 10, 2014 video (approximate 2 mins.) focusing on Katherine Hawthorne who in addition to being a dancer trained as a physicist.

Part 2 is based on an interview I had with Gilles Jobin on Tuesday, Oct. 14, 2014 an hour or so after his and his company’s flight landed in Vancouver.

The chemistry of beer at Vancouver’s (Canada) Sept. 30, 2014 Café Scientifique

Vancouver’s next Café Scientifique is being held in the back room of the The Railway Club (2nd floor of 579 Dunsmuir St. [at Seymour St.], Vancouver, Canada), on Sept. 30,  2014. Here’s the meeting description (from the Sept. 23, 2014 announcement),

Our next café will happen on Tuesday September 30th, 7:30pm at The Railway Club. Our speaker for the evening will be Dr. Joel Kelly. The title of his talk and abstract for his talk is:

The Chemistry of Beer

Why does Guinness pair perfectly with a hearty stew? Why are the soft waters of the Czech Republic better for brewing lagers, while the hard waters of Burton, England ideal for brewing India Pale Ales? What do hops and marijuana share in common? The answer to all of these questions is CHEMISTRY! I will present a story in four parts (malt, yeast, hops and water) on the chemistry of beer. We will sample a variety of beers across the spectrum to highlight the wonderful variety of molecules that beer can provide.

Please note: The Railway Club have kindly agreed to have a sampler of 4 4 oz beers available for $7.50 inc. tax which will complement this talk. You are advised to arrive early so you have enough time to get your beer before 7:30 pm.

I was able to find more information about Joel Kelly who until recently was a postdoctoral research in Mark MacLachlan’s laboratory at the University of British Columbia. (MacLachlan was interviewed here prior to his Café Scientifique presentation in a March 25, 2011 posting.)

Currently a chemist at BC Research according to his LinkedIn profile, Kelly gave an interview about beer and his interests for a podcast (approximately 5 mins.) which can be found in this Nov. 7, 2013 posting on the MacLachlan Group blog.

Canadian company, Nanotech Security Corp. hopes to purchase Fortress Optical Features

Nanotech Security Corp. started life as a spin-off company from Simon Fraser University in Vancouver, Canada. A  Jan. 17, 2011 posting and a followup Sept. 29, 2011 posting will probably give you more information about the technology and the company’s beginnings than you every thought you’d want.

For those interested in the company’s current expectations, an Aug. 27, 2014 news item on Nanotechnology Now describes Nanotech Security Corp.’s plan to purchase another business (also Canadian with the parent company [which is not being purchased] headquartered in North Vancouver},

Nanotech Security Corp. (TSXV:NTS) (OTCQX:NTSFF) (“Nanotech” or “the Company”) today announces an agreement with Fortress Global Securities Sarl, a subsidiary of TSX listed Fortress Paper Ltd. (“Fortress Paper”), to purchase 100% of Fortress Optical Features Ltd. (“Fortress Optical Features”), a producer of optical thin film (“OTF”) used as security threads in banknotes in several countries. The definitive share and loan purchase agreement (the “Purchase Agreement”) provides for Nanotech to acquire 100% of the issued and outstanding securities of Fortress Optical Features for consideration of up to $17.5 million, of which 3 million Nanotech shares (up to $4.5 million) is contingent on the future operating performance of Fortress Optical Features. Nanotech has also entered into an agreement with Canaccord Genuity Corp. (“Canaccord Genuity”) to act as sole lead manager and book-runner, and including Craig-Hallum Capital Group, in respect of a private placement of subscription receipts of the Company convertible into Nanotech common shares (“Shares”) and Share purchase warrants (“Warrants”) in a targeted range of $9.0 million to $16.0 million as more fully described below. To date, subscription agreements in excess of $8.0 million have been received which is an amount sufficient to pay the cash portion of the acquisition under the Purchase Agreement. All monetary amounts are in Canadian dollars.

An Aug. 26, 2014 Nanotech Security Corp. news release, which originated the news item, provides additional details,

The acquisition of Fortress Optical Features will serve as a platform to accelerate commercialization of Nanotech’s KolourOptik technology by integrating it into Fortress Optical Features’ product line as an addition of KolourOptik images to the OTF threads.

Nanotech will acquire Fortress Optical Features’ state-of-the-art building and vacuum metal deposition equipment, located near Ottawa.

The transaction combines complementary businesses that can leverage established banknote customer relationships to accelerate market entry and leapfrog competitive technologies. To date, Fortress Optical Features’ technology has been utilized by 11 international currencies.

Fortress Optical Features’ CEO Igi LeRoux, and COO, Ron Ridley, will be integrated into the Company’s senior management.

Fortress has the right to appoint one director to the Nanotech board and Nanotech will appoint a director to a Fortress affiliate concerned with security paper production.
Cash portion of the purchase price to be funded by a subscription receipts offering at $1.50, each convertible into a Share and one-half Warrant as fully described below.
Concurrent financing and acquisition closings are scheduled for September 10, 2014.

“We believe this will be a transformational transaction for Nanotech”, stated Doug Blakeway, President and CEO of Nanotech. “By layering our KolourOptik nanotechnology onto Fortress Optical Features’ security threads which are currently used in numerous currencies, we will create a next-generation product for the banknote industry”.

Mr. Blakeway added, “Additionally, the transaction will expand Nanotech’s current IP portfolio for optical security features to include Fortress Optical Features’ 14 current patent applications which should enhance our ability to compete in other commercial spaces such as passports as well as product branding and authentication”.

