Tag Archives: Cientifica

List of 10 emerging technologies with life- and globe-changing impacts

The World Economic Forum (WEF) holds a number of meetings around the world and has many working committees/councils. The Global Agenda Council on Emerging Technologies is tasked to examine trends and possible impacts that various emerging technologies and to discuss strategies for dealing with the impacts on our collective future.

The Global Agenda Council has just released a list of the trends expected to have major impacts in the near future (the rest of 2012).

From the Feb. 16, 2012 news item on Nanowerk,

Below, the Global Agenda Council on Emerging Technologies presents the technological trends expected to have major social, economic and environmental impacts worldwide in 2012. They are listed in order of greatest potential to provide solutions to global challenges:

1. Informatics for adding value to information The quantity of information now available to individuals and organizations is unprecedented in human history, and the rate of information generation continues to grow exponentially. Yet, the sheer volume of information is in danger of creating more noise than value, and as a result limiting its effective use. Innovations in how information is organized, mined and processed hold the key to filtering out the noise and using the growing wealth of global information to address emerging challenges.

2. Synthetic biology and metabolic engineering The natural world is a testament to the vast potential inherent in the genetic code at the core of all living organisms. Rapid advances in synthetic biology and metabolic engineering are allowing biologists and engineers to tap into this potential in unprecedented ways, enabling the development of new biological processes and organisms that are designed to serve specific purposes – whether converting biomass to chemicals, fuels and materials, producing new therapeutic drugs or protecting the body against harm.

3. Green Revolution 2.0 – technologies for increased food and biomass Artificial fertilizers are one of the main achievements of modern chemistry, enabling unprecedented increases in crop production yield. Yet, the growing global demand for healthy and nutritious food is threatening to outstrip energy, water and land resources. By integrating advances across the biological and physical sciences, the new green revolution holds the promise of further increasing crop production yields, minimizing environmental impact, reducing energy and water dependence, and decreasing the carbon footprint.

4. Nanoscale design of materials The increasing demand on natural resources requires unprecedented gains in efficiency. Nanostructured materials with tailored properties, designed and engineered at the molecular scale, are already showing novel and unique features that will usher in the next clean energy revolution, reduce our dependence on depleting natural resources, and increase atom-efficiency manufacturing and processing.

5. Systems biology and computational modelling/simulation of chemical and biological systems For improved healthcare and bio-based manufacturing, it is essential to understand how biology and chemistry work together. Systems biology and computational modelling and simulation are playing increasingly important roles in designing therapeutics, materials and processes that are highly efficient in achieving their design goals, while minimally impacting on human health and the environment.

6. Utilization of carbon dioxide as a resource Carbon is at the heart of all life on earth. Yet, managing carbon dioxide releases is one of the greatest social, political and economic challenges of our time. An emerging innovative approach to carbon dioxide management involves transforming it from a liability to a resource. Novel catalysts, based on nanostructured materials, can potentially transform carbon dioxide to high value hydrocarbons and other carbon-containing molecules, which could be used as new building blocks for the chemical industry as cleaner and more sustainable alternatives to petrochemicals.

7. Wireless power Society is deeply reliant on electrically powered devices. Yet, a significant limitation in their continued development and utility is the need to be attached to the electricity grid by wire – either permanently or through frequent battery recharging. Emerging approaches to wireless power transmission will free electrical devices from having to be physically plugged in, and are poised to have as significant an impact on personal electronics as Wi-Fi had on Internet use.

8. High energy density power systems Better batteries are essential if the next generation of clean energy technologies are to be realized. A number of emerging technologies are coming together to lay the foundation for advanced electrical energy storage and use, including the development of nanostructured electrodes, solid electrolysis and rapid-power delivery from novel supercapacitors based on carbon-based nanomaterials. These technologies will provide the energy density and power needed to supercharge the next generation of clean energy technologies.

9. Personalized medicine, nutrition and disease prevention As the global population exceeds 7 billion people – all hoping for a long and healthy life – conventional approaches to ensuring good health are becoming less and less tenable, spurred on by growing demands, dwindling resources and increasing costs. Advances in areas such as genomics, proteomics and metabolomics are now opening up the possibility of tailoring medicine, nutrition and disease prevention to the individual. Together with emerging technologies like synthetic biology and nanotechnology, they are laying the foundation for a revolution in healthcare and well-being that will be less resource intensive and more targeted to individual needs.

10. Enhanced education technology New approaches are needed to meet the challenge of educating a growing young population and providing the skills that are essential to the knowledge economy. This is especially the case in today’s rapidly evolving and hyperconnected globalized society. Personalized IT-based approaches to education are emerging that allow learner-centred education, critical thinking development and creativity. Rapid developments in social media, open courseware and ubiquitous access to the Internet are facilitating outside classroom and continuous education.

Members of the Global Agenda Council had this to say about the list (from the Feb. 15, 2012 news release from Cientifica),

Many of the technology trends are currently below the radar of most policy makers. Council member Tim Harper [CEO, Cientifica] emphasized that “Technology is a very powerful tool for change. If the Arab Spring demonstrated that many governments are still unsure how to respond to mature and simple to grasp technologies such as Facebook and Twitter, then they run the risk of being absolutely powerless in the face of science-based technological change.”

Innovation in nanotechnology, biotechnology and information technology is already helping solve pressing challenges as diverse as efficient “renewable” energy sources, malnutrition and hunger, access to clean water, disease diagnosis and treatment, “green” technologies, and global climate change and sustainability.

Council Chair Professor Sang Yup Lee at the Korea Advanced Institute of Science and Technology (KAIST) explained that “Accelerating progress in science and technology has stimulated a new age of discovery, and many of the technologies identified by the council are critical to building a sustainable and resilient future.” Regarding job creation through emerging technologies, Council Vice-Chair Javier Garcia Martinez said, “There are no generally applicable shortcuts in the path that goes from emerging technologies to new industries and job creation. This path includes sufficient and sustained funding leaving enough incentive to the founders and real focus on scale, reliability, and safety.” The report also cautions that without new understanding, tools and capabilities, ranging from public policy to investment models, their safe and successful development is far from guaranteed. Among the trends are advances in informatics, biotechnology, medicine, materials, education, and resource usage.

Informatics for adding value to information and handling “big data” for “data to decision” is highlighted, and has been the focus of idea generation during this year’s Davos forum. In particular, the intelligent technologies for creating valuable information out of noisy data need to be developed.

In the biological domain, synthetic biology and metabolic engineering are expected to become increasingly important in manufacturing new drugs and producing chemicals and materials from renewable resources. Systems biology and computational modelling and simulation of chemical and biological systems are playing increasingly important roles in helping design therapeutics, materials and processes that are highly efficient in achieving their design goals, while minimally impacting on human health, resources, and the environment. Innovative technologies for a second green revolution that provide security in food supply for growing population and biomass for biorefineries are also selected.

Nanomaterials designed and engineered at the molecular scale are expected to continue to provide novel solutions to energy, water, and other resource-based challenges. Also listed are breakthrough technologies that potentially turn carbon dioxide from a global liability to a valuable resource.

The list also includes wireless power, high energy-density power systems, personalized medicine and nutrition, and enhanced education technologies.

Director of World Economic Forum Andrew Hagan said, “We believe that these emerging technologies to be announced annually by the council will provide a chance for all stakeholders to link technology trends to the global megatrends and solutions to the mega-challenges. The challenge will not just be the new ideas but leaving the old ones behind.”

You can find out more about the Global Agenda Council on Emerging Technologies here.

Nano in Egypt and in Iran

It’s great to get some information about what’s going on in Egypt and Iran with regard to nanotechnology and Julian Taub at the Scientific American blog network has posted a couple of very interesting interviews about what’s happening in those countries.  From Taub’s Jan. 12, 2012 posting (Felafel Tech: Nanotechnology in Egypt), here’s a description of his interview subject,

Dr. Mohamed Abdel-Mottaleb is the leading nanotechnology consultant in Egypt and Director of the Nano Materials Masters Program and the founding director for the Center of Nanotechnology at Nile University. He also helped write a chapter for NATO Science for Peace on nanomaterial consumer applications, as well as numerous research papers and articles on the issue of nanotechnology for developing countries. I sit down with him to discuss the importance of nanotechnology, the state of technological progress and public nanotechnology education after the revolution, and Egypt’s future role in the global nanotechnology landscape.

After talking about the impact that the recent revolution has had on the nanotech industry (briefly: not much since there wasn’t much of a nanotech industry in the first place) in Egypt, Abdel-Mottaleb discusses the impact on nanotechnology research at his center,

It has slowed things significantly, because now our students have to try to use facilities wherever available in Egypt. This always depends on the availability of the equipment and the response costs for us to use the equipment and the facilities at other universities or research centers. We’ve rented some labs from some companies located near the university, which are not even adequate. Our research has slowed down, students are frustrated but committed to finish and go to work, and contribute to the society and to Egypt. It has affected us deeply, negatively, but we are committed to solve it.

