Tag Archives: Institut de recherche Robert-Sauvé en santé et en sécurité du travail

Canadian research into nanomaterial workplace exposure in the air and on surfaces

An August 30, 2018 news item on Nanowerk announces the report,

The monitoring of air contamination by engineered nanomaterials (ENM) is a complex process with many uncertainties and limitations owing to the presence of particles of nanometric size that are not ENMs, the lack of validated instruments for breathing zone measurements and the many indicators to be considered.

In addition, some organizations, France’s Institut national de recherche et de sécurité (INRS) and Québec’s Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST) among them, stress the need to also sample surfaces for ENM deposits.

In other words, to get a better picture of the risks of worker exposure, we need to fine-tune the existing methods of sampling and characterizing ENMs and develop new one. Accordingly, the main goal of this project was to develop innovative methodological approaches for detailed qualitative as well as quantitative characterization of workplace exposure to ENMs.

A PDF of the 88-page report is available in English or in French.

An August 30, 2018 (?) abstract of the IRSST report titled An Assessment of Methods of Sampling and Characterizing Engineered Nanomaterials in the Air and on Surfaces in the Workplace (2nd edition) by Maximilien Debia, Gilles L’Espérance, Cyril Catto, Philippe Plamondon, André Dufresne, Claude Ostiguy, which originated the news item, outlines what you can expect from the report,

This research project has two complementary parts: a laboratory investigation and a fieldwork component. The laboratory investigation involved generating titanium dioxide (TiO2) nanoparticles under controlled laboratory conditions and studying different sampling and analysis devices. The fieldwork comprised a series of nine interventions adapted to different workplaces and designed to test a variety of sampling devices and analytical procedures and to measure ENM exposure levels among Québec workers.

The methods for characterizing aerosols and surface deposits that were investigated include: i) measurement by direct-reading instruments (DRI), such as condensation particle counters (CPC), optical particle counters (OPC), laser photometers, aerodynamic diameter spectrometers and electric mobility spectrometer; ii) transmission electron microscopy (TEM) or scanning transmission electron microscopy (STEM) with a variety of sampling devices, including the Mini Particle Sampler® (MPS); iii) measurement of elemental carbon (EC); iv) inductively coupled plasma mass spectrometry (ICP-MS) and (v) Raman spectroscopy.

The workplace investigations covered a variety of industries (e.g., electronics, manufacturing, printing, construction, energy, research and development) and included producers as well as users or integrators of ENMs. In the workplaces investigated, we found nanometals or metal oxides (TiO2, SiO2, zinc oxides, lithium iron phosphate, titanate, copper oxides), nanoclays, nanocellulose and carbonaceous materials, including carbon nanofibers (CNF) and carbon nanotubes (CNT)—single-walled (SWCNT) as well as multiwalled (MWCNT).

The project helped to advance our knowledge of workplace assessments of ENMs by documenting specific tasks and industrial processes (e.g., printing and varnishing) as well as certain as yet little investigated ENMs (nanocellulose, for example).

Based on our investigations, we propose a strategy for more accurate assessment of ENM exposure using methods that require a minimum of preanalytical handling. The recommended strategy is a systematic two-step assessment of workplaces that produce and use ENMs. The first step involves testing with different DRIs (such as a CPC and a laser photometer) as well as sample collection and subsequent microscopic analysis (MPS + TEM/STEM) to clearly identify the work tasks that generate ENMs. The second step, once work exposure is confirmed, is specific quantification of the ENMs detected. The following findings are particularly helpful for detailed characterization of ENM exposure:

  1. The first conclusive tests of a technique using ICP-MS to quantify the metal oxide content of samples collected in the workplace
  2. The possibility of combining different sampling methods recommended by the National Institute for Occupational Safety and Health (NIOSH) to measure elemental carbon as an indicator of NTC/NFC, as well as demonstration of the limitation of this method stemming from observed interference with the black carbon particles required to synthesis carbon materials (for example, Raman spectroscopy showed that less than 6% of the particles deposited on the electron microscopy grid at one site were SWCNTs)
  3. The clear advantages of using an MPS (instead of the standard 37-mm cassettes used as sampling media for electron microscopy), which allows quantification of materials
  4. The major impact of sampling time: a long sampling time overloads electron microscopy grids and can lead to overestimation of average particle agglomerate size and underestimation of particle concentrations
  5. The feasibility and utility of surface sampling, either with sampling pumps or passively by diffusion onto the electron microscopy grids, to assess ENM dispersion in the workplace

These original findings suggest promising avenues for assessing ENM exposure, while also showing their limitations. Improvements to our sampling and analysis methods give us a better understanding of ENM exposure and help in adapting and implementing control measures that can minimize occupational exposure.