Fortress Optical Features’ core business is optical thin film material used in security threads incorporated in banknotes in several countries. Originally developed by the Bank of Canada, and subsequently sold to Fortress Optical Features in 2011, this technology was deployed on Canadian banknotes from 1989 until 2011 as well as ten other international currencies. In the twelve month period ending December 31, 2013 Fortress Optical Features generated approximately $2.3 million in revenue and its existing plant could service production of about eight times the level of production which generated this revenue.

Fortress Optical Features recently invested $4.2 million to renovate its existing production facility and added $1.0 million in new equipment over the past few years. As part of the transaction, Nanotech will acquire Fortress Optical Features’ state-of-the-art production facility and high technology OTF production equipment. Fortress Optical Features is currently pursuing business in some of the world’s largest countries and sees potential new opportunities internationally. According to Secura Monde International, the top five banknote producing economies include China, India, the European Union, the United States and Indonesia.

TRANSACTION DETAILS AND CLOSING CONDITIONS

Under the terms of the Purchase Agreement, Nanotech will pay up to $17.5 million to be satisfied by a combination of $7 million cash, 5 million common shares of Nanotech and a secured vendor take-back note of $3 million with an interest rate of 4% per annum. Of this consideration 2 million shares will have a four month hold period from closing and 3 million shares will be escrowed and shall be released based on certain specific performance milestones based on sales of product to new customers over up to 5 years. Shares may be released early in the event of a sale of the business or change of control of Nanotech. Contingent shares not released after 5 years will be cancelled. Details of the share release formula will be found in the Purchase Agreement to be filed at www.sedar.com.

All Shares have a deemed value of $1.50 and the acquisition and financing transactions do not constitute a change of business nor a change of control for Nanotech but will be treated under TSX Venture Exchange policies as a fundamental acquisition.

Completion of the transaction will be subject to customary closing conditions, including receipt of all regulatory approvals of the TSXV as well as the listing of the common shares issuable in connection with the transaction, including those underlying the subscription receipts. If Nanotech elects to terminate the acquisition in reliance on an allowable condition, a $600,000 break fee payable in Shares is due to Fortress Paper. Nanotech and Fortress Optical Features anticipate the transaction and financing will close on or about September 10, 2014.

RELATED AGREEMENT DETAILS

As part of Nanotech’s acquisition of Fortress Optical Features, the parties and/or their affiliates have entered into certain ancillary agreements. These include a supply agreement under which Fortress Optical Features will continue to supply OTF security threads to Fortress Paper’s Swiss-based Landqart specialty paper division. Landqart will enjoy favoured customer status subject to certain minimum purchase obligations. Under a lease and related shared services agreement, a Fortress Paper affiliate will lease approximately 2/3 of the 100,000 sq ft building being acquired as part of Fortress Optical Features assets and the parties will share the costs of steam production, electrical power, security, and administration services. The $3 million note is fully secured against Fortress Optical Features shares and assets.

SUBSCRIPTION RECEIPT OFFERING

Nanotech has entered into an agreement with Canaccord Genuity, acting as sole lead manager and sole bookrunner, and including Craig-Hallum Capital Group, to sell on a best-efforts marketed private placement basis, up to approximately 10,667,000 subscription receipts of the Company (the “Subscription Receipts”) at a price of $1.50 per Subscription Receipt (the “Subscription Price”), for gross proceeds to Nanotech of up to $16.0 million.

The Subscription Receipts will automatically convert, without additional payment, into one common share and one-half of a common share purchase warrant of the Company for each Subscription Receipt upon completion of the transaction. Subject to certain conditions, each whole purchase warrant will entitle the holder to purchase one common share of Nanotech at a price of $1.90 for a period of one year from issuance. The warrants are subject to accelerated expiry in the event that the common shares of Nanotech trade on the TSX Venture Exchange at $2.25 or more for a ten consecutive day period after the four month resale restricted period applicable to the Shares in Canada expires. Completion of the Subscription Receipt offering is subject to certain conditions, including receipt of the approval of the TSXV and all other necessary regulatory approvals.

Net proceeds from the Subscription Receipt offering will be used by the Company to partially fund the purchase price payable for Fortress Optical Features and for general corporate purposes.

The Subscription Price represents a discount of approximately 6% to the closing price of $1.60 per common share of Nanotech on the TSXV on August 25, 2014 and a discount of approximately 7% over the 30-trading day volume-weighted average price of $ 1.61 per common share of Nanotech on the TSXV, up to and including August 25, 2014.

Neither TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release.

####

About Nanotech Security Corp.

Nanotech has been a leading innovator in the design and commercialization of advanced security products using nano-optical devices. Nanotech’s KolourOptik™ and Plasmogram™ optically variable devices (“OVD”s) are nanotechnology based product platforms originally inspired by the unique optical properties of the iridescent wings of the Blue Morpho butterfly. Nanotech OVD images produce intense, high definition images that are ideal for brand authentication and for distinguishing currency, documents, personal identification, consumer electronics, etc. from fakes. Nanotech’s KolourOptik OVD platform creates unique, easy to authenticate images through interaction of light with nano-sized (billionth of a meter) arrays of surface indentation structures imbedded through algorithms and electron beams into various substrates. These nanostructures create vivid colour images, activated by a simple tilt or rotation, and achieve higher resolutions than the best LED-displays currently available, as well as having optical properties not achievable with holograms.