A significant hurdle we are facing now is the fact that the Egyptian government has stopped our move into our new campus. Since 2007, we have been operating out of temporary facilities and awaiting the completion the campus. The government has granted Ahmed Zewail (1999 Nobel Laureate in Chemistry) the full use of our campus, and since May 2010, he is refusing to allow the university to move into the facilities. This is despite the fact that the facilities were partly funded by donations to the university and the facilities remain unused to date.  Several rounds of negotiations have failed due to his insistence on shutting down the university. He plans to build a new university (Zewail University). It is very difficult to us to understand his position and intentions. We hope that the international community will support us and not allow the shutting down of a very young and successful university.

In answer to a question from Taub about the best way to advance Egyptian R&D (research and development) in nanotechnology,

I think we need a national nano initiative. It needs specific and measurable targets that all the resources that are going to be allocated for nanotechnology are going to be put into that area, and achieving targets. We need a significant collaboration with the international community. We need to find a way to establish such bi-lateral collaboration schemes, and in the end, we need the facilities. We have a huge untapped human resource power here, I mean, it’s really wonderful to see a fresh graduate from university writing a full proposal and standing up and defending it on a very scientific level, and really holding a sound argument. Unfortunately they are unable to execute these proposals because of the lack of funding and the lack of facilities.

This is really the way out, and nanotechnology can affect the culture in this region. You can use the interdisciplinary thinking and push the idea that you cannot do something on your own, you need collaborations, you need to blend other disciplines, and this is very similar to having foreigners or people in different language speaking countries having to find a way to work together. Nanotechnology really instills that into the minds of the students, and gives them the opportunity to question and challenge the conditions or the dogmas they have, whether it is about science, or culture, or politics. Nanotechnology is a wonderful venue to promote intercultural dialogue, and interfaith dialogue. You can really see the opportunities.

I find that last bit about nanotechnology’s  interdisciplinary nature as having an impact on dialogue in many spheres (Abdel-Mottaleb mentions science, culture, and politics) quite interesting and something I’ve not seen in either the Canadian or US discourses.

Egypt and nanotechnology were previously mentioned  in my Nov. 21, 2011 posting (Egyptian scientists win cash prize for innovation: a nano test for Hepatitis C) and I have also mentioned Egypt, science, and the revolution in my Feb. 4, 2011 posting (Brief bit about science in Egypt and brief bit about Iran’s tech fair in Syria). That gives me a tidy segue to Taub’s Jan. 13, 2012 posting (Science and Sanctions: Nanotechnology in Iran).

Here’s a little bit about  Dr. Abdolreza Simchi, the interview subject, from Taub’s introduction,

Dr. Simchi is a distinguished nanotechnology researcher heading the Research Center for Nanostructured and Advanced Materials (RCNAM) at the Department of Material Science and Engineering of Sharif University, where he focuses on biomedical engineering and sustainable technology. Nanotechnology is a new and interdisciplinary field where scientists can engineer atom and molecules on the nanoscale, fifty thousand times thinner than a human hair.

Dr. Simchi represents a bridge between Iran and the West. He has received many awards for his work, not only from Iran, but also from Germany, the UK, and the UN. He earned his PhD in a joint program between Sharif University and the University of Vienna and then worked at the German technology institute Fraunhofer at the beginning of his career.

Before excerpting a few more items from Taub’s post, I’m going to introduce a little information about Iran and its nanotechnology initiative from Tim Harper, Chief Executive Officer (CEO) of Cientifica. I interviewed Tim in my July 15, 2011 posting (Tim Harper, Cientifica’s CEO, talks about their latest report on global nanotechnology funding and economic impacts), where he mentioned Iran briefly and, after his visit to Iran’s Nano 2011 exhibition, he discussed it more extensively on his own blog. From Tim’s Nov. 17, 2011 posting on TNTLog,

Iran has always been a source of fascination, a place of ancient culture and history and now a country making a lot of noise about science and technology, so I was pleased to be invited by the Iran Nanotechnology Initiative Council to attend the Iran Nano 2011 exhibition in Tehran.

The unique aspect of Iranian nanotechnology is that because of the various international sanctions over the past thirty years it’s not the kind of place where you can just order an AFM or an electron microscope from a major US or Japanese supplier. As a result there was lots of home made kit on display, from sputtering systems, through surface analysis to atomic force microscopes.

So, Iranian scientists have engineered their way around the embargo on selling high tech equipment of Iran – and there was no shortage of high-end laptops on display either – but so often science is not about how much stuff you have in your lab, but what you can do with it.

Here’s what Dr. Simchi had to say about sanctions in Taub’s interview (Jan. 13, 2012 posting),

I believe sanction has two faces. On one hand, it restricts the accessibility to facilities, equipment, and materials. This part is certainly disturbing the progress. However, I see another side that somehow is good! The sanction has limited the mobility of our students and experts. I believe the strength of the country is its talented and brilliant students and well-established academic media. This is the most important difference between Iran and other neighboring countries. Over three million students have now enrolled in Iranian Universities. Hundred thousands are now registered at graduate levels. This is a true strength and advantage of Iran. As far as the American and European banning of the mobility of Iranian students via visa restriction, we enjoy more and more from forced-prohibited brain drain.

What is the wonder in rapid development of Iran in scientific publication when thousands of talented graduate students join the university annually? This is a direct consequence of well-educated students, working hard even in a tough condition.  I am personally an example of this scenario (although I am not belonging to the upper 10% of talented scientists in Iran). I was unable to go to the US to visit Standford University due to the September 11 tragedy and was twice refused a visa to visit UC Berkeley. What would have happened if I had been successful to go to the US and possibly settle down? Up to now, I have graduated many talented students at SUT. They are really brilliant and I am very proud of them. Some of them left the country to continue their studies in Europe and the US but many are living in Iran and truly contribute to nanotechnology development.  Since my research area is not strategic and has no dual applications (mainly biomaterials and green technologies), I enjoy collaborating with many scientists in the US, Canada, Europe, South Korea, and Japan.

Simchi’s research focus is interesting in light of his specialty (from Taub’s Jan. 13, 2012 posting),

I am principally a metallurgist, and specifically a particulate materials scientist. However, I always look at science and technology side-by-side and shoulder-to-shoulder. In fact, it is of prime importance to me, as an engineer, to see where and how my research output might be utilized; the maximum and direct benefit for the nation and human beings are my utmost aims. In simple words, I look towards the national interests. My people suffer from cancer (Iran is a country with high-cancer risk), environmental pollution (for instance, Tehran is one of the most polluted cities in the world), and limited water resources (dry lands). Therefore, I keep trying to combine my knowledge on particulate materials with nanotechnology, i.e. size effect, to improve healthcare via biomedical applications of materials, and to combat environmental problems. I am particularly interested in developing nanoparticles for diagnosis and therapy and to use them in tissue engineering applications.

As for what Iran is doing with regard to commericalization, Tim notes this (from the Nov. 17, 2011 posting at TNTlog),

In terms of commercial products there were many on display. Agriculture was well represented, with fertilisers, pesticides, coatings to reduce fruit spoilage and even catalytic systems to remove ethylene from fruit storage facilities. Construction materials were another large area, with a wide range of building materials on display. Absent were areas such as semiconductors and medical devices, but once again their absence illustrates that INIC [Iran Nanotechnology Initiative Council] is focussing much more on the solutions demanded by Iranian industry rather than trying to compete with more advanced economies.

Tim’s view that the absence of medical devices at the exhibition he visited is evidence that INIC is focussed on industry solutions suggests Dr. Simchi’s interests in biomedical and tissue engineering applications may prove a little challenging to pursue. In any event, I heartily recommend reading Taub’s interviews and Tim’s posting in their entirely.

Cientifica’s white paper on nanotechnology in drug delivery (NDD)

The white paper, not to be confused with the full market report which will set you back 3000 GBP (or 5000 USD), offers an 18 pp. overview of  nanotechnology in drug delivery (NDD). Excerpted from the NDD white paper,

The advantages over current treatment modalities include lower drug toxicities, improved bioavailability, reduced economic costs of treatment, and increased patient adherence to treatment. The medical management of malignancies has already been greatly impacted by nanotechnology, but soon other medical specialties will utilize these novel forms of drug delivery to achieve optimal treatment success. Additionally, innovative research and development of more therapeutically effective carriers will continue including improved forms of polymer– drug conjugates, liposomes, dendrimers, micelles, polymeric vesicles and nanocapsules. Finally, implantable drug delivery systems will open up many more opportunities for nanotechnology utilization. (p. 6 PDF)

The promise of lower toxicities and better performance is compelling both from a potential user’s (patient) perspective and a healer’s perspective. As for investors, opening up new therapies can be a lucrative business as Cientifica notes in its white paper,

Forecasts indicate the nanotechnology market will reach close to a trillion dollars by 2015, presenting investors with a unique opportunity. However, the market for applications of nanotechnology is complex to understand, multi disciplinary and highly segmented. It is therefore vital for any would-be investor to gain an understanding of which market sectors nanotechnology is likely to impact most profoundly in the near term.