You can download the full report in either or both English and French from the ‘Nanomaterials – A Guide to Good Practices Facilitating Risk Management in the Workplace, 2nd Edition‘ webpage.

Gloves, Québec’s (Canada) Institut de recherche Robert-Sauvé en santé et en sécurité du travail, and a workplace nanotoxicity methodology report

A new report on a workplace health and safety issue in regard to nanoparticles (Development of a Method of Measuring Nanoparticle Penetration through Protective Glove Materials under Conditions Simulating Workplace Use)  was released in June 2013 by Québec’s Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST). Little research has been done on exposure through skin (cutaneous exposure), most research has focused on exposure by inhalation according to the report (en français version here),

In the workplace, the main pathway to NP exposure is inhalation (Ostiguy et al., 2008a). Exposure by the cutaneous route has not been studied much, partly because of the widely held belief that skin offers an impermeable barrier to NPs (Truchon et al., 2008). Yet a growing number of studies have pointed to the possible percutaneous absorption of NPs, such as in the case of skin damaged by abrasion (Zhang et al., 2008), repeated flexion (Rouse et al., 2007) or even through intact skin (Ryman-Rasmussen et al., 2006). Pores, hair follicles and sweat glands may also play a role in facilitating absorption of NPs through the skin (Hervé-Bazin, 2007). The nanoparticles are then carried throughout the body by the lymphatic circulatory system (Papp et al., 2008). Induced direct toxic effects have also been reported for epidermal keratinocyte cells exposed to carbon nanotubes and other types of NPs (Shvedova, 2003). [p. 17 PDF version; p. 1 print version; Note: See report bibliography for citations]

The researchers examined gloves made of four different types of material: nitrile, latex, neoprene, and butyl rubber under a number of different conditions. One type of nanoparticle was used for the study, titanium dioxide in powder and liquid forms. The report summary provides a bit more detail about the decision to develop a methodology and the testing methods,

With the exponential growth in industrial applications of nanotechnologies and the increased risk of occupational exposure to nanomaterials, the precautionary principle has been recommended. To apply this principle, and even though personal protective equipment against nanoparticles must be considered only as a last resort in the risk control strategy, this equipment must be available. To respond to the current lack of tools and knowledge in this area, a method was developed for measuring the penetration of nanoparticles through protective glove materials under conditions simulating workplace use.

This method consists of an experimental device for exposing glove samples to nanoparticles in powder form or in colloidal solution, while at the same time subjecting them to static or dynamic mechanical stresses and conditions simulating the microclimate in the gloves. This device is connected to a data control and acquisition system. To complete the method, a sampling protocol was developed and a series of nanoparticle detection techniques was selected.

Preliminary tests were performed using this method to measure the resistance of four models of protective gloves of different thicknesses made of nitrile, latex, neoprene and butyl to the passage of commercial TiO2 nanoparticles in powder form or colloidal solution. The results seem to indicate possible penetration of the nanoparticles in some types of gloves, particularly when subjected to repeated mechanical deformation and when the nanoparticles are in the form of colloidal solutions. Additional work is necessary to confirm these results, and consideration should be given to the selection of the configurations and values of the parameters that best simulate the different possible workplace situations. Nevertheless, a recommendation can already be issued regarding the need for regular replacement of gloves that have been worn, particularly with the thinnest gloves and when there has been exposure to nanoparticles in colloidal solution.

For interested parties, here’s a citation for and a link to the report (PDF),

Development of a Method of Measuring Nanoparticle Penetration through Protective Glove Materials under Conditions Simulating Workplace Use by Dolez, Patricia; Vinches, Ludwig; Perron, Gérald; Vu-Khanh, Toan; Plamondon, Philippe; L’Espérance, Gilles; Wilkinson, Kevin; Cloutier, Yves; Dion, Chantal; Truchon, Ginette
Studies and Research Projects / Report  R-785, Montréal, IRSST, 2013, 124 pages.

I last wrote about gloves and toxicity in a June 11, 2013 posting about gloves with sensors (they turned blue when exposed to toxic levels of chemicals). It would be interesting if they could find a way to create gloves with sensors that warn you when you are reaching dangerous levels of exposure through your gloves. Of course, first they’d have to determine what constitute a dangerous level of exposure. The US National Institute of Occupational Health and Safety (NIOSH) recently released its recommendations for exposure to carbon nanofibers and carbon nanotubes (my April 26, 2013 posting). In layperson’s terms, the recommended exposure is close to zero exposure. Presumably, the decision was based on the principle of being ‘safe rather than sorry’.