Additional information about Nanotech and its technologies can be found on its website www.nanosecurity.ca or the Canadian disclosure filings website www.sedar.com or the OTCMarkets disclosure filings website www.otcmarkets.com

ABOUT FORTRESS OPTICAL FEATURES

Fortress Optical Features produces optically variable thin film security material for the security threads contained in certain previous Canadian banknotes and various other international currency denominations. The film is a unique combination of layered or ‘stacked’ thin film materials to produce a predictable colour replay. Additional features of the film include differing optical features or colors which appear when the banknote is tilted. The material was developed by the Bank of Canada in coordination with the National Research Council of Canada in the early 1980s and was first used as a patch on Bank of Canada $20, $50, $100 and $1,000 denominations of Birds of Canada series issued from 1988-1993 and also used on all Canadian Journey denominations issued from 2004 –2011. Fortress Optical Features’ high security products are marketed to security paper manufacturers throughout the world.

Additional information about Fortress Optical Features and its technologies can be found on its website www.fortresspaper.com/company/optical-security-features

This News Release contains forward-looking statements about the proposed acquisition by Nanotech of all of the issued and outstanding securities of Fortress Optical Features and the related offering of Subscription Receipts. Forward-looking statements are frequently, but not always, identified by words such as “expects”, “anticipates”, “believes”, “intends”, “estimates”, “predicts”, “potential”, “targeted” “plans”, “possible” and similar expressions, or statements that events, conditions or results “will”, “may”, “could” or “should” occur or be achieved.

These forward-looking statements include, without limitation, statements about our market opportunities, strategies, competition, and the Company’s views that its nano-optical technology will continue to show promise for mass production and commercial application. The principal risks related to these forward-looking statements are that the Company’s intellectual property claims will not prove sufficiently broad or enforceable to provide the necessary commercial protection and to attract the necessary capital and/or that the Company’s products will not be able to displace entrenched hologram, metalized strip tagging, and other conventional anti-counterfeiting technologies sufficiently to allow for profitability.

There can be no assurance that the transaction will occur or that the anticipated strategic benefits and operational synergies will be realized. The transaction is subject to the successful closing of the Subscription Receipt offering and to various regulatory approvals, including approvals by the TSXV, and the fulfilment of certain conditions, and there can be no assurance that any such approvals will be obtained and/or any such conditions will be met. The transaction and the Subscription Receipt offering could be modified, restructured or terminated.

Readers are cautioned not to place undue reliance on these forward-looking statements, which reflect Nanotech’s expectations only as of the date of this News Release. Nanotech disclaims any obligation to update or revise any forward-looking statements, whether as a result of new information, future events or otherwise, except as required by law.

This News Release is not an offer to sell or the solicitation of an offer to buy any securities in the United States or in any jurisdiction in which such offer, solicitation or sale would be unlawful. The securities described in this News Release have not been and will not be registered under the United States Securities Act of 1933, as amended, or any state securities laws and may not be offered or sold within the United States absent registration or an applicable exemption from the registration requirements of such laws.

This News Release is not an offer to sell or the solicitation of an offer to buy any securities in the United States or in any jurisdiction in which such offer, solicitation or sale would be unlawful. The securities described in this News Release have not been and will not be registered under the United States Securities Act of 1933, as amended, or any state securities laws and may not be offered or sold within the United States absent registration or an applicable exemption from the registration requirements of such laws.

So there you have it. No one is responsible for anything but they hope for the best.

The next megathrust earthquake at Vancouver’s (Canada) August 26, 2014 Café Scientifique

Vancouver’s next Café Scientifique is being held in the back room of the The Railway Club (2nd floor of 579 Dunsmuir St. [at Seymour St.], Vancouver, Canada), on Tuesday, August 26,  2014 at 7:30 pm. Here’s the meeting description (from the August 19, 2014 announcement),

Our speaker for the evening will be Dr. Carlos Ventura,the Director of the Earthquake Engineering Research Facility (EERF) at the University of British Columbia.  The title of his talk is:

A Megathrust Earthquake in the West Coast – The clock is ticking

The theme of the talk is about the effects of megathrust earthquakes in the last ten years in the built environment, and the lessons that we have learned from them.  These are helping us understand better what would be the possible effects of the “big one” on the West Coast of BC.  Some of the research that we are doing at UBC to better understand the effects of this type of earthquake will be discussed.

From Dr. Carlos Ventura’s UBC Faculty webpage,

Dr. Carlos Ventura is currently the Director of the Earthquake Engineering Research Facility (EERF) at UBC and has more than 30 years of experience as a structural engineer.  Dr. Ventura’s areas of research are in Structural Dynamics and Earthquake Engineering. He has been conducting research on the dynamic behavior and analysis of structural systems subjected to extreme dynamic loads, including severe ground shaking for more than twenty years. His research work includes experimental studies in the field and in the laboratory of structural systems and components.   Research developments have included development and implementation of performance-based design methods for seismic retrofit of low rise school buildings, novel techniques for regional estimation of damage to structures during earthquakes, detailed studies on nonlinear dynamic analysis of structures and methods to evaluate the dynamic characteristics of large Civil Engineering structures. …

You can find out more about the Earthquake Engineering Research Facility (EERF) here.

Art (Lawren Harris and the Group of Seven), science (Raman spectroscopic examinations), and other collisions at the 2014 Canadian Chemistry Conference (part 3 of 4)

Dramatic headlines (again)

Ignoring the results entirely, Metro News Vancouver, which favours the use of the word ‘fraud’, featured it in the headline of a second article about the testing, “Alleged Group of Seven work a fraud: VAG curator” by Thandi Fletcher (June 5, 2014 print issue); happily the online version of Fletcher’s story has had its headline changed to the more accurate: “Alleged Group of Seven painting not an authentic Lawren Harris, says Vancouver Art Gallery curator.” Fletcher’s article was updated after its initial publication with some additional text (it is worth checking out the online version even if you’re already seen the print version). There had been a second Vancouver Metro article on the testing of the authenticated painting by Nick Wells but that in common, with his June 4, 2014 article about the first test, “A fraud or a find?” is no longer available online. Note: Standard mainstream media practice is that the writer with the byline for the article is not usually the author of the article’s headline.