Since we now know most (if not all) biological processes occur at the nanoscale, the application of life science principles – studying the causes of biological phenomena at the molecular level – means that medical and biomedical research is increasingly using a bottom-up (rather than the topdown) approach. The low bioavailability resulting from traditional oral and intravenous drug delivery methods and the market forces at work in the pharmaceutical industry, where patents expire after a relatively short period of time unless a novel form of drug delivery is developed that will extend the patent, are two major forces that will fuel the growth of the nanotech drug delivery market. The third factor at play is a combination of improved global health and a correspondingly dramatic increase in the size of the global aging population. [emphases mine] (p. 4 PDF)

I’m a little more conservative than the folks at Cientifica; I’m not yet ready to say that we ‘know’ most biological processes occur at the nanoscale since we are not yet able to test the hypothesis at smaller scales. I am convinced by the ‘low bioavailability’ and ‘global health/aging’ trends and I’m happy to see the shorter patent period mentioned.

Brief overview: Patents are a problematic area as there are arguments that current patent regimes are stifling innovation (Do Patents Encourage or Hinder Innovation? The Case of the Steam Engine; Patent Law Is Highly Controversial) while others suggest longer patent periods are needed (Drug Patents Stifling Innovation by Financially Straining Pharmaceutical Companies).

I don’t entirely buy the argument that pharmaceutical companies pour all of their profits into research and struggle financially as a consequence. (Are there any large pharmaceutical companies in serious financial trouble? Please let me know as I’ve not heard of any.) In fact, this shorter patent period seems to be stimulating the current interest and research into nanotechnology-enabled therapies. This is exactly what the patent system was designed to do in the first place, stimulate innovation.

In general, I found the white paper quite useful in that it helped me to better understand some of the material I scan on a daily basis. I particularly appreciated this breakdown,

The report has discovered that there are three areas of medicine where nanotechnology shows the greatest promise:

i. Nanotechnology in drug delivery;

ii. Nanotechnology in medical and biomedical diagnostics;

iii. Nanotechnology in regenerative medicine and tissue engineering (p. 5 PDF)

I am surprised that Cientifica considers nanotechnology in drug delivery as the most promising area for investors as it seems to me that the diagnostics area has more products close to commercialization but my view is limited, there are other factors at play and, also, investing is not my area of expertise.

From a marketing perspective, my hat’s off to the folks at Cientifica for writing a white paper that provides a good overview and acts as a teaser for the full report.

Any other quibbles I have with this material are philosophical and addressed to the industry sector. I wish there was less military-influenced language used. For example (excerpted from the white paper),

The “magic bullet” concept, first theorized by Paul Ehrlich in 1891, represents the first early description of the drug-targeting paradigm. The aim of drug targeting is to deliver drugs to the right place, at the right concentration, for the right period of time. As drug characteristics differ substantially in chemical composition, molecular size, hydrophilicity, and protein binding, the essential characteristics that identify efficacy are highly complex. All of these factors are investigated to bring a new compound to market although only a fraction reaches active clinical use. (p. 13 PDF)

The ‘magic bullet’ and drug-targeting concept is from the 19th century (or possibly earlier). Can’t we find a language that is more reflective of our own age and our current understanding of biology and technology? That challenge is for writers, artists, scholars and others who help to define our understanding of the world and our place in it.

Commercializing nano: US, Spain, and RUSNANO

Late September 2011 saw the Nanomanufacturing Summit 2011 and 10th Annual NanoBusiness conference take place in Boston, Massachusetts (my Sept. 21, 2011 posting). Dr. Scott Rickert (President and CEO of Nanofilm) writing for Industry Week noted this about the events in his Oct. 14, 2011 posting,

I witnessed an American revolution catch fire in Boston, and I feel like a latter-day Paul Revere. “The nanotech economy is coming, the nanotech economy is coming!” and that’s good news for the U.S. — and you — because we’re at the epicenter.

Let’s start with commercialization. Ten years ago, when I walked into the inaugural version of this conference, I was one of the few with money-making nanotechnology products on the market. This time? The sessions were packed with executives from multi-million dollar businesses, and the chatter was about P&L as much as R&D. Nano-companies are defying Wall Street woes and going public. And even academics were talking about business plans, not prototypes.

Dozens of companies from Europe, Asia and the Middle East were at the conference. Their goal was tapping into the American know-how for making science into business.

Seems a little euphoric, doesn’t he? It’s understandable for anyone who’s worked long and hard at an activity that’s considered obscure by great swathes of the population and finally begins to see substantive response. (Sidebar: Note the revolutionary references for a conference taking place in what’s considered the birthplace of the American Revolution.)

Speakers at MIT’s (Massachusetts Institute of Nanotechnology) EmTech event held in Spain on Oct. 26-27, 2011 were are a bit more measured, excerpted from the Oct. 27, 2011 posting featuring highlights from the conference by Cal Pierce for Opinno,

Javier García Martínez, founder of Rive Technology and Tim Harper, founder of Cientifica.com presented their view of how nanotechnology will transform our world.

Harper took the stage first.

“We have spent $67 billion on nanotechnology research this decade, so you can imagine this must be an important field,” he said.

Harper believes that nanotechnology is the most important technology that humans have developed in the past 5,000 years. However, he spoke about the difficulties in developing nanotechnology machinery in that we cannot simply shrink factories down to nano-scales. Rather, Harper said we need to look to cells in nature as they have been using nanotechnology for billions of years.

….

Harper spoke about the dire need to use nanotechnology to develop processes that replace scarce resources. However, the current economic climate is hindering these critical innovations.

Javier Garcia then spoke.

“Graphene, diamond and other carbon structures are the future of 21st-century nanotechnology,” he said.

Garcia says that the next challenge is commercialization. There are thousands of scientific articles about nanotechnology published every year which are followed by many patents, he explained. However, he reflected on Cook’s ideas about funding.

“There is still not a nanotechnology industry like there is for biotechnology,” he said.

Finally, Garcia said successful nanotechnology companies need to build strong partnerships, have strong intellectual property rights and create a healthy balance between creativity and focus. Government will also play a role with simplified bureaucracy and tax credits.

Hang on, it gets a little more confusing when you add in the news from Russia (from Dexter Johnson’s Oct. 26, 2011 posting titled, Russia Claims Revenues of One-Third-of–a-Billion Dollars in Nanotech This Year on his Nanoclast blog on the Institute for Electrical and Electronics Engineering [IEEE] website),

One of the first bits of interesting news to come out of the meeting is that: “In 2011, Rusnano has earned about 10 billion rubles ($312 million) on manufacturing products using nanotechnology — nearly half of the state corporation’s total turnover.”

We should expect these estimates to be fairly conservative, however, ever since Anatoly Chubais, RusNano’s chief, got fed up with bogus market numbers he was seeing and decided that RusNano was going to track its own development.

I have to say though, no matter how you look at it, over $300 million in revenues is pretty impressive for a project that has really only existed for three years.

Then RUSNANO announced its investments in Selecta Biosciences and BIND Biosiences, from the Oct. 27, 2011 news item on Nanowerk,

BIND Biosciences and Selecta Biosciences, two leading nanomedicine companies, announced today that they have entered into investment agreements with RUSNANO, a $10-billion Russian Federation fund that supports high-tech and nanotechnology advances.

RUSNANO is co-investing $25 million in BIND and $25 million in Selecta, for a total RUSNANO investment of $50 million within the total financing rounds of $94.5 million in the two companies combined. …

The proprietary technology platforms of BIND and Selecta originated in laboratories at Harvard Medical School directed by Professor Omid Farokhzad, MD, and in laboratories at MIT directed by Professor Robert Langer, ScD, a renowned scientist who is a recipient of the US National Medal of Science, the highest US honor for scientists, and is an inventor of approximately 850 patents issued or pending worldwide. Drs. Langer and Farokhzad are founders of both companies. [Farokhzad was featured in a recent Canadian Broadcasting Corporation {CBC}, Nature of Things, television episode about nanomedicine, titled More than human.] Professor Ulrich von Andrian, MD, PhD, head of the immunopathology laboratory at Harvard Medical School, is a founder of Selecta.

Selecta pioneers new approaches for synthetically engineered vaccines and immunotherapies. Selecta’s lead drug candidate, SEL-068, is entering human clinical studies as a vaccine for smoking cessation and relapse prevention. Other drug development programs include universal human papillomavirus (HPV) vaccine, universal influenza vaccine, malaria vaccine, and type 1 diabetes therapeutic vaccine.

BIND develops targeted therapeutics, called Accurins™, that selectively accumulate at the site of disease to dramatically enhance effectiveness for treating cancer and other diseases. BIND’s lead candidate, BIND-014, is in human clinical trials as a targeted therapy for cancer treatment. BIND’s development pipeline also includes a range of cancer treatments and drugs for anti-inflammatory and cardiovascular conditions.