One final comment about exposure to engineered nanoparticles through skin, to date there has been no proof that there has been any significant exposure via skin. In fact, the first significant breach of the skin barrier was achieved for medical research, Chad Mirkin and his team at Northwestern University trumpeted their research breakthrough (pun intended) last year, from my July 4, 2012 posting,

Researchers at Northwestern University (Illinois, US) have found a way to deliver gene regulation technology using skin moisturizers. From the July 3, 2012 news item on Science Blog,

A team led by a physician-scientist and a chemist — from the fields of dermatology and nanotechnology — is the first to demonstrate the use of commercial moisturizers to deliver gene regulation technology that has great potential for life-saving therapies for skin cancers.

The topical delivery of gene regulation technology to cells deep in the skin is extremely difficult because of the formidable defenses skin provides for the body. The Northwestern approach takes advantage of drugs consisting of novel spherical arrangements of nucleic acids. These structures, each about 1,000 times smaller than the diameter of a human hair, have the unique ability to recruit and bind to natural proteins that allow them to traverse the skin and enter cells.

This goes a long way to explaining why primary occupational health and safety research has focused on exposure via inhalation rather than skin.  That said, I think ensuring safety means minimizing exposure by all routes until more is known about the hazards.

Change your gloves frequently if you’re handling nanoparticles

Québec’s IRSST (Institut de recherche Robert-Sauvé en santé et en sécurité du travail) has issued a May 16, 2012 news release about the results of a study on gloves and nanoparticles,

After developing a sampling protocol and selecting the best analysis and measurement techniques, the research team carried out preliminary tests using four models of nitrile, latex, neoprene and butyl rubber protective gloves and commercial titanium dioxide (TiO2) nanoparticles in powder and colloidal solution form. “The results appear to indicate that powder nanoparticles penetrated the disposable nitrile gloves after seven hours of repeated deformation, while the butyl gloves appeared to be impermeable,” explained investigator Patricia Dolez, the main author of the report. “As for nanoparticles in colloidal solutions, we measured a possibility of penetration through the gloves, in particular when the gloves were subjected to repeated deformation. These preliminary data, which need to be validated by additional studies, show that it is important to continue work in this field.”

Based on the results, the research team recommends that care be taken when choosing and using this type of personal protective equipment. “We recommend replacing, at regular intervals, protective gloves that are worn, especially thinner gloves, and gloves that have been exposed to nanoparticles in colloidal solutions,” Dr. Dolez concluded.

H/T to the June 14, 2012 news item on Nanowerk for alerting me to this work.

You can get a copy of the study, Développement d’une méthode de mesure de la pénétration des nanoparticules à travers les matériaux de gants de protection dans des conditions simulant l’utilisation en milieu de travail , but it is in French only, as of today June 14, 2012. The abstract has been translated into English. I last mentioned one of the investigators, Patricia Dolez, in passing in my Oct. 14, 2009 posting.

ETA June 14, 2012: I should also have mentioned that this was joint project with researchers from the École de technologie supérieure, École Polytechnique, and Université de Montréal were working on this project with the team from IRSST.

NE3LS November 2012 conference in Montréal

NE3LS is one of the worst abbreviations I’ve ever seen but, despite my opinion, it ([Nanotechnology] Ethical, Environmental, Economic, Legal and Social Issues—NE3LS) lives on. This March 12, 2012 posting on the Nanotechnology Development blog announces the 1st Nanotechnology NE3LS conference in November 2012,

Ne3LS Network (Network on ethical, environmental, economic and legal and social issues pertaining to nanotechnology) is organizing first International conference with the theme “The Responsible Development of Nanotechnology: Challenges and Perspectives”.  The conference will held at Montréal, Canada during November 1-2, 2012.

I have noted the difference between my guess as to what the N in NE3LS stands for and the Nanotechnology Development blog’s rendition. I’d usually stick with mine since there is an NE3LS research project at the National Institute of Nanotechnology and it’s highly unlikely that N  stands for network but the conference organizers are the ones claiming the N stands for Network on the conference home page.