There are two points to be made here. First, Robertson has not attempted to represent ‘Autumn Harbour’ as an authentic Lawren Harris painting other than in a misguided headline for his 2011 news release.  From Robertson’s July 26, 2011 news release (published by Reuters and published by Market Wired) where he crossed a line by stating that Autumn Harbour is a Harris in his headline (to my knowledge the only time he’s done so),

Lost Lawren Harris Found in Bala, Ontario

Unknown 24×36 in. Canvas Piques a Storm of Controversy

VANCOUVER, BRITISH COLUMBIA–(Marketwire – July 26, 2011) –
Was Autumn Harbour painted by Lawren Harris in the fall of 1912? That summer Lawren Harris was 26 years old and had proven himself as an accomplished and professional painter. He had met J.E.H. MacDonald in November of 1911. They became fast friends and would go on to form the Group of Seven in 1920 but now in the summer of 1912 they were off on a sketching expedition to Mattawa and Temiscaming along the Quebec-Ontario border. Harris had seen the wilderness of the northern United States and Europe but this was potentially his first trip outside the confines of an urban Toronto environment into the Canadian wilderness.

By all accounts he was overwhelmed by what he saw and struggled to find new meaning in his talents that would capture these scenes in oil and canvas. There are only two small works credited to this period, archived in the McMichael gallery in Kleinburg, Ontario. Dennis Reid, Assistant Curator of the National Gallery of Canada stated in 1970 about this period: “Both Harris and (J.E.H.) MacDonald explored new approaches to handling of colour and overall design in these canvases. Harris in particular was experimenting with new methods of paint handling, and Jackson pointed out the interest of the other painters in these efforts, referring to the technique affectionately as ‘Tomato Soup’.” For most authorities the summer and fall of 1912 are simply called his ‘lost period’ because it was common for Harris to destroy, abandon or give away works that did not meet his standards. The other trait common to Harris works, is the lack of a signature and some that are signed were signed on his behalf. The most common proxy signatory was Betsy Harris, his second wife who signed canvases on his behalf when he could no longer do so.

So the question remains. Can an unsigned 24×36 in. canvas dated to 1900-1920 that was found in a curio shop in Bala, Ontario be a long lost Lawren Harris? When pictures were shown to Charles C. Hill, Curator of Canadian Art, National Gallery of Canada, he replied: “The canvas looks like no Harris I have ever seen…” A similar reply also came from Ian Thom, Head Curator for the Vancouver Art Gallery: “I do not believe that your work can be connected with Harris in any way.” [emphases mine] Yet the evidence still persists. The best example resides within the National Art Gallery. A 1919, 50.5 X 42.5 in. oil on rough canvas shows Harris’s style of under painting, broad brush strokes and stilled composition. Shacks, painted in 1919 and acquired the Gallery in 1920 is an exact technique clone of Autumn Harbour. For a list of comparisons styles with known Harris works and a full list of the collected evidence please consult www.1912lawrenharris.ca/ and see for yourself.

If Robertson was intent on perpetrating a fraud, why would he include the negative opinions from the curators or attempt to authenticate his purported Harris? The 2011 website is no longer available but Robertson has established another website, http://autumnharbour.ca/.

It’s not a crime (fraud) to have strong or fervent beliefs. After all, Robertson was the person who contacted ProSpect* Scientific to arrange for a test.

Second, Ian Thom, the VAG curator did not call ‘Autumn Harbour’ or David Robertson, a fraud. From the updated  June 5, 2014 article sporting a new headline by Thandi Fletcher,

“I do not believe that the painting … is in fact a Lawren Harris,” said Ian Thom, senior curator at the Vancouver Art Gallery, “It’s that simple.”

It seems Thom feels as strongly as Robertson does; it’s just that Thom holds an opposing opinion.

Monetary value was mentioned earlier as an incentive for Robertson’s drive to prove the authenticity of his painting, from the updated June 5, 2014 article with the new headline by Thandi Fletcher,

Still, Robertson, who has carried out his own research on the painting, said he is convinced the piece is an authentic Harris. If it were, he said it would be worth at least $3 million. [emphasis mine]

“You don’t have to have a signature on the canvas to recognize brushstroke style,” he said.

Note: In a June 13, 2014 telephone conversation, Robertson used the figure of $1M to denote his valuation of Autumn Harbour and claimed a degree in Geography with a minor in Fine Arts from the University of Waterloo. He also expressed the hope that Autumn Harbour would prove to be a* Rosetta Stone of sorts for art pigments used in the early part of the 20th century.

As for the owner of Hurdy Gurdy and the drama that preceded its test on June 4, 2014, Fletcher had this in her updated and newly titled article,

Robertson said the painting’s owner, local Vancouver businessman Tony Ma, had promised to bring the Harris original to the chemistry conference but pulled out after art curator Thom told him not to participate.

While Thom acknowledged that Ma did ask for his advice, he said he didn’t tell him to pull out of the conference.

“It was more along the lines of, ‘If I were you, I wouldn’t do it, because I don’t think it’s going to accomplish anything,’” said Thom, adding that the final decision is up to Ma. [emphasis mine]

A request for comment from Ma was not returned Wednesday [June 5, 2014].