Here’s an excerpt from Dexter Johnson’s Oct. 28, 2011 posting where he muses on this development,

It seems the last decade of the US—along with parts of Europe and Asia—pouring money into nanotechnology research, which led to a few fledgling nanotechnology-based businesses, is finally paying off…for Russia.

In the case of these two companies, I really don’t know to what extent their initial technology was funded or supported by the US government and I wouldn’t begrudge them a bit if it was significant. Businesses need capital just to get to production and then later to expand. It hardly matters where it comes from as long as they can survive another day.

Dexter goes on to note that RUSNANO is not the only organization investing major money to bring nanotechnology-enabled products to the next stage of commercialization; this is happening internationally.

Meanwhile, Justin Varilek posts this (Nanotech Enthusiasm Peaks) for the Moscow Times on Oct. 28, 2011,

In nanotechnology, size matters. But federal funding for the high-tech field has tapered off in Russia, flattening out at $1.88 billion per year through 2015 and losing ground in the race against the United States and Germany.

If this were a horse race, nanotechnology-enabled products are in the final stretches toward the finish line (commercialization) and it’s still anyone’s horse race.

Note: I didn’t want to interrupt the flow earlier to include this link to the EmTech conference in Spain. And, I did post a review (Oct. 26, 2011) of More than Human, which did not mention Farokhzad by name, the second episode in a special three-part series being broadcast as part of the Nature of Things series on CBC.

Cientifica’s report: Using Emerging Technologies to Address Global Risks

Tim Harper, Hailing Yu, and Martin Jordonov of Cientifca (a global consulting company on nano and other emerging technologies) have released a new report, Using Emerging Technologies to Address Global Risks. A compact 28 pp, the report provides good context for understanding some of the difficult issues, overpopulation and environmental degradation, facing us. It’s also a well reasoned and thoughtful position paper on further developing emerging technologies with the aim of solving environmental problems. It is oriented to the business end of nanotechnology as becomes clear at about page 18.

I did raise my eyebrows when the authors claimed that despite the fact that the banking industry is “one of the most regulated and supervised sectors in the world of commerce” that economic chaos has occurred in an argument against ‘too’ many regulations for emerging technologies (1st para., p. 23).

This difference of opinion may lie in geography. From my perspective here in Canada, one of the major problems besetting the US economy, which affects Canadians greatly, was the financial chaos eventually caused by lifting of many of their banking regulations in the early 2000’s. Personally, I think there was an imbalance. No regulation and lack of oversight in some areas and far too much regulation and red tape in others. (I came across the US Sarbanes-Oxley requirements in a couple of articles I wrote on content management. I don’t remember much other than the requirements for tagging, managing, and tracking data were crushing and it was specific to financial services.)

However, I do agree with the authors that government agencies and policymakers do tend to view regulations as a solution to many of

life’s problems especially when something goes wrong and the attitude seems to be, the more regulation the better. Getting back to my original comment about regulatory balance, I wouldn’t assume despite the authors’ claims that because a few companies are good citizens (the authors list an example) that the majority will follow suit. Consequently, I think some regulations and oversight need to be in place.

As nanotechnology and life sciences are poised to be as influential as oil and chemicals were to the early 20th century, and the global population becomes interconnected in a way undreamt of by even the best science fiction writers, our relationship with technology will change at a rapid pace. The difficulty that both policy makers and the general public have with technology from a lack of knowledge and a lack of control. (p. 24)

I quite agree with the authors here but I don’t understand what they mean by control in light of their earlier assertions regarding regulations. They never really describe what they mean by control.

What I particularly appreciate in this report is the way the authors weave together some of the great issues facing us environmentally and economically while suggesting that it’s possible to remedy these situations.

(I wish I could quote one or two more passages from the report, unfortunately, the copy feature is locked, which means more typing or keyboarding.)

ETA Oct. 5, 2011: I want to commend the authors for their inclusion of the internet and social media and their impact on emerging technologies, business, and global risks in their discussion.

I find there’s a general tendency to view social media and the internet purely as a business opportunity, a means of fomenting social revolution, hurting brains, etc. on the one side. Or it’s simply ignored while discussions rage about environmental degradation, risks of emerging technologies, etc. I’m glad to see the authors have put the internet and social media (which are emerging technologies themselves) into the context of the discussion about other emerging technologies (nanotechnology, robots, synthetic biology, etc.) and global risks.

Tim Harper, Cientifica’s CEO, talks about their latest report on global nanotechnology funding and economic impacts

A big thanks to Tim Harper for both his insight and for taking the time to answer questions I had about the report, Report on Global Nanotechnology Funding and Impact (Global Funding of Nanotechnologies and Its Impact) released earlier this week on July 13, 2011.

(a) First, could you tell me a little bit about you and about Cientifica?

My background is hardcore nanotechnology – I spend years building and installing surface science instrumentation for VG Instruments, one of the first companies to commercialise the Scanning Tunnelling Microscope, or at least we did our best. But that was back in the days when a PDP 1-11 was the data system and successfully acquiring an image and interpreting it usually required a trip to Zurich to see Gerd Binnig and Heini Röhring [Note: They won the Nobel prize for their efforts on scanning tunnelling microscope]. I also spent a lot of time on Secondary Ion Mass Spectrometry – hitting surfaces with beams of ions and then collecting what we knocked off.  After that I ran the electron microscopy section at the European Space Agency’s (ESA) labs in Holland before buying a lot of focussed ion beam systems and atomic force microscopes so that we could take things apart atom by atom if we suspected that they may fail half way to Mars!

Cientifica started off as a spin out in 1996 doing contract research for ESA before moving into networking scientists, advising venture capital firms about technology and producing information about nanotechnologies. Over the past ten years our work has been used by most governments, and we have been instrumental in designing or advising on a large number of national nanotechnology projects. After tracking nanotechnology for 12 years and usually being more or less right (blush) we have an increasing number of people who use us as a sanity check for projects and investments. But often the biggest successes are the least visible such as advising a client not to put a few hundred million dollars into manufacturing carbon nanotubes for which there was no channel to market.

(b) Is your latest report, 2011 Global Funding of Nanotechnologies and Its Impact, a successor of sorts (industrial sectors rather than countries are prominently listed) to your 2008 Nanotechnology Opportunities report?

It’s a progression from our first edition of the Nanotechnology Opportunity Report in 2002. In those days people just wanted to know what nanotechnology was, and to cut through a lot of the hype and disinformation. In 2002, 99.9% of people thought that nanotechnology was all about tiny robots. Ten years later it’s probably 90%, but at least the 10% involved in science policy, whether in government or companies know what nanotech really is. What people want now is some usable information  –  how does it affect my business or industry, and how can I take advantage of it. Most of our work is for private clients, who range from start ups through to multinationals and governments, and who tap our expertise in predicting the future impact of technology.

We still do a huge amount of work in industrials sectors, and we have publications in medicine and energy in the pipeline which we hope will allow people to cut through the hype and understand what (and when) the market opportunity will really be.

(c) Why did you choose to focus on nano R&D spending and potential economic impacts? Is it something to do with all of the talk about innovation?

We wanted to look first at the funding in both dollar and purchasing power parity terms as one R&D dollar gets more in China that it does in the US. There is a lot of national pride at stake about who is spending the most, and if you look at per capita spending it gets even more interesting. But getting technology to market isn’t just about making huge amounts of government money available. 90-95% of science funding doesn’t generate anything of any economic use (although it can be very useful for furthering scientific knowledge) so we need to look at how that 5-10% gets to market.  I have had a close relationship with the World Economic Forum for many years which also helps us move away from merely looking at science funding to looking at its economic impact, and we also use a lot of data from the World Bank, OECD [Organisation for Economic Development and Cooperation], and various government studies when we try to model technology diffusion.

Over the years we have developed a quite sophisticated model that allows us to translate these various inputs into fairly good, and quite specific, market predictions. In the past 12 years some people have described our market forecasts as cynical or ultra conservative, but if you look back at what we’ve said and what actually happened, I think you’ll find that we were just being realistic. I know that some people want to see big numbers, but it must be all those years as a scientist that makes me satisfied with accurate numbers, no matter what the magnitude!

Innovation isn’t a problem, the academic system is stuffed to the gills with bright and innovative people, but convincing the rest of the world that they need your innovation is the stumbling block. When we looked at the ability of countries to take advantage of their technology funding, countries such as the US and Germany scored highly as they have plenty of commercial-facing research, a strong tradition of industry-academic partnerships, good government support for technology (and whatever individual academics may say it could be far far worse) and domestic industry hungry for technology to maintain their competitive advantage. What surprised us was the low ranking of the UK. While possessing some of the best universities in the world, the UK economy is predominantly service-based, and real estate and coffee shops tend to be less enthusiastic consumers of nanotechnology than chemical companies and auto manufacturers.