The NE3LS Network was launched in March 2011 in Montréal, from the launch webpage,

The launch of the Ne3LS Network (Knowledge Network on the Ethical, Environmental, Economic, Legal and Social issues regarding Nanotechnology) took place on March 9, 2011. Guests of honour at this event included Dr. Fabrice Brunet, Director of the CHU Sainte-Justine, Dr. Guy Rouleau, Director of the CHU Sainte-Justine Research Center, Dr. Joseph Hubert, Vice-Rector of Research and International Relations at the University of Montreal, Mr. Yves Joanette, President and CEO of the Fonds de la recherche en santé du Québec (FRSQ), Mrs. Marie Larue, President and CEO of the Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST)  and Mr. Luc Castonguay, Director of Academic Research at the Ministry of Economic Development, Innovation and Export Trade (MDEIE). The Ne3LS Network is the result of a collaboration between Québec’s research funding organizations, the MDEIE, the Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST) and NanoQuébec.

Mr. Charles-Anica Endo, Executive Director, and Dr. Renaldo Battista, Scientific Director, took this opportunity to announce the winners of the network’s first call for projects, held in December 2010. In addition, the Axis Directors presented the multiple dimensions of nanotechnology, from their very definition to their governance and their associated risks. Attendees also had the privilege of hearing two world-renowned nanotechnology researchers, Mrs. Céline Lafontaine, sociologist, and Dr. Richard Martel, chemist.

One of the keynote speakers at the March 9, 2011 event, Céline Lafontaine, was mentioned here in my March 10, 2010 posting (scroll about 1/3 of the way down) in the context of the 2009 nanotechnology debates in France, which had been seriously disrupted to the point where some were cancelled.

Getting back to the NE3LS conference in Montréal, here’s a bit more information, from the conference home page,

The Network on ethical, environmental, economic, legal and social issues regarding nanotechnology development (Ne3LS) is hosting an international conference to initiate thought-provoking discussion on the responsible development of nanotechnology. The Ne3LS Network International Conference 2012 will explore the following themes within an international and multidisciplinary framework:

  • How to assess the risks of nanotechnology, scientific, economic, social, or environmental
  • Governance: What are the responsibilities of researchers, industry, government, and the general public in the development of nanotechnologies? What is the contribution of industry to the development of standards and regulations?
  • Can responsible development of nanotechnology foster innovation and contribute to economic development?
  • What are the impacts of nanomedicine and nanohealth on the health care system?
  • How can the public be best informed and consulted on nanotechnology issues?

Invited speakers will address each of these topics.

There is a Call for Papers Theme webpage with this,

… the international conference has issued a call for abstracts to address the following subthemes at concurrent sessions:

  1. Toxicity: new methods, new concepts?
  2. Occupational health and safety: how to adapt to nanotechnologies
  3. What are the environmental risks?
  4. Innovation and the economy and the challenges of globalization
  5. Public-private partnerships in risk-sharing?
  6. Nano-health: toward privatization of medical services?
  7. International regulations and political issues
  8. National regulatory standards: free exchange or “no data, no market”?
  9. Ethics: the precautionary principle and sustainable development of nanotechnologies
  10. Educate whom and how?
  11. What modalities could be used for public consultation and to what end?
  12. Nanofoods: can the genetically-modified food (GMO) scenario be avoided?

Here are the guidelines,

CALL FOR ABSTRACTS

  • All presentations will be in English
  • The topic must be relevant to one of the 12 subthemes described in the Ne3LS Network International Conference 2012, Themes
  • Each oral presentation will be 20 minutes, followed by a 10-minute question period
  • Poster presentations will also be available
  • Abstracts will be selected as oral or poster presentation, at the discretion of the selection committee.

SUBMISSION GUIDELINES

Those submitted by any other means will not be considered.

  • Closing date: all submissions must be received by Monday May 14, 2012
  • Cover letter: Please attach a cover letter specifying
    • Corresponding author: full name, address, telephone number, fax (if applicable), and email address
    • A short one-paragraph bio for each author, indicating relevant expertise and interest in the topic
    • Format: Word file
    • Language: English
    • Abstract
      • Word count: maximum 250 words
      • Structured as follows:
        • Author(s) (Last name, first name)
        • Title of presentation
        • Author affiliations (institution, country)
        • Text
        • 3-5 keywords
    • Font: standard font to prevent special characters from getting lost, e.g. Arial or Times New Roman, 12-point
    • In submitting an abstract, the author(s) agree that the abstract may be published among other documents associated with the Ne3LS Network International Conference 2012, Montreal, Canada.

SELECTION CRITERIA

  • Submissions will be evaluated by an international, multidisciplinary scientific committee
  • Principal criteria for selection will be:
    • Quality of the abstract
    • Relevance to the general themes and, more specifically, to the subthemes described in the Ne3LS Network International Conference 2012, Themes
    • Corresponding authors will be notified of acceptance by email by June 29, 2012
    • Notification of acceptance will indicate whether the presentation was selected as an oral or poster presentation
    • Authors whose abstracts are selected are expected to pay their registration fees at the latest by July 15, 2012.