Thom, who already examined Robertson’s painting a year ago [in 2013? then, how is he quoted in a 2011 news release?], said he has no doubt Harris did not paint it.

“The subject matter is wrong, the handling of the paint is wrong, and the type of canvas is wrong,” he said, adding that many other art experts agree with him.

Part 1

Part 2

Part 4

* ‘ProsPect’ changed to ‘ProSpect’ on June 30, 2014. Minor grammatical change made to sentence: ‘He also expressed the hope that Autumn Harbour would prove to a be of Rosetta Stone of sorts for art pigments used in the early part of the 20th century.’ to ‘He also expressed the hope that Autumn Harbour would prove to be a* Rosetta Stone of sorts for art pigments used in the early part of the 20th century.’ on July 2, 2014.

ETA July 14, 2014 at 1300 hours PDT: There is now an addendum to this series, which features a reply from the Canadian Conservation Institute to a query about art pigments used by Canadian artists and access to a database of information about them.

Lawren Harris (Group of Seven), art authentication, and the Canadian Conservation Insitute (addendum to four-part series)

Art (Lawren Harris and the Group of Seven), science (Raman spectroscopic examinations), and other collisions at the 2014 Canadian Chemistry Conference (part 2 of 4)

Testing the sample and Raman fingerprints

The first stage of the June 3, 2010 test of David Robertson’s Autumn Harbour, required taking a tiny sample from the painting,. These samples are usually a fleck of a few microns (millionths of an inch), which can then be tested to ensure the lasers are set at the correct level assuring no danger of damage to the painting. (Robertson extracted the sample himself prior to arriving at the conference. He did not allow anyone else to touch his purported Harris before, during, or after the test.)

Here’s how ProSpect* Scientific describes the ‘rehearsal’ test on the paint chip,

Tests on this chip were done simply to ensure we knew what power levels were safe for use on the painting.  While David R stated he believed the painting was oil on canvas without lacquer, we were not entirely certain of that.  Lacquer tends to be easier to burn than oil pigments and so we wanted to work with this chip just to be entirely certain there was no risk to the painting itself.

The preliminary (rehearsal) test resulted in a line graph that showed the frequencies of the various pigments in the test sample. Titanium dioxide, for example, was detected and its frequency (spectra) reflected on the graph.

I found this example of a line graph representing the spectra (fingerprint) for a molecule of an ultramarine (blue) pigment along with a general explanation of a Raman ‘fingerprint’. There is no indication as to where the ultramarine pigment was obtained. From the  WebExhibits.org website featuring a section on Pigments through the Ages and a webpage on Spectroscopy,

raman-ArtPigment

Ultramarine [downloaded from http://www.webexhibits.org/pigments/intro/spectroscopy.html]

Raman spectra consist of sharp bands whose position and height are characteristic of the specific molecule in the sample. Each line of the spectrum corresponds to a specific vibrational mode of the chemical bonds in the molecule. Since each type of molecule has its own Raman spectrum, this can be used to characterize molecular structure and identify chemical compounds.

Most people don’t realize that the chemical signature (spectra) for pigment can change over time with new pigments being introduced. Finding a pigment that was on the market from 1970 onwards in a painting by Jackson Pollock who died in 1956 suggests strongly that the painting couldn’t have come from Pollock’s hand. (See Michael Shnayerson’s May 2012 article, A Question of Provenance, in Vanity Fair for more about the Pollock painting. The article details the fall of a fabled New York art gallery that had been in business prior to the US Civil War.)

The ability to identify a pigment’s molecular fingerprint means that an examination by Raman spectroscopy can be part of an authentication, a restoration, or a conservation process. Here is how a representative from ProSpect Scientific describes the process,

Raman spectroscopy is non-destructive (when conducted at the proper power levels) and identifies the molecular components in the pigments, allowing characterization of the pigments for proper restoration or validation by comparison with other pigments of the same place/time. It is valuable to art institutions and conservators because it can do this.  In most cases of authentication Raman spectroscopy is one of many tools used and not the first in line. A painting would be first viewed by art experts for technique, format etc, then most often analysed with IR or X-Ray, then perhaps Raman spectroscopy. It is impossible to use Raman spectroscopy to prove authenticity as paint pigments are usually not unique to any particular painter.  Most often Raman spectroscopy is used by conservators to determine proper pigments for appropriate restoration.  Sometimes Raman will tell us that the pigment isn’t from the time/era the painting is purported to be from (anachronisms).

Autumn Harbour test

Getting back to the June 3, 2014 tests, once the levels were set then it was time to examine Autumn Harbour itself to determine the spectra for the various pigments.  ProSpect Scientific has provided an explanation of the process,

This spectrometer was equipped with an extension that allowed delivery of the laser and collection of the scattered light at a point other than directly under the microscope. We could also have used a flexible fibre optic probe for this, but this device is slightly more efficient. This allowed us to position the delivery/collection point for the light just above the painting at the spot we wished to test. For this test, we don’t sweep across the surface, we test a small pinpoint that we feel is a pigment of the target colour.

We only use one laser at a time. The system is built so we can easily select one laser or another, depending on what we wish to look at. Some researchers have 3 or 4 lasers in their system because different lasers provide a better/worse raman spectrum depending on the nature of the sample. In this case we principally used the 785nm laser as it is better for samples that exhibit fluorescence at visible wavelengths. 532nm is a visible wavelength.  For samples that didn’t produce good signal we tried the 532nm laser as it produces better signal to noise than 785nm, generally speaking. I believe the usable results in our case were obtained with the 785nm laser.