(d) It seems most countries are concerned/worried about the levels of their nano science research, their innovation, and consequent economic prospects. Is there any country that seems confident about its nano economic prospects and why do you think that is?

That is partly true, but most governments do not have a joined up strategy which can cause significant structural problems in the future. Post financial crisis, the emphasis has shifted to trimming budgets rather than making long term strategic investments, which is what nanotechnology is, and this gives us two major problems.

Firstly, there just isn’t enough support for early stage spin outs. There is a financial desert to cross between being a full time academic and having a company with enough proof of concept to attract angel or VC [venture capital] funding. Unless governments address this aspect it really doesn’t matter how much innovation is produced by the academic sector, most of it will go nowhere (other than the parts cherry picked by large companies). We really need to start thinking about the path that innovation takes to market, and to make that as smooth as possible.

Secondly, and more seriously, we are approaching a dangerous time in human history. Science and technology are moving faster than ever before thanks to the automation of lab systems and almost real time sharing of results through online journals. At the same time, people are increasingly distrustful of technology, perhaps as a result of it being so far removed from everyday life, which leads to whole areas of science such as GMOs [genetically modified organisms] or nuclear energy becoming tainted. So while we have increasing pressure on food, water, energy, health and every other resource caused by a rising global population, we are being denied the tools which could help improve the conditions of people across the globe. I’m deeply involved in an initiative that sprung from our emerging technologies work at the World Economic Forum, which involves the setting up of a global Centre for Emerging Technologies Intelligence, with the aim of ensuring that we can and will develop the technologies needed to provide clean water, better health and cheap food to the world, whether that comes from nanotechnology, industrial biotechnology, or any other emerging technology.  But the project is less about the technology than making sure that the importance of technology is recognised by governments and international organisations. It is no good running around firefighting crises when we could be thinking ahead and averting them. There’s still a long way to go, but we are talking to a number of governments who are keen to host the centre.

(e) I find it interesting that regions/countries (Alberta, Texas, Iran, and increasingly, other Middle Eastern countries) that have been dependent on oil as a source of wealth are heavily invested in nanotechnology. Are there any conclusions to be drawn from that?

Diversification is the name of the game. It is very dangerous for local or national economies to be dependent on a single sector, even when it is one as lucrative as oil & gas. We have done a lot of work in the Middle East, and the issue there is also one of employment. Most of the expertise for oil & gas is imported and in Gulf countries that have gone from fishing villages to major international cities within a generation there is a real need to provide employment for their youthful populations. Nanotechnology and life sciences are seen as industries of the future and are increasingly central to strategy in the Gulf.

Iran is a different case, and it’s a place I have visited several times to discuss nanotechnologies. While the world may have some issues with the Iranian government, the scientists and business people I deal with are just like the rest of us. Iran has some great science going on, and the US embargo has meant that they have had to be quite ingenious to get access to even basic instrumentation such as electron microscopes. However, there’s a large domestic market, and the Iranians are manufacturing everything from scientific instruments to nanomaterials. When the political issues are solved, I think a few people will be surprised by the level of sophistication of Iranian nanoscience. [Note: For an example of what Tim is referring to, see the Fast Company article (Using 3-D Printers To Mock Up New Teeth) by Morgan Glendaniel, as it mentions the impact that Iranian scientists have had on this new nano-enabled technology.)

(f) Is there anything that you couldn’t include in the report but wanted to? For example, a country that doesn’t register yet in terms of its spending or innovation quotient numbers but that you think is quietly gearing up.

Our dataset is very large, and this report is just the tip of the iceberg as we have clients who pay for the detailed information. As a result the published report just concentrates on the top level numbers for the major economies. There are a few places that really stand out though, such as Singapore. The science and technology infrastructure in Singapore is world class, but it is a small country with no real domestic market so the challenge will be commercialising the fruits of its nanotechnology projects. The current strategy is based on licensing to multinationals but that alone won’t justify the investment so I suspect we will see a lot more partnering around the region, leveraging Singaporean technology in regional markets as, for example, SingTel has successfully done.

A real disappointment is India, with their leading Scientist, CNR Rao, being recently quoted as thinking that the country is in danger of missing the boat. [Note: You can find some of the quotes in this July 8, 2011 posting.]  I have spent large amounts of time in India and I know the raw talent is there, but the creaky infrastructure and lack of political will means that they are currently performing way below their potential.

(g) I will be asking a question or two about the Canada and nanotechnology from a global perspective but I’d like to learn a little bit about the project/workshop you delivered for the Canadian government some years ago. As I recall, it was an analysis of the Canadian effort at that point in time. And, are there any plans for future presentations in Canada?

We did some work for the NRC [National Research Council] a few years ago and also attended a few conferences in Canada in the early part of the decade [2000s] but since then I haven’t been back, although judging from the activity that is going on and looking at where Canada is on the rankings then maybe I should spend more time there!

(h) Generally, how would you describe Canada and its role in the global nanotechnology effort?

Our numbers indicate that it is a good place to be, similar to Australia, The Netherlands, Singapore and the Nordic economies, which is what you would expect.  The US, Russia and China are way out in front with huge funding programs, so the way to compete is obviously to be smarter and find niches rather than trying to cover every aspect of what is a huge field. Knowing where you want the economy to go and nurturing the technologies that will help you achieve that is always a good strategy. But governments are usually terrible at picking winners. Most politicians and civil servants are often ill equipped to advise people on how to run a business, so creating the right environment for innovation and then letting entrepreneurs get on with it is probably the best option.

(i) Are there any suggestions you’d make to Canadian policymakers as to improving Canada’s situation?

Think I just answered that above. 😉 In a nutshell it’s not about how much; it’s about how effective the funding is.

(j) How much work is it to write a report like 2011 Global Funding of Nanotechnologies and Its Impact?

It is harder than it looks.  We have been collecting these numbers for the last 10 years but that’s only part of it. We also have to build and maintain relationships with a huge network of government agencies and scientists around the world so that we can understand which numbers are real.  A lot of governments are very happy to announce funding for nanotechnology, but that doesn’t actually mean that it is available and much of what what we try to do is confirm that all the funding we track is real cash and not just a political announcement.

(k) Is there anything you’d like to add?

After 12 years and almost $70 billion in funding we have to keep thinking about why we do science and how we can encourage its results to be translated into both economic and social well-being. The technology transfer process is very inefficient and the path is strewn with many obstacles. If this was a business process someone would have found a way to streamline it by now.

Thank you Tim Harper for going ‘over and above’ in answering my questions.

One final note, in addition to being a ‘serial tech entrepreneur’ (ETA July 18, 2011: I added the word tech to ‘serial entrepreneur’] and CEO (chief executive officer) of Cientifica, Tim co-owns a fashion boutique, Foxbat in the Spitalfields district of London, UK  (proving that people involved in nanotechnology have a broad set of interests).

Nanotechnology funding and impact: a global perspective

This morning (July 13, 2011), Cientifica released its 2011 Report on Global Nanotechnology Funding and Impact (Global Funding of Nanotechnologies and Its Impact). Here’s text from the news release (this news release may not be available in perpetuity),

With US government funding of nanotechnology receding slightly in 2011, Purchasing Power Parity (PPP) estimates indicate that for the first time, China will spend more than the US to fund nanotechnology.

“In the last 11 years, governments around the world have invested more than US$67.5 billion in nanotechnology funding,” said Tim Harper, CEO of UK-based consulting company Cientifica. “When corporate research and various other forms of private funding are taken into account, nearly a quarter of a trillion dollars will have been invested in nanotechnology by 2015.”

Corporate research and private funding were thought to have surpassed government funding figures as far back as 2004. But this year, according to Cientifica’s estimates, in PPP terms China will spend US$2.25 billion in nanotechnology research while the US will spend US$2.18 billion. In real dollar terms, adjusted for currency exchange rates, China is only spending about US$1.3 billion to the US’s $2.18 billion.

This appears to be a temporary hiccup in US dominance in public funding of nanotechnology with the US again taking the lead next year even in PPP terms, spending $2.46 billion with China allotting $2.2 billion.

“Cientifica’s index of countries’ ability to take advantage of emerging technologies indicates the US, Germany, Taiwan and Japan have the combination of academic excellence, technology-hungry companies, skilled workforces and the availability of early stage capital to ensure effective technology transfer,” said Harper.

When combined with levels of nanotechnology funding, the US is still the place to be, although China and Russia are increasingly attractive. The UK and India struggle at the bottom of the league.

For more information on nanotechnology funding or Cientifica’s Emerging Technology Exploitation Index visit www.cientifica.eu.

Note to editors: Purchasing Power Parity (PPP), the theory of long-term equilibrium exchange rates based on relative price levels of two countries, takes into account the fact that labour, materials and other costs may be significantly lower in one country than in another but in the absence of transaction costs and official barriers to trade, identical goods will be identically priced in different markets when the prices are expressed in terms of one currency.