You have almost two months to write up your abstract (nice to stumble across something a little earlier than usual so I’m not announcing a deadline that comes due in three days). Good luck!

For those who prefer French language information, here’s a link to the NE3LS (Réseau de connaisannces) French version website.

Nano Risk Management from France

France’s Agency for Food, Environment, Health and Occupational Safety (Anses, agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail) has proposed a new technique for assessing the risks of nano-based materials. From the news article by Rory Harrington on foodqualitynews.com,

The body has proposed using a method known as “control banding”. The tool, originally developed in the pharmaceutical industry, is designed to guide risk management in fields where there is uncertainty about the required data needed. In this case, the uncertainty centres on both the hazards of nanomaterials and exposure levels. It uses both existing information but also makes a number of assumptions, said Anses.

Under the system, new products are allocated ‘bands’ – which have been developed according to the hazard level of known or similar products. It also takes into account exposure in a work environment.

The method derives minimum prevention measures – either for individuals or collectively – by combining qualitative risk assessment with a risk control band.

“The tool thus allows risk managers to apply a graduated response by taking into account both the potential hazards represented by the nanomaterials concerned and the estimated levels of exposure”, said French scientists.

Anses has produced a report about this proposed technique, Development of a specific Control Banding Tool for Nanomaterials. It turns out there’s a Canadian connection, Claude Ostiguy, Director of the Research and Expertise Support Department at the Institut de Recherche Robert-Sauvé en Santé et en Sécurité du Travail (IRSST), Montréal, Canada was a member of the expert panel for this project. His specialties are chemistry, industrial hygiene, and nanomaterials. I have written about Dr. Ostiguy previously in my Sept. 27, 2010 posting on Québec’s then new report on the risks of engineered nanoparticles and in my June 23, 2010 posting about the hearing that Canada’s House of Commons Standing Committee on Health held about nanomaterials.

The report (this version of it) is in English but the translation from the French is a little awkward. As for control banding, that looks a lot like a set of guidelines but with more thought than most guidelines I’ve seen.

Quebec’s new report on the risks of engineered nanoparticles

Engineered Nanoparticles; Current Knowledge about OHS [Occupational Health and Safety] Risks and Prevention Measures is the title for a report (2nd edition) written by Claude Ostiguy, Brigitte Roberge, Catherine Woods, and Brigitte Soucy for the Quebec-based Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST). From the news item on Nanowerk,

An initial assessment of the state of scientific knowledge about the occupational health and safety aspects (OHS) related to synthetic nanoparticles (NP) was published by the IRSST in 2006 and covered the scientific literature until the end of 2004. What was found was that OHS knowledge was very fragmentary but that research in this field was rapidly growing. This current document aims to assess the state of current knowledge in this field and summarizes the data available until early 2010.

Overall, what emerges is that NP remain an important source of concern in OHS. In fact, not only does the diversity of commercially available chemical products of nanometric dimensions continue to increase, but also, the information available about the hazards specific to these substances is still very fragmentary. The literature gives us very little information specific to NP relating to their physical hazards like fires or explosions.

In a context of incomplete data for the majority of nanometric substances, it remains impossible to quantify the risks for workers in the majority of situations because the toxicity of the products, the level of dust contamination of workplaces, or their potential to cause fires or explosions remain not extensively documented or totally undocumented. Nevertheless, the majority of the means of exposure control for ultrafine particles should be effective against NP and much research is currently being carried out to confirm this.

In a context of uncertainty about the risks, and with an increasing number of potentially exposed workers, the current report paints a big picture of the OHS knowledge currently available in the NP field. In the absence of specific standards, a preventive and even a precautionary approach are recommended, and a review of the available means for minimizing worker exposure is presented.

The report (over 150 pp.) can be found here. There’s certainly much to appreciate in the report. Here are two bits that I particularly want to highlight, the acknowledgment that nanoparticles aren’t new,

Although the development of NT [nanotechnology] is a modern multidisciplinary science, naturally produced and manmade materials of nanometric dimensions and exposure to particles of other dimensions of mineral or environmental origin, including the fine fraction of nanometric particles, have always existed. Some of the natural nanometric particles are of biological origin – including DNA with a diameter of around 2.5 nm and many viruses (10 to 60 nm) and bacteria (30 nm to 10 μm) — while others are found in desert sand, oil fumes, smog, and fumes originating from volcanic activity or forest fires and certain atmospheric dusts. Among those generated by human activity, we should mention diesel fumes, industrial blast furnace emissions and welding fumes, which contain particles of nanometric dimensions (Teague, 2004). (p. 11 PDF, p. 1, print)

