Tag Archives: Natural Sciences and Engineering Research Council of Canada (NSERC)

Arc’teryx performance apparel and University of British Columbia (Canada) scientists stay green and dry

As rainy season approaches in the Pacific Northwest of Canada and the US, there’s some good news about a sustainable water- and oil-repellent fabric. Sadly, it won’t be available this year but it’s something to look forward to.

An August 10, 2020 news item on phys.org announces the news from the University of British Columbia (UBC) about a greener, water-repellent fabric,

A sustainable, non-toxic and high-performance water-repellent fabric has long been the holy grail of outdoor enthusiasts and clothing companies alike. New research from UBC Okanagan and outdoor apparel giant Arc’teryx is making that goal one step closer to reality with one of the world’s first non-toxic oil and water-repellent performance textile finishes.

An August 10, 2020 UBC Okanagan news release (also on EurekAlert), which originated the news item, provides more detail,

Outdoor fabrics are typically treated with perfluorinated compounds (PFCs) to repel oil and water. But according to Sadaf Shabanian, doctoral student at UBC Okanagan’s School of Engineering and study lead author, PFCs come with a number of problems.

“PFCs have long been the standard for stain repellents, from clothing to non-stick frying pans, but we know these chemicals have a detrimental impact on human health and the environment,” explains Shabanian. “They pose a persistent, long-term risk to health and the environment because they take hundreds of years to breakdown and linger both in the environment and our bodies.”

According to Mary Glasper, materials developer at Arc’teryx and collaborator on the project, these lasting impacts are one of the major motivations for clothing companies to seek out new methods to achieve the same or better repellent properties in their products.

To solve the problem, Shabanian and the research team added a nanoscopic layer of silicone to each fibre in a woven fabric, creating an oil-repellent jacket fabric that repels water, sweat and oils.

By understanding how the textile weave and fibre roughness affect the liquid interactions, Shabanian says she was able to design a fabric finish that did not use any PFCs.

“The best part of the new design is that the fabric finish can be made from biodegradable materials and can be recyclable,” she says. “It addresses many of the issues related to PFC-based repellent products and remains highly suitable for the kind of technical apparel consumers and manufacturers are looking for.”

Arc’teryx is excited about the potential of this solution.

“An oil- and water-repellent finish that doesn’t rely on PFCs is enormously important in the world of textiles and is something the whole outdoor apparel industry has been working on for years,” says Glasper. “Now that we have a proof-of-concept, we’ll look to expand its application to other DWR-treated textiles used in our products and to improve the durability of the treatment.”

“Working to lessen material impacts on the environment is crucial for Arc’teryx to meet our goal of reducing our greenhouse gas emissions by 65 per cent in intensity by 2030,” she adds.

Kevin Golovin, principal investigator of the Okanagan Polymer Engineering Research & Applications Lab where the research was done, says the new research is important because it opens up a new area of green textile manufacturing.

He explains that while the new technology has immense potential, there are still several more years of development and testing needed before people will see fabrics with this treatment in stores.

“Demonstrating oil repellency without the use of PFCs is a critical first step towards a truly sustainable fabric finish,” says Golovin. “And it’s something previously thought impossible.”

The research is funded through a grant from the Natural Sciences and Engineering Research Council of Canada (NSERC), with support from Arc’teryx Equipment Inc.

Arc’teryx is based in North Vancouver (Canada).

Here’s a link to and a citation for the paper,

Rational design of perfluorocarbon-free oleophobic textiles by Sadaf Shabanian, Behrooz Khatir, Ambreen Nisar & Kevin Golovin. Nature Sustainability (2020) DOI: https://doi.org/10.1038/s41893-020-0591-9 Published: 10 August 2020

This paper is behind a paywall.

Canadian and Italian researchers go beyond graphene with 2D polymers

According to a May 20,2020 McGill University news release (also on EurkekAltert), a team of Canadian and Italian researchers has broken new ground in materials science (Note: There’s a press release I found a bit more accessible and therefore informative coming up after this one),

A study by a team of researchers from Canada and Italy recently published in Nature Materials could usher in a revolutionary development in materials science, leading to big changes in the way companies create modern electronics.

The goal was to develop two-dimensional materials, which are a single atomic layer thick, with added functionality to extend the revolutionary developments in materials science that started with the discovery of graphene in 2004.

In total, 19 authors worked on this paper from INRS [Institut National de la Recherche Scientifique], McGill {University], Lakehead [University], and Consiglio Nazionale delle Ricerche, the national research council in Italy.

This work opens exciting new directions, both theoretical and experimental. The integration of this system into a device (e.g. transistors) may lead to outstanding performances. In addition, these results will foster more studies on a wide range of two-dimensional conjugated polymers with different lattice symmetries, thereby gaining further insights into the structure vs. properties of these systems.

The Italian/Canadian team demonstrated the synthesis of large-scale two-dimensional conjugated polymers, also thoroughly characterizing their electronic properties. They achieved success by combining the complementary expertise of organic chemists and surface scientists.

“This work represents an exciting development in the realization of functional two-dimensional materials beyond graphene,” said Mark Gallagher, a Physics professor at Lakehead University.

“I found it particularly rewarding to participate in this collaboration, which allowed us to combine our expertise in organic chemistry, condensed matter physics, and materials science to achieve our goals.”

Dmytro Perepichka, a professor and chair of Chemistry at McGill University, said they have been working on this research for a long time.