I have taken a look at the report, which you can find here, to better understand this Purchasing Power Parity concept and found these two illustrative graphs (pp. 4-5 in the report),

 

The graphs don’t tell the whole story as spending money on research doesn’t necessarily mean that a country will be able to capitalize on their investment (from the report),

In order to obtain a more accurate picture
of which economies are best placed to translate research funding into an economic benefit, we used data
from the World Economic Forum’s annual Global Competitiveness Report.  (p. 6)

Key findings from the Cientifica report (found on this webpage),

  • With US government funding of nanotechnology receding slightly in 2011, Purchasing Power Parity (PPP) estimates indicate that for the first time, China will spend more than the US to fund nanotechnology.
  • In the last 11 years, governments around the world have invested  more than US$67.5 billion in nanotechnology funding. When corporate research and various other forms of private funding are taken into account, nearly a quarter of a trillion dollars will have been invested in nanotechnology by 2015.
  • Corporate research and private funding were thought to have surpassed government funding figures as far back as 2004. But this year, according to Cientifica’s estimates, in PPP terms China will spend US$2.25 billion in nanotechnology research while the US will spend US$2.18 billion. In real dollar terms, adjusted for currency exchange rates, China is only spending about US$1.3 billion to the US’s $2.18 billion.
  • This appears to be a temporary hiccup in US dominance in public funding of nanotechnology with the US again taking the lead next year even in PPP terms, spending $2.46 billion with China allotting $2.2 billion.
  • Cientifica’s index of countries’ ability to take advantage of emerging technologies indicates the US, Germany, Taiwan and Japan have the combination of academic excellence, technology-hungry companies, skilled workforces and the availability of early stage capital to ensure effective technology transfer.
  • When combined with levels of nanotechnology funding, the US is still the place to be, although China and Russia are increasingly attractive. The UK and UK and India struggle at the bottom of the league.

One final note, Canada didn’t make any league in this report.

ETA July 13, 2011: Dietram Scheufele at the nanopublic blog has posted briefly about the report by highlighting information about the countries (Japan, US, and Germany) most likely to ‘translate nano funding into economic impacts‘.

 

  • With US government funding of nanotechnology receding slightly in 2011, Purchasing Power Parity (PPP) estimates indicate that for the first time, China will spend more than the US to fund nanotechnology.
  • In the last 11 years, governments around the world have invested  more than US$67.5 billion in nanotechnology funding. When corporate research and various other forms of private funding are taken into account, nearly a quarter of a trillion dollars will have been invested in nanotechnology by 2015.
  • Corporate research and private funding were thought to have surpassed government funding figures as far back as 2004. But this year, according to Cientifica’s estimates, in PPP terms China will spend US$2.25 billion in nanotechnology research while the US will spend US$2.18 billion. In real dollar terms, adjusted for currency exchange rates, China is only spending about US$1.3 billion to the US’s $2.18 billion.
  • This appears to be a temporary hiccup in US dominance in public funding of nanotechnology with the US again taking the lead next year even in PPP terms, spending $2.46 billion with China allotting $2.2 billion.
  • Cientifica’s index of countries’ ability to take advantage of emerging technologies indicates the US, Germany, Taiwan and Japan have the combination of academic excellence, technology-hungry companies, skilled workforces and the availability of early stage capital to ensure effective technology transfer.
  • When combined with levels of nanotechnology funding, the US is still the place to be, although China and Russia are increasingly attractive. The UK and UK and India struggle at the bottom of the league.

Innovation discussion in Canada lacks imagination

Today, Feb. 18, 2011, is the last day you have to make a submission to the federal government of Canada’s Review of Federal Support to Research and Development.

By the way, the  expert panel appointed and tasked with carrying out this consultation consists of:

Mr. Thomas Jenkins – Chair
Dr. Bev Dahlby
Dr. Arvind Gupta
Ms. Monique F. Leroux
Dr. David Naylor
Mrs. Nobina Robinson

They represent a mix of industry and academic representatives; you can read more about them here. You will have to click for each biography. Unfortunately, neither the website nor the consultation paper offer a list of members of the panel withbiographies that are grouped together for easy scanning.

One sidenote, big kudos to whomever decided this was a good idea (from the Review web page),

Important note: Submissions received by the panel will be made publicly available on this site as early as March 4, 2011.[emphases mine] * The name and organizational affiliation of the individual making the submission will be posted on the site; however, contact information (i.e., email addresses, phone numbers and postal addresses) will not be posted, unless that information is embedded in the submission itself.

This initiative can be viewed in two ways: (a) necessary housecleaning of funding programmes for research and development (R&D) that are not effective and (b) an attempt to kickstart more innovation, i.e. better ties between government R&D efforts and industry to achieve more productivity, in Canada. From the consultation paper‘s introduction,

WHY A REVIEW?

Innovation by business is a vital part of maintaining a high standard of living in Canada and building Canadian sources of global advantage. The Government of Canada plays an important role in fostering an economic climate that encourages business innovation, including by providing substantial funding through tax incentives and direct program support to enhance business research and development (R&D). Despite the high level of federal support, Canada continues to lag behind other countries in business R&D expenditures (see Figure 1), and this is believed to be a significant factor in contributing to the country’s weak productivity growth. Recognizing this, Budget 2010 announced a comprehensive review of federal support to R&D in order to maximize its contribution to innovation and to economic opportunities for business. (p. 1 print;  p. 3 PDF)

I’d like to offer a submission but I can’t for two reasons. (a)  I really don’t know much about the ‘housecleaning’ aspects. (b) The panel’s terms of reference vis à vis innovation are so constrained that any comments I could offer fall far outside it’s purview.

Here’s what I mean by ‘constrained terms of reference’ (from the consultation paper),

The Panel has been asked to provide advice related to the following questions:

§ What federal initiatives are most effective in increasing business R&D and facilitating commercially relevant R&D partnerships?

§ Is the current mix and design of tax incentives and direct support for business R&D and businessfocused R&D appropriate?

§ What, if any, gaps are evident in the current suite of programming, and what might be done to fill these gaps?

In addition, the Panel’s mandate specifies that its recommendations not result in an increase or decrease to the overall level of funding required for federal R&D initiatives. (p. 3 print; p. 5 PDF)

The ‘housecleaning’ effort is long overdue. Even good government programmes can outlive their usefulness while ineffective and/or bad programmes don’t get jettisoned soon enough or often enough. If you want a sense of just how complicated our current R & D funding system is, just check this out from Nassif Ghoussoub’s (Piece of Mind blog) Jan. 14, 2011 posting,

Now the number of programs that the government supports, and which are under review is simply mind boggling.

First, you have the largest piece of the puzzle, the $4-billion “Scientific Research and Experimental Develoment tax credit program” (SR&ED), which seems to be the big elephant in the room. I hardly know anything about this program, besides the fact that it is a federal tax incentive program, administered by the Canada Revenue Agency, that encourages Canadian businesses of all sizes, and in all sectors to conduct research and development in Canada. Former VP of the NRC and former President of Alberta Ingenuity, Peter Hackett, has lots to say about this. Also on youtube.

But you don’t need to be an expert to imagine the line-up of CEOs waiting to testify as to how important these tax incentives are to the country? “Paris vaut bien une messe” and a billion or four are surely worth testifying for.

Next, just take a look (below) at this illustrative list of more directly funded federal programs. Why “illustrative”?, because there is at least one hundred more!

Do you really think that anyone of the heads/directors/presidents (the shopkeepers!) of these programs (the shops!) are going to testify that their programs are deficient and need less funding? What about those individuals that are getting serious funding from these programs (the clients!)?

Nassif’s list is 50 (!) programmes long and he suggests there are another 100 of them? Yes, housecleaning is long overdue but as Nassif points out. the people most likely to submit comment about these programmes  are likely to be beneficiaries uninclined to see their demise.

There is another problem with this ‘housecleaning’ process in that they seem to be interested in ‘tweaking’ rather than renovating or rethinking the system. Rob Annan at the Researcher Forum (Don’t leave Canada behind) blog, titled his Feb. 4, 2011 post, Innovation vs. Invention, as he questions what we mean by innovation (excerpt from his posting),

I wonder if we’ve got the whole thing wrong.

The fact is: universities don’t produce innovation. For that matter, neither does industrial R&D.

What university and industrial research produces is invention.

The Blackberry is not an innovation, it’s an invention. A new cancer-fighting drug is not an innovation, it’s an invention. A more durable prosthetic knee is not an innovation, it’s an invention.

Universities can – and do – produce inventions.

In fact, they produce inventions at an astonishing rate. University tech transfer offices (now usually branded as “centres for innovation and commercialization”) register more intellectual property than could ever be effectively commercialized.

But innovation is distinct from invention. Innovation is about process.

Innovation is about finding more efficient ways to do things. Innovation is about increasing productivity. Innovation is about creating new markets – sometimes through the commercialization of inventions.

Innovation is about the how not about the what.