There’s also a very good (in my opinion) description of bottom-up and top-down approaches to engineered nanoparticles,

Nanoparticles can be synthesized by different approaches. Nanoparticle production can be generally categorized into the bottom-up and top-down methods. In the bottom-up approach, nanoparticles are constructed atom-by-atom or molecule-by-molecule. In the top-down approach (top-down), a large structure is gradually underdimensioned, until nanometric dimensions are attained after application of severe mechanical stresses, violent shocks and strong deformations. The two approaches bottom-up and top-down tend to converge in terms of dimensions of the synthesized particles. The bottom-up approach seems richer, in that it allows production of a greater diversity of architectures and often better control of the nanometric state (relatively monodispersed granulometric sizes and distribution, positioning of the molecules, homogeneity of the products). The top-down approach, although capable of higher-volume production, generally makes control of the nanometric state a more delicate operation. (p. 25 PDF, p. 15 print)

Ostiguy (last mentioned in my June 23, 2010 posting [Nanomaterials, toxicity, and Canada’s House of Commons Standing Committee on Health] as an expert witness) and his colleagues offer a good overview of  international, national, and provincial (Québec) research and development efforts including definitions for terms and descriptions of various types of nanoparticles and a discussion about markets. I was expecting something more narrowly focused on occupational health and safety (OHS) but very much appreciate the efforts to contextualize OHS issues within the larger nanotechnology ‘enterprise’ in addition to the OHS material.

Oddly, I found this on the cover page,

Disclaimer

The IRSST makes no guarantee regarding the accuracy, reliability or completeness of the information contained in this document. In no case shall the IRSST be held responsible for any physical or psychological injury [??? and emphasis mine] or material damage resulting from the use of this information.

Note that the content of the documents is protected by Canadian intellectual property legislation.

As for any psychological injury I may received from reading the report, what about injury from reading the disclaimer?

I do have a few nits to pick. Surprisingly since this report was published in July 2010, they did not include any information about an April 2010 nanomaterial definition proposed in the US (my April 27, 2010 posting). More picayune, reference is made to Nanotech BC which has been effectively defunct since Spring 2009 while no mention is made of Nano Ontario which I first noticed in early 2010 (Professor Gilbert Walker responded on behalf of Nano Ontario to Peter Julian’s proposed nanotechnology legislation in my March 29, 2010 posting).

I was also surprised at the certainty expressed about scientific unanimity over the dimensions,

As already mentioned, there is now unanimity in the scientific community on the dimensions of manufactured NP: at least one of their dimensions ranges between one and 100 nm [emphasis mine] and they have different properties than larger-diameter particles made of the same material (ASTM, 2006; BSI, 2008; ISO, 2007, 2008). (p. 49 PDF, p. 39 print)

As I understand it, there’s still some discussion about the one to one hundred nanometre range as I note here in my July 14, 2010 posting,

The comment about the definition sprang out as this issue seems to be at the forefront of many recent discussions on nanotechnology. Fern Wickson and her colleagues highlight the importance of the issue in their recently published paper,

Both the beginning and the end of this range remain subject to debate. Some claim that it should extend as low as 0.1nm (because atoms and some molecules are smaller than 1nm) and as high as 300nm (because the unique properties of the nanoscale can also be observed above 100nm). The boundaries of ‘the nanoscale’ are highly significant in both scientific and political terms because they have the possibility to affect everything from funding, to risk assessment and product labelling. [my commentary, Wickson’s response, and a citation for the paper, etc. can be found in my July 7, 2010 posting]

I do recommend reading the IRSST report if this sort of thing interests you as it offers answers to questions that you may (and, in my case, certainly) have been asking yourself about quantum dots, carbon black, and the state of OHS research and regulations in Canada and elsewhere.

Nanomaterials, toxicity, and Canada’s House of Commons Standing Committee on Health

Thanks to a reader who provided me with a link, I found a document (titled Evidence) about a ‘nanomaterials’ hearing held by Canada’s House of Commons Standing Committee on Health on June 10, 2010 and chaired by Joyce Murray, Member of Parliament, Vancouver Quadra. It makes for interesting reading and you can find it here.

The official title for the hearing was Potential Risks and Benefits of Nanotechnology, which I found out after much digging around. The purpose for the *hearing*  seemed to be the education of the committee members about nanotechnology both generally (what is it? is there anything good about it?) and about its possible toxicology.