The graphed Raman spectra shows peaks for the frequency of scattered light that we collect from the laser-illuminated sample (when shining a laser on a sample the vast majority of light is scattered in the same frequency of the laser, but a very small amount is scattered at different frequencies unique to the molecules in the sample). Those frequencies correspond to and identify molecules in the sample. We use a database (on the computer attached to the spectrometer) to pattern match the spectra to identify the constituents.

One would have thought ‘game over’ at this point. According to some informal sources, Canada has a very small (almost nonexistent) data bank of information about pigments used in its important paintings. For example, the federal government’s Canadian Conservation Institute (CCI) has a very small database of pigments and nothing from Lawren Harris paintings [See the CCI's response in this addendum], so the chances that David Robertson would have been able to find a record of pigments used by Lawren Harris roughly in the same time period that Autumn Harbour seems to have been painted are not good.

Everything changes

In a stunning turn of events and despite the lack of enthusiasm from Vancouver Art Gallery (VAG) curator, Ian Thom, on Wednesday, June 4, 2014 the owner of the authenticated Harris, Hurdy Gurdy, relented and brought the painting in for tests.

Here’s what the folks from ProSpect Scientific had to say about the comparison,

Many pigments were evaluated. Good spectra were obtained for blue and white. The blue pigment matched on both paintings, the white didn’t match. We didn’t get useful Raman spectra from other pigments. We had limited time, with more time we might fine tune and get more data.

One might be tempted to say that the results were 50/50 with one matching and the other not, The response from the representative of ProSpect Scientific is more measured,

We noted that the mineral used in the pigment was the same.  Beyond that is interpretation:  Richard offered the view that lapis-lazuli was a typical and characteristic component for blue in that time period (early 1900’s).   We saw different molecules in the whites used in the two paintings, and Richard offered that both were characteristic of the early 1900’s.

Part 1

Part 3

Part 4

* ‘ProsPect’ changed to ‘ProSpect’ on June 30, 2014.

ETA July 14, 2014 at 1300 hours PDT: There is now an addendum to this series, which features a reply from the Canadian Conservation Institute to a query about art pigments used by Canadian artists and access to a database of information about them.

Lawren Harris (Group of Seven), art authentication, and the Canadian Conservation Insitute (addendum to four-part series)

 

Art (Lawren Harris and the Group of Seven), science (Raman spectroscopic examinations), and other collisions at the 2014 Canadian Chemistry Conference (part 1 of 4)

One wouldn’t expect the 97th Canadian Chemistry Conference held in Vancouver, Canada from  June 1 – 5, 2014 to be an emotional rollercoaster. One would be wrong. Chemists and members of the art scene are not only different from thee and me, they are different from each other.

Setting the scene

It started with a May 30, 2014 Simon Fraser University (SFU) news release,

During the conference, ProSpect Scientific has arranged for an examination of two Canadian oil paintings; one is an original Lawren Harris (Group of Seven) titled “Hurdy Gurdy” while the other is a painting called “Autumn Harbour” that bears many of Harris’s painting techniques. It was found in Bala, Ontario, an area that was known to have been frequented by Harris.

Using Raman Spectroscopy equipment manufactured by Renishaw (Canada), Dr. Richard Bormett will determine whether the paint from both works of art was painted from the same tube of paint.

As it turns out, the news release got it somewhat wrong. Raman spectroscopy testing does not make it possible to* determine whether the paints came from the same tube, the same batch, or even the same brand. Nonetheless, it is an important tool for art authentication, restoration and/or conservation and both paintings were scheduled for testing on Tuesday, June 3, 2014. But that was not to be.

The owner of the authenticated Harris (Hurdy Gurdy) rescinded permission. No one was sure why but the publication of a June 2, 2014 article by Nick Wells for Metro News Vancouver probably didn’t help in a situation that was already somewhat fraught. The print version of the Wells article titled, “A fraud or a find?” showed only one painting “Hurdy Gurdy” and for anyone reading quickly, it might have seemed that the Hurdy Gurdy painting was the one that could be “a fraud or a find.”

The dramatically titled article no longer seems to be online but there is one (also bylined by Nick Wells) dated June 1, 2014 titled, Chemists in Vancouver to use lasers to verify Group of Seven painting. It features (assuming it is still available online) images of both paintings, the purported Harris (Autumn Harbour) and the authenticated Harris (Hurdy Gurdy),

"Autumn Harbour" [downloaded from http://metronews.ca/news/vancouver/1051693/chemists-in-vancouver-to-use-lasers-to-verify-group-of-seven-painting/]

“Autumn Harbour” [downloaded from http://metronews.ca/news/vancouver/1051693/chemists-in-vancouver-to-use-lasers-to-verify-group-of-seven-painting/]

Heffel Fine Art Auction

Lawren Harris’‚ Hurdy Gurdy, a depiction of Toronto’s Ward district is shown in this handout image. [downloaded from http://metronews.ca/news/vancouver/1051693/chemists-in-vancouver-to-use-lasers-to-verify-group-of-seven-painting/]

David Robertson who owns the purported Harris (Autumn Harbour) and is an outsider vis à vis the Canadian art world, has been trying to convince people for years that the painting he found in Bala, Ontario is a “Lawren Harris” painting. For anyone unfamiliar with the “Group of Seven” of which Lawren Harris was a founding member, this group is legendary to many Canadians and is the single most recognized name in Canadian art history (although some might argue that status for Emily Carr and/or Tom Thomson; both of whom have been, on occasion, honorarily included in the Group).  Robertson’s incentive to prove “Autumn Harbour” is a Harris could be described as monetary and/or prestige-oriented and/or a desire to make history.