Thought-provoking, yes? I think a much broader scope needs to be taken if we’re going really discuss innovation in Canada. I’m talking about culture and making a cultural shift. One of the things I’ve noticed is that everyone keeps saying Canadians aren’t innovative. Fair enough. So, how does adding another government programme change that? As far as I can tell, most of the incentives that were created have simply encouraged people to game the system, which is what you might expect from people who aren’t innovative.

I think one of the questions that should have been asked is, how do you encourage the behaviour, in this case a cultural shift towards innovation, you want when your programmes haven’t elicited that behaviour?

Something else I’d suggest, let’s not confine the question(s) to the usual players as they’ll be inclined to offer more of the same. (There’s an old saying, if you’re a hammer, everything looks like a nail.)

Another aspect of making a cultural shift is modeling at least some of the behaviours. Here’s something what Dexter Johnson at the Nanoclast blog (IEEE Spectrum) noticed about US President Barack Obama’s January 2011 State of the Union address in his January 28, 2011 posting,

Earlier this week in the President’s State of the Union Address, a 16-year-old girl by the name Amy Chyao accompanied the First Lady at her seat.

No doubt Ms. Chyao’s presence was a bit of stage craft to underscore the future of America’s ingenuity and innovation because Ms. Chyao, who is still a high school junior, managed to synthesize a nanoparticle that when exposed to infrared light even when it is inside the body can be triggered like a bomb to kill cancer cells. [emphasis mine] Ms. Chyao performed her research and synthesis in the lab of Kenneth J. Balkus, Jr., a chemistry professor at the University of Texas at Dallas.

This is a remarkable achievement and even more so from someone still so young, so we would have to agree with Prof. Balkus’ assessment that “At some point in her future, she’ll be a star.”

However, Chyao was given to us as a shining example of the US potential for innovation, and, as a result, its competitiveness. So beyond stage craft, what is the assessment of innovation for the US in a time of emerging technologies such as nanotechnology? [emphasis mine]

As President Obama attempts to rally the nation with “This is our Sputnik moment”, Andrew Maynard over on his 20/20 blog tries to work out what innovation means in our current context as compared to what it meant 50 years ago at the dawn of the space race.

Notice the emphasis on innovation. Our US neighbours are as concerned as we are about this and what I find interesting is that there glimmers of a very different approach. Yes, Chyao’s presence was stagecraft but this kind of ‘symbolic communication’ can be incredibly important. I say ‘can’ because if it’s purely stagecraft then it will condemned as a cheap stunt but if they are able to mobilize ‘enough’ stories, programmes, education, etc. that support the notion of US ingenuity and innovation then you can see a cultural shift occur. [Perfection won’t be achieved; there will be failures. What you need are enough stories and successes.] Meanwhile, Canadians keep being told they’re not innovative and ‘we must do something’.

This US consultation may be more stagecraft but it shows that not all consultations have to be as thoroughly constrained as the Canadian one finishing today.  From Mike Masnick’s Feb. 9, 2011 posting (The White House Wants Advice On What’s Blocking American Innovation) on Techdirt,

The White House website kicked off a new feature this week, called Advise the Advisor, in which a senior staff member at the White House will post a YouTube video [there’s one in this posting on the Techdirt website] on a particular subject, asking the public to weigh in on that topic via a form. The very first such topic is one near and dear to our hearts: American Innovation. [emphasis mine] …

And here is the answer I provided:

Research on economic growth has shown time and time again the importance of basic innovation towards improving the standard of living of people around the world. Economist Paul Romer’s landmark research into innovation highlighted the key factor in economic growth is increasing the spread of ideas.

Traditionally, many people have considered the patent system to be a key driver for innovation, but, over the last few decades, research has repeatedly suggested that this is not the case. In fact, patents more frequently act as a hindrance to innovation rather than as a help to it. Recent research by James Bessen & Michael Meurer (reviewing dozens of patent studies) found that the costs of patents far outweigh the benefits.

This is a problem I see daily as the founder of a startup in Silicon Valley — often considered one of the most innovative places on earth. Patents are not seen as an incentive to innovation at all. Here, patents are simply feared. The fear is that anyone doing something innovative will be sued out of nowhere by someone with a broad patent. A single patent lawsuit can cost millions of dollars and can waste tons of resources that could have gone towards actual innovation. Firms in Silicon Valley tend to get patents solely for defensive purposes.

Getting back to Dexter, there is one other aspect of his comments that should be considered, the emphasis on ’emerging technologies’. The circumstances in which we currently find ourselves are hugely different than they were during the Industrial revolution, the arrival of plastics and pesticides, etc. We understand our science and technology and their impacts quite differently than we did even a generation ago and that requires a different approach to innovation than the ones we’ve used in the past. From Andrew Maynard’s Jan. 25, 2011 posting (2020 Science blog),

… if technology innovation is as important as Obama (and many others besides) believes it is, how do we develop the twenty first century understanding, tools and institutions to take full advantage of it?

One thing that is clear is that in connecting innovation to action, we will need new insights and “intelligence” on how to make this connection work in today’s world. These will need to address not only the process of technology innovation, but also how we develop and use it within an increasingly connected society, where more people have greater influence over what works – and what doesn’t – than ever before. This was the crux of a proposal coming out of the World Economic Forum Global Redesign Agenda earlier this year, which outlined the need for a new Global Center for Emerging Technologies Intelligence.

But beyond the need for new institutions, there is also the need for far more integrated approaches to building a sustainable future through technology innovation – getting away from the concept of technology innovation as something that is somebody else’s business, and making it everybody’s business. This was a central theme in the World Economic Forum report that Tim Harper of CIENTIFICA Ltd. and I published last week.

There’s a lot more to be said about the topic. Masnick did get a response of sorts to his submission about US innovation (from his Feb. 17, 2011 posting on Techdirt),

Tony was the first of a bunch of you to send over the news that President Obama’s top advisor, David Plouffe, has put up a blog post providing a preliminary overview of what he “heard” via the Ask the Advisor question, which we wrote about last week, concerning “obstacles to innovation.” The only indication that responses like mine were read was a brief mention about how some people complained about how the government, and particularly patent policy, got in the way of innovation:

Many respondents felt that too much government regulation stifled businesses and innovators and that the patent process and intellectual property laws are broken.

Unfortunately, rather than listening to why today’s patent system is a real and significant problem, it appears that Plouffe is using this to score political points for his boss …

Masnick hasn’t lost hope as he goes on to note in his posting.

For yet another perspective, I found Europeans weighed in on the innovation topic at the American Association for the Advancement of Science (AAAS) 2011 annual meeting this morning (Feb. 18, 2011). From a Government of Canada science blog (http://blogs.science.gc.ca/) posting, Mobilizing resources for research and innovation: the EU model, by Helen Murphy,

EU Commission Director-General of the Joint Research Centre Robert-Jan Smits spoke about what all countries agree on: that research and innovation are essential to prosperity — not just now, but even more so in the future.

He said European leaders are voicing the same message as President Obama, who in his recent State of the Union address linked innovation to “winning the future” — something he called the “Sputnik movement of our generation.”

Smits talked about the challenge of getting agreement among the EU’s 27 member countries on a growth strategy. But they have agreed; they’ve agreed to pursue growth that is smart (putting research and innovation at centre stage), sustainable (using resources efficiently and responsibly) and inclusive (leaving no one behind and creating new jobs).

The goal is ambitious: the EU aims to create nearly four million new jobs in Europe and increase the EU’s GDP by 700 billion Euros by 2025.

What I’m trying to say is that innovation is a big conversation and I hope that the expert panel for Canada’s current consultation on this matter will go beyond its terms reference to suggest that ‘housecleaning and tweaking’ should be part of a larger initiative that includes using a little imagination.

Nanotechnology regulatory framework for India

It looks like a wave of nanotechnology regulatory frameworks is developing. In mid-October 2010, India announced at a conference that a draft was in the works. From the news item on The Times of India website,

The two-day conference, titled Nanotechnology, materials and composites for frontier applications’, was inaugurated by Chavan at a city hotel. The conference is being hosted by the Bharati Vidyapeeth Deemed University, in association with the North Carolina A&T State University, Greensboro, US, Tuskegee University, Albama, US, and the Centre for Materials for Electronics Technology and the Department of Information Technology, Government of India.

Chavan said, “The nanotechnology field is very exciting, and tremendous impetus will be given for the R&D in this area. A regulatory framework will help in sorting out issues of ethics and copyrights, which are currently being faced by experts in the country.”

He said Rs 1,800 crore have been spent on nano mission and there are close to one thousand researchers working in nanotechnology across the country and a handful of discoveries have been made in the field. “Some potential discoveries from the Indian Institute of Science, Bangalore, Indian Institute of Technology, Delhi and the Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Hyderabad, have been successful and has been commercialised as well,” Chavan said.

“India spends about 1 per cent of gross domestic product on research and development (R&D), which is not very encouraging compared to other countries like the US, which spends 4 to 5 per cent on R&D. We are trying to double it, but at the same time, we would also like to see more participation from the public sector in this area. Of the 1 per cent about 75 to 76 per cent comes from the private sector which is exactly opposite in the western countries. The share of public sector is more there and so should happen in India,” Chavan said.