For information about the committee and the meeting, go here to find the minutes, the evidence (direct link provided in 1st para.), and your choice of webcasts (English version, French version, and floor version). One comment before you go, keep scrolling down past the sidebar and the giant white box to find the list of meetings along with appropriate links and if you choose to listen to the webcast, wait at least 1 minute for the audio to start. There’s a list of the committee members here, again scroll down past the giant white box to find the information.

I am going to make a few comments about this hearing. I will have to confine myself to a few points as the committee covered quite a bit of ground in the proceedings as they grappled with understanding something about nanotechnology, health and safety issues, benefits, and regulatory frameworks, amongst other issues.

It was unexpected to find that Mihail Roco, a well known figure in the US nanotechnology field, was speaking via videoconference (from the document),

Dr. Mihail Roco (Senior Advisor for Nanotechnology, National Nanotechnology Initiative, National Science Foundation, As an Individual) (p. 1 in print version, p. 3 in PDF)

He did have this to say,

First of all, I would like to present an overview of different themes in the United States, and thereafter make some recommendations, some ideas for the future. [emphasis mine] (p. 5 in print version, p. 7 in PDF)

I have to say my eyebrows raised at Roco’s “… make some recommendations …” comment. While appreciative of his experience and perspective, I’ve sometimes found that speakers from the US tend to give recommendations that are better geared to their own situation and less so to the Canadian one. Thankfully,  he offered unexceptional advice that I heartily agree with,

I would like to say, in conclusion, that it’s important to have an anticipatory, participatory, and adaptive governance approach to nanotechnology in order to capture the new developments and also to prepare people, tools, and organizations for the future. (p. 6 in print version, p. 8 in PDF)

The Canadian guests are not as well known to me save for Dr. Nils Petersen who heads up Canada’s National Institute of Nanotechnology. Here is a list of the Canadian guest speakers,

Mr. (sometimes referred to as Dr. in the document) Claude Ostiguy (Director, Research and Expertise Support Department, Institut de recherche Robert-Sauvé en santé et en sécurité du travail) (p. 1 in print version, p. 3 in PDF)

Dr. Nils Petersen (Director General, National Research Council Canada, National Institute for Nanotechnology) (p. 2 in print version, p. 4 in PDF)

Dr. Claude Emond (Toxicologist, Department of Environmental and Occupational Health, Université de Montréal) (p. 3 in print version, p. 5 in PDF)

Ms. Françoise Maniet (Lecturer and Research Agent, Centre de recherche interdisciplinaire sur la biologie, la santé, la société et l’environnement (CINBIOSE) et Groupe de recherche en droit international et comparé de la consommation (GREDICC), Université du Québec à Montréal) (p. 4 in print version, p. 6 in PDF)

Emond spoke to the need for a national nanotechnology development strategy. He also mentioned communication although I’m not sure he and would agree much beyond the point that some communication programmes are necessary,

The different meetings I attend point out the necessity to integrate the social communication transparency education aspect in nanotechnology development, so many structures already exist around the words. As I said before with OECD, NNI, we also have ISO 229. Now we have a network called NE3LS in Quebec, and we also have this international team we created a few years ago, which I spoke about earlier [he leads an international team in nano safety with members from France, Japan, US, Germany, and Canada].

A Canadian strategy initiative in nanotechnology can be inspired by a group above. In closing the discussion, I want to say there is an urgent need to coordinate the national development of nanotechnology and more particularly in parallel with the nanosafety issue, including research, characterization exposure, toxicology, and assessment. I would like to conclude by saying that Canada has to assume leadership in nanosafety and contribute to this international community rather than wait and see.

The NE3LS in Québec is new to me and I wonder if  they liaise with the team in Alberta last mentioned here in connection with Alberta’s Nanotechnology Asset Map.

In response to a question from the committee member, Mrs. Cathy McLeod, Kamloops—Thompson—Cariboo,

First, because I am someone who is somewhat new to the understanding of this issue, could we take an example of either a cosmetic or a food or something that’s commonplace and follow it through from development into the product so I could understand the pathway of a nanoparticle in a cosmetic product or food? (p. 6 in print version, p. 8 in PDF)

The example Dr. Ostiguy used for his response was titanium dioxide nanoparticles in sunscreens and his focus was occupational safety, i.e., what happens to people working to produce these sunscreens.  The surprising moment came when I saw Dr. Petersen’s response as he added,

In the case of cosmetics, they take that nanoparticle and put it into the cream formulation at a factory site. Then it normally comes out to the consumer encapsulated or protected in one way or another. [emphasis mine]

In general, in those kinds of manufacturing environments the risks are at the start of the process, when you are making the particles and incorporating them into a material, and possibly at the end of the product’s life, when you’re disposing of it. It might then be released in ways that you might not have anticipated—for example, through the wearing down or opening of the cassette of toner or whatever.