The owner of the authenticated Harris “Hurdy Gurdy” could also be described as an outsider of sorts [unconfirmed at the time of publication; a June 26, 2014 query is outstanding], gaining entry to that select group of people who own a ‘Group of Seven’ painting at a record-setting price in 2012 with the purchase of a piece that has a provenance as close to unimpeachable as you can get. From a Nov. 22, 2012 news item on CBC (Canadian Broadcasting Corporation) news online,

Hurdy Gurdy, one of the finest urban landscapes ever painted by Lawren Harris, sold for $1,082,250, a price that includes a 17 per cent buyer’s premium. The pre-sale estimate suggested it could go for $400,000 to $600,000 including the premium.

The Group of Seven founder kept the impressionistic painting of a former Toronto district known as the Ward in his own collection before bequeathing it to his daughter. It has remained in the family ever since.

Occasionally, Harris “would come and say, ‘I need to borrow this back for an exhibition,’ and sometimes she wouldn’t see [the paintings] again,” Heffel vice-president Robert Heffel said. “Harris asked to have this painting back for a show…and she said ‘No, dad. Not this one.’ It was a painting that was very, very dear to her.”

It had been a coup to get access to an authenticated Harris for comparison testing so Hurdy Gurdy’s absence was a major disappointment. Nonetheless, Robertson went through with the scheduled June 3, 2014 testing of his ‘Autumn Harbour’.

Chemistry, spectroscopy, the Raman system, and the experts

Primarily focused on a technical process, the chemists (from ProSpect* Scientific and Renishaw) were unprepared for the drama and excitement that anyone associated with the Canadian art scene might have predicted.  From the chemists’ perspective, it was an opportunity to examine a fabled piece of Canadian art (Hurdy Gurdy) and, possibly, play a minor role in making Canadian art history.

The technique the chemists used to examine the purported Harris, Autumn Harbour, is called Raman spectroscopy and its beginnings as a practical technique date back to the 1920s. (You can get more details about Raman spectroscopy in this Wikiipedia entry then will be given here after the spectroscopy description.)

Spectroscopy (borrowing heavily from this Wikipedia entry) is the process where one studies the interaction between matter and radiated energy and which can be measured as frequencies and/or wavelengths. Raman spectroscopy systems can be used to examine radiated energy with low frequency emissions as per this description in the Raman spectroscopy Wikipedia entry,

Raman spectroscopy (/ˈrɑːmən/; named after Sir C. V. Raman) is a spectroscopic technique used to observe vibrational, rotational, and other low-frequency modes in a system.[1] It relies on inelastic scattering, or Raman scattering, of monochromatic light, usually from a laser in the visible, near infrared, or near ultraviolet range. The laser light interacts with molecular vibrations, phonons or other excitations in the system, resulting in the energy of the laser photons being shifted up or down.

The reason for using Raman spectroscopy for art authentication, conservation, and/or restoration purposes is that the technique, as noted earlier, can specify the specific chemical composition of the pigments used to create the painting. It is a technique used in many fields as a representative from ProSpect Scientific notes,

Raman spectroscopy is a vital tool for minerologists, forensic investigators, surface science development, nanotechnology research, pharmaceutical research and other applications.  Most graduate level university labs have this technology today, as do many government and industry researchers.  Raman spectroscopy is now increasingly available in single purpose hand held units that can identify the presence of a small number of target substances with ease-of-use appropriate for field work by law enforcers, first responders or researchers in the field.

About the chemists and ProSpect Scientific and Renishaw

There were two technical experts attending the June 3, 2014 test for the purported Harris painting, Autumn Harbour, Dr. Richard Bormett of Renishaw and Dr. Kelly Akers of ProSpect Scientific.

Dr. Kelly Akers founded ProSpect Scientific in 1996. Her company represents Renishaw Raman spectroscopy systems for the most part although other products are also represented throughout North America. Akers’ company is located in Orangeville, Ontario. Renishaw, a company based in the UK. offers a wide line of products including Raman spectroscopes. (There is a Renishaw Canada Ltd., headquartered in Mississauga, Ontario, representing products other than Raman spectroscopes.)

ProSpect Scientific runs Raman spectroscopy workshops, at the Canadian Chemistry Conferences as a regular occurrence, often in conjunction with Renishaw’s Bormett,. David Robertson, on learning the company would be at the 2014 Canadian Chemistry Conference in Vancouver, contacted Akers and arranged to have his purported Harris and Hurdy Gurdy, the authenticated Harris, tested at the conference.

Bormett, based in Chicago, Illinois, is Renishaw’s business manager for the Spectroscopy Products Division in North America (Canada, US, & Mexico).  His expertise as a spectroscopist has led him to work with many customers throughout the Americas and, as such, has worked with several art institutions and museums on important and valuable artifacts.  He has wide empirical knowledge of Raman spectra for many things, including pigments, but does not claim expertise in art or art authentication. You can hear him speak at a 2013 US Library of Congress panel discussion titled, “Advances in Raman Spectroscopy for Analysis of Cultural Heritage Materials,” part of the Library of Congress’s Topics in Preservation Series (TOPS), here on the Library of Congress website or here on YouTube. The discussion runs some 130 minutes.

Bormett has a PhD in analytical chemistry from the University of Pittsburgh. Akers has a PhD in physical chemistry from the University of Toronto and is well known in the Raman spectroscopy field having published in many refereed journals including “Science” and the “Journal of Physical Chemistry.”  She expanded her knowledge of industrial applications of Raman spectroscopy substantive post doctoral work in Devon, Alberta at the CANMET Laboratory (Natural Resources Canada).