I find the focus on commercialization and intellectual property unexpected since the discussion on regulatory frameworks in Europe and the US tends to focus on environment, health, and safety issues. For an example about the latest on Europe and nanotechnology and regulatory frameworks, I found this in Tim Haper’s Sept. 29, 2010 posting on his TNTlog,

Plastics & Rubber Weekly reports that the Belgian Environment Minister, Paul Magnette proposed five elements that should be included in nanotechnology legislation, including

* A register of nanomaterials used within the EU is established, so regulators can trace the origin of any nanoparticles to their source if they cause health or environmental problems.

* Manufacturers and retailers inform consumers of the presence of nanomaterials in their products

* Regulations provide for risk evaluation and management of nanomaterials at an EU level

* Member states also draft integrated national strategies for nanotechnology risk management, information dissemination and monitoring

* Claims made on labels of products containing nanomaterials are controlled

What makes the contrast interesting for me is that Harper is the principal for the company, Cientifica (from the About page),

Cientfica is distinct from all other companies providing consulting and information services in its knowledge of both the science and business of emerging technologies. Cientifica employees are from a variety of backgrounds, but all are highly experienced technical project managers and familiar with the commercialization of technology and the transfer of science from the laboratory to the market place.

Cientifica’s numerous reports on commercial aspects of nanotechnology and other emerging technologies are well known for cutting through the hype and getting to the root of the issues. In the same way, Cientifica uses its experience in the reality of commercializing technologies and its wide network of international science and technology practitioners to provide down-to-earth and practical advice to companies, academics and governments.

Cientifica also provides advice to investors who are considering investment in emerging technology companies.

Through this experience Cientifica has a deep understanding of the drivers and associated risks associated with investment and management of cutting edge technology projects.

As you can see the company’s focus is on commercializing emerging technologies, including nanotechnology. By the way, I’m not trying to suggest that Harper doesn’t discuss regulatory frameworks with regard to commercializing nanotechnology. I’m pointing out my own unconscious expectations when the words ‘nanotechnology’,  ‘regulatory’, and ‘framework’ are put in the same sentence.

Australia sees shrinkage in nanotechnology business sector?; Off the deep end: an interview with Cheryl Geisler (part 2 of 3)

There is a new report, Nanotechnology in Australia: Trends, Applications and Collaborative Opportunities, to be released Monday, February 22, 2010, which, apparently, claims that the number of Australian companies in the nanotechnology market has “plummeted.” Dexter Johnson, Nanoclast blog, on the IEEE website wrote the first item I read about this report which is being produced by the Australian Academy of Science and will be launched by the Innovation, Industry, Science and Research Minister, Kim Carr on Monday.

From Nanoclast,

The Australian Academy of Sciences in a soon-to-be-released report indicates that the number of nanotechnology companies in Australia is declining from an estimate of about 80 to around 55, and that the technology is simply not finding its way into commercial products.

According to the report, one of the key obstacles to this commercialization is “often dysfunctional” university intellectual property offices. I have covered this problem of poor tech transfer offices before when discussing a Cientifica report that came out late last year that recommended the following in order to start making money from nanotechnology: “Fire 90% of university tech transfer people and replace them with people who understand how small businesses and science based innovation actually works.”

Cientifica, mentioned in the excerpt from Nanoclast, is a company that’s been mentioned here before. Tim Harper, the principal, writes a blog (TNTlog) and has commented on the forthcoming report. From TNTlog,

My colleague Dexter Johnson (aka the Nanoclast) highlights a forthcoming report about the decline in the number of Australian nanotech companies, but it’s hardly surprising. Before anyone heralds the death of anything consider this:

* The global economy has resulted in a reduction of the number of companies in just about every sector of the economy. High streets where a third of the shops have closed are now common outside London, and everyone from estate agents to Starbucks have been rationalising, downsizing or going bust.

* As I mentioned back in 2001, most nanomaterials companies will go bust, some sooner, some later, but there is almost no way that anyone apart from large diversified chemical and materials companies can create a sustainable business in that sector. Of course if you told your VCs that nanotubes were the new gold you probably got closed down five years ago.

* Nanotech has been subject to a large amount of M&A [mergers and acquisitions] activity, Singular ID being snapped up by Bilicare for example, thereby disappearing from the Singapore register of nanotech companies and joining the Indian pharmaceutical industry.

* Most nanotech companies were start ups, and most start ups don’t survive too long, whatever the sector.

* I can think of plenty of companies making use of nanotechnologies that no one would consider being nanotech companies, so how a nanotech company is defined is also part of the problem.

I can’t believe I’m doing this but I agree with Harper on each and every point he makes in this excerpt. (For contrast, you can read my critique of one of Harper’s reports here in my July 24, 2008 post.) As for the rest of his post, I bow to his superior knowledge of the market reports and hype.

The original story was written by Cheryl Jones for The Australian. I’ve not been able to find a reference to the forthcoming report on  the Australian Academy of Science website.

As Harper points out the economy is global and affects everyone including Simon Fraser University (Vancouver, Burnaby & Surrey, Canada) where I interviewed Cheryl Geisler, Dean of the Faculty of Communication, Art and Technology.

Off the deep end: an interview with Cheryl Geisler (part 2)

Arriving at SFU on the heels of one of the largest economic meltdowns in decades and presiding over a new faculty during what is still considered a shaky economic recovery. Geisler is dealing with budgetary cuts and restraints. “Oh yeah, there were budgetary cuts this year across SFU, it was about 3%. [At the point] I think we’re pretty much flat in terms of the budget over the next three years but since salaries will not be flat that means other non-salary items have to suffer some re-organization.”

When pressed for more information, Geisler noted, “In the first instances you look for things that people are doing that they don’t really care about any more. Obviously, those can go [and that’s what we] more or less did this year. I always think it’s a bad idea to [say] we’ve got to cut, that’s a very demoralizing kind of goal. I’d rather think—ok—what can we create that’s new within the kinds of incentives, resources, and interests that we have. We might not be able to do everything we want but we can make sure that what we’re doing is what we really want to do.”

In looking at what any component of FCAT may want to achieve, it might be useful to cast an eye backward at each component’s history. The School for the Contemporary Arts started as a non credit cluster of courses in 1965 at SFU’s founding. By 1975 the programme had become an academic unit in the Faculty of Interdisciplinary Studies. In 1989 the centre was renamed a school, a name it retains to this day. No mention is made as to membership in any faculty other than interdisciplinary studies. (More details can be found here on their web page or here in the faculty’s wikipedia entry although there doesn’t seem to have been an update noting the school’s new home faculty). NOTE: I received the wikipedia information (never occurred to me to look there) after I posted part 1. Thanks Livleen! The entry also gives information that I’ll use to update contextual details about this interview that I posted on Feb.16.10)

Memory (mine) will have to serve for an abbreviated history of FCAT’s other components.

  • The School of Communication was an outgrowth from the Sociology/Anthropology Dept. It seems to have achieved departmental status by sometime in the late 1970s, presumably in the Faculty of Arts and Social Sciences. At some point in the 1980s, the department of communication became a member of the Faculty of Applied Sciences.
  • The School of Interactive Arts and Technology (SIAT) got its start in the late 1990s as part of the Technical University in Surrey, BC. The university was absorbed by SFU sometime in the early 2000s where it resided in the Faculty of Applied Sciences.
  • The Master’s of Publishing Programme was instituted in the late 1980s and was an outgrowth of the Canadian Centre for Studies in Publishing which, itself, was at one time affiliated with or housed in the Department of Communication and, presumably, in the Faculty of Applied Sciences.
  • The Masters of Digital Media came about as an initiative from the consortium (University of British Columbia, British Columbia Institute of Technology, Emily Carr University of Art + Design) which manages the Great Northern Way Campus facility in Vancouver. The programme was instituted in 2007 and has not been anchored in a faculty.

(If you have more accurate historical or other information, please do let me know.)

The discussion about faculties is not purely academic (pun intended) as there has been an impact for SIAT, at least. “Yes, both schools (Interactive Arts & Technology and Communication) were in the Faculty of Applied Sciences but if you look at the research programmes for most of the [faculty members in Communication] there’s a strong critical analysis of media component which is more in line with the Humanities. Really, the move from Applied Sciences is affecting SIAT more. One of the consequences is that the students who are applying are not as technically literate. SIAT has a mix of Humanities and Art Practice and Science so they need to make sure they maintain and nurture that kind of mix even though there’s always a potential for drift towards design and they’re not [associated as closely] with the Computer Science Department [through their membership] in Applied Sciences anymore.”

I’m moving fast today so may have to make some changes when I review this post later. Tomorrow: part 3 where we discuss access to research, public outreach, and Cheryl Geisler’s ‘dreams’.

Off the deep end: an interview with Cheryl Geisler Introduction, Part 1, Part 3