I think those are the two areas. Most consumers would see a product in which nanoparticles are encapsulated or incorporated— maybe inside a cellphone, or something like that—and often not be exposed in that way. (p. 7 in print version, p. 9 in PDF)

As I understand Petersen’s comments, he believes that the nanoparticles in sunscreens (and other cosmetics) do not make direct contact as they are somehow incorporated into a shell or capsule. He then makes a comparison to cell phones to prove his point. This is incorrect. Yes, any nanomaterials in a cell phone are bound to the product (cell phones are not rubbed onto the skin) but the nanoparticles in sunscreens make direct contact and *penetrate the skin. *ETA June 28, 2010: It has not been unequivocally proved that nanoparticles penetrate healthy adult skin. I apologize for the error. ** ETA July 19, 2010: As per the July 18, 2010 posting on Andrew Maynard’s 2020 Science blog, the evidence so far suggests that there is no skin penetration by nanoparticles in sunscreens.

I have posted extensively about nanoparticles and sunscreens and will try later to lay in some links either to my posts or to more informed parties as to safety issues regarding consumers.

There was an interesting development towards the end of the meeting with Carolyn Bennett, St. Paul’s,

Firstly, I wanted to apologize for being late. I think some of you know it was the tenth anniversary of CIHR [Canadian Institutes of Health Research] this morning, the breakfast, and some of us who were there at the birth were supposed to be there at the birthday party. So my apologies.

What happened on the way in to the breakfast was that I ran into Liz Dowdeswell, from the Council of Canadian Academies, and it seems that they have just done a review of nanotechnology in terms of pros and cons. [emphasis mine]So I would first ask the clerk and the analyst to circulate that report to the committee, because I think it might be very helpful to us, and then I think it would be interesting to know if the witnesses had seen it and whether they had further comments on whether you felt it was taking Canada in the right direction.

The report mentioned by Bennett was released in July 8, 2008 (news release). You can find the full report here and the abridged version here.

I wouldn’t describe this report as having just been “done” but I think that as a primer it stands up well. (You can read my 2008 comments here.)

I do find it sad that neither this committee nor Peter Julian the Member of Parliament who earlier this year tabled the first bill concerned with nanotechnology were aware of the report’s existence. It adds weight to an issue (nobody in Ottawa seems to be aware of their work) for the Council of Canadian Academies mentioned on this blog here (where you will find links to a more informed discussion by Rob Annan at Don’t leave Canada behind and the folks at The Black Hole).

I’m glad to see there’s some interest in nanotechnology in Ottawa and I hope they continue to dig for more information.

I have sent Joyce Murray a set of questions which I hope she’ll answer about the committee’s interest in nanotechnology and about the science resources and advice available to the Members of Parliament.

ETA June 30, 2010: I received this correction from Mr. Julian’s office today:

I would like to bring to your attention incorrect information provided in the Frogheart posting on June 23, Nanomaterials, Toxicity, and Canada’s House of Commons Standing Committee on Health. Of particular concern are the closing comments:

“I do find it sad that neither this committee nor Peter Julian the Member of Parliament who earlier this year tabled the first bill concerned with nanotechnology were aware of the report’s existence. It adds weight to an issue (nobody in Ottawa seems to be aware of their work) for the Council of Canadian Academies mentioned on this blog here (where you will find links to a more informed discussion by Rob Annan at Don’t leave Canada behind and the folks at The Black Hole). I’m glad to see there’s some interest in nanotechnology in Ottawa and I hope they continue to dig for more information.”

Mr. Julian is indeed aware of the Council of Canadian Academies excellent report on nanotechnology in 2008. The document is one of many that formed the basis of Mr. Julian’s Bill C-494 which was tabled in Parliament on March 10. It is incorrect to assume that Mr. Julian was not aware of the report’s existence.

There is indeed interest in nanotechnology in Ottawa. Canadians should expect sustained interest when the House of Commons reconvenes in September with a focus on better ensuring that nanotechnology’s benefits are safely produced in the marketplace.

I apologize for the error and I shouldn’t have made the assumption. I am puzzled that the Council of Canadian Academies report was not mentioned in the interview Mr. Julian very kindly gave me and where I explicitly requested some recommendations for Canadians who want to read up about nanotechnology. Mr. Julian’s reply (part 2 of the interview) did not include a reference to the Council’s nanotechnology report, which I consider more readable than some of the suggestions offered.

*’haring’ changed to ‘hearing’ on July 26, 2016.