About Renishaw InVia Reflex Raman Spectrometers

The Raman spectroscopy system used for the examination, a Renishaw InVia Reflex Raman Spectrometer, had

  • two lasers (using 785nm [nanometres] and 532nm lasers for this application),
  • two cameras,
    (ProSpect Scientific provided this description of the cameras: The system has one CCD [Charged Coupled Device] camera that collects the scattered laser light to produce Raman spectra [very sensitive and expensive]. The system also has a viewing camera mounted on the microscope to allow the user to visually see what the target spot on the sample looks like. This camera shows on the computer what is visible through the eyepieces of the microscope.)
  • a microscope,
  • and a computer with a screen,

all of which fit on a tabletop, albeit a rather large one.

For anyone unfamiliar with the term CCD (charged coupled device), it is a sensor used in cameras to capture light and convert it to digital data for capture by the camera. (You can find out more here at TechTerms.com on the CCD webpage.)

Part 2

Part 3

Part 4

* ‘to’ added to sentence on June 27, 2014 at 1340 hours (PDT). ‘ProsPect’ corrected to ‘ProSpect’ on June 30, 2014.

ETA July 14, 2014 at 1300 hours PDT: There is now an addendum to this series, which features a reply from the Canadian Conservation Institute to a query about art pigments used by Canadian artists and access to a database of information about them.

Lawren Harris (Group of Seven), art authentication, and the Canadian Conservation Insitute (addendum to four-part series)

Lunar spelunking with robots at Vancouver’s (Canada) June 24, 2014 Café Scientifique

Vancouver’s next Café Scientifique is being held in the back room of the The Railway Club (2nd floor of 579 Dunsmuir St. [at Seymour St.], Vancouver, Canada), on Tuesday, June 24,  2014 at 7:30 pm. Here’s the meeting description (from the June 18, 2014 announcement),

Our speaker for the evening will be John Walker, Rover Development Lead of the Hakuto Google Lunar X-Prize Team.  The title and abstract of his talk is:

Lunar Spelunking

Lava tubes, or caves likely exist on the surface of the moon. Based on recent images and laser distance measurements from the surface of the moon, scientists have selected candidates for further study.

Governmental space agencies and private institutions now have plans to visit these potential caves and investigate them as potential lunar habitat sites, as early as 2015.

I will present some of these candidates and my PhD research, which is supporting a Google Lunar X-Prize team’s attempt to survey one of these caves using robots.

I wasn’t able to find much about John Walker bu there is this Facebook entry noting a talk he gave at TEDxBudapest.

As for the Google Lunar XPRIZE, running a Google search yielded this on June 22, 2014 at 0945 hours PDT. It was the top finding on the search page. links to the site were provided below this definition:

The Google Lunar XPRIZE is a $30 million competition for the first privately funded team to send a robot to the moon, travel 500 meters and transmit video,…

You can find the Google Lunar XPRIZE website here. The Hakuto team, the only one based in Japan (I believe), has a website here. There is some English language material but the bulk would appear to be Japanese language.

The world’s smallest machines at Vancouver’s (Canada) May 27, 2014 Café Scientifique

Vancouver’s next Café Scientifique is being held in the back room of the The Railway Club (2nd floor of 579 Dunsmuir St. [at Seymour St.], Vancouver, Canada), on Tuesday, May 27,  2014 at 7:30 pm. Here’s the meeting description (from the May 21, 2014 announcement),

Our speaker is Dr. Nicholas White from UBC Chemistry. The title and abstract of his talk is:

The world’s smallest machines

In the last 50 years, chemists have developed the ability to produce increasingly intricate and complex molecules. One example of this is the synthesis of “interlocked molecules”: two or more separate molecules that are mechanically threaded through one another (like links of a chain). These interlocked molecules offer potential use for a range of different applications. In particular they have been developed for use as molecular machines: devices that are only a few nanometers in size, but can perform physical work in response to a stimulus (e.g. light, heat). This talk will describe the development of interlocked molecules, and explore their potential applications as nano-devices.

Nicholas (Nick) White is a member of the MacLachlan Group. The group’s leader, Mark MacLachlan was mentioned here in a March 25, 2011 post regarding his Café Scientifique talk on beetles, biomimcry, and nanocrystalline cellulose (aka, cellulose nanocrystals). As well, MacLachlan was mentioned in a May 21, 2014 post about the $!.65M grant he received for his NanoMAT: NSERC CREATE Training Program in Nanomaterials Science & Technology.

As for Nick White, there’s this on the MacLachlan Group homepage, (scroll down about 25% of the way),

Nick completed his undergraduate degree at the University of Otago in his home town of Dunedin, New Zealand (working on transition metal complexes with Prof. Sally Brooker). After a short break working and then travelling, he completed his DPhil at the University of Oxford, working with Prof. Paul Beer making rotaxanes and catenanes for anion recognition applications. He is now a Killam Postdoctoral Fellow in the MacLachlan group working on supramolecular materials based on triptycene and silsesquioxanes (although he has difficulty convincing people he’s old enough to be a post-doc). Outside of chemistry, Nick is a keen rock climber, and is enjoying being close to the world-class rock at Squamish. He also enjoys running, playing guitar, listening to music, and drinking good coffee.

I wonder if a Café Scientifique presentation is going to be considered as partial fulfillment for the professional skills-building requirement of the MacLachlan’s NanoMAT: NSERC CREATE Training Program in Nanomaterials Science & Technology.