“Structurally reconfigurable two-dimensional conjugated polymers can give a new breadth to applications of two-dimensional materials in electronics,” Perepichka said.

“We started dreaming of them more than 15 years ago. It’s only through this four-way collaboration, across the country and between the continents, that this dream has become the reality.”

Federico Rosei, a professor at the Énergie Matériaux Télécommunications Research Centre of the Institut National de la Recherche Scientifique (INRS) in Varennes who holds the Canada Research Chair in Nanostructured Materials since 2016, said they are excited about the results of this collaboration.

“These results provide new insights into mechanisms of surface reactions at a fundamental level and simultaneously yield a novel material with outstanding properties, whose existence had only been predicted theoretically until now,” he said.

About this study

Synthesis of mesoscale ordered two-dimensional π-conjugated polymers with semiconducting properties” by G. Galeotti et al. was published in Nature Materials.

This research was partially supported by a project Grande Rilevanza Italy-Quebec of the Italian Ministero degli Affari Esteri e della Cooperazione Internazionale, Direzione Generale per la Promozione del Sistema Paese, the Natural Sciences and Engineering Research Council of Canada, the Fonds Québécois de la recherche sur la nature et les technologies and a US Army Research Office. Federico Rosei is also grateful to the Canada Research Chairs program for funding and partial salary support.

About McGill University

Founded in Montreal, Quebec, in 1821, McGill is a leading Canadian post-secondary institution. It has two campuses, 11 faculties, 13 professional schools, 300 programs of study and over 40,000 students, including more than 10,200 graduate students. McGill attracts students from over 150 countries around the world, its 12,800 international students making up 31% per cent of the student body. Over half of McGill students claim a first language other than English, including approximately 19% of our students who say French is their mother tongue.

About the INRS
The Institut National de la Recherche Scientifique (INRS) is the only institution in Québec dedicated exclusively to graduate level university research and training. The impacts of its faculty and students are felt around the world. INRS proudly contributes to societal progress in partnership with industry and community stakeholders, both through its discoveries and by training new researchers and technicians to deliver scientific, social, and technological breakthroughs in the future.

Lakehead University
Lakehead University is a fully comprehensive university with approximately 9,700 full-time equivalent students and over 2,000 faculty and staff at two campuses in Orillia and Thunder Bay, Ontario. Lakehead has 10 faculties, including Business Administration, Education, Engineering, Graduate Studies, Health & Behavioural Sciences, Law, Natural Resources Management, the Northern Ontario School of Medicine, Science & Environmental Studies, and Social Sciences & Humanities. In 2019, Maclean’s 2020 University Rankings, once again, included Lakehead University among Canada’s Top 10 primarily undergraduate universities, while Research Infosource named Lakehead ‘Research University of the Year’ in its category for the fifth consecutive year. Visit www.lakeheadu.ca

I’m a little surprised there wasn’t a quote from one of the Italian researchers in the McGill news release but then there isn’t a quote in this slightly more accessible May 18, 2020 Consiglio Nazionale delle Ricerche press release either,

Graphene’s isolation took the world by surprise and was meant to revolutionize modern electronics. However, it was soon realized that its intrinsic properties limit the utilization in our daily electronic devices. When a concept of Mathematics, namely Topology, met the field of on-surface chemistry, new materials with exotic features were theoretically discovered. Topological materials exhibit technological relevant properties such as quantum hall conductivity that are protected by a concept similar to the comparison of a coffee mug and a donut.  These structures can be synthesized by the versatile molecular engineering toolbox that surface reactions provide. Nevertheless, the realization of such a material yields access to properties that suit the figure of merits for modern electronic application and could eventually for example lead to solve the ever-increasing heat conflict in chip design. However, problems such as low crystallinity and defect rich structures prevented the experimental observation and kept it for more than a decade a playground only investigated theoretically.

An international team of scientists from Institut National de la Recherche Scientifique (Centre Energie, Matériaux et Télécommunications), McGill University and Lakehead University, both located in Canada, and the SAMOS laboratory of the Istituto di Struttura della Materia (Cnr), led by Giorgio Contini, demonstrates, in a recent publication on Nature Materials, that the synthesis of two-dimensional π-conjugated polymers with topological Dirac cone and flats bands became a reality allowing a sneak peek into the world of organic topological materials.

Complementary work of organic chemists and surface scientists lead to two-dimensional polymers on a mesoscopic scale and granted access to their electronic properties. The band structure of the topological polymer reveals both flat bands and a Dirac cone confirming the prediction of theory. The observed coexistence of both structures is of particular interest, since whereas Dirac cones yield massless charge carriers (a band velocity of the same order of magnitude of graphene has been obtained), necessary for technological applications, flat bands quench the kinetic energy of charge carriers and could give rise to intriguing phenomena such as the anomalous Hall effect, surface superconductivity or superfluid transport.

This work paths multiple new roads – both theoretical and experimental nature. The integration of this topological polymer into a device such as transistors possibly reveals immense performance. On the other hand, it will foster many researchers to explore a wide range of two-dimensional polymers with different lattice symmetries, obtaining insight into the relationship between geometrical and electrical topology, which would in return be beneficial to fine tune a-priori theoretical studies. These materials – beyond graphene – could be then used for both their intrinsic properties as well as their interplay in new heterostructure designs.

The authors are currently exploring the practical use of the realized material trying to integrate it into transistors, pushing toward a complete designing of artificial topological lattices.

This work was partially supported by a project Grande Rilevanza Italy-Quebec of the Italian Ministero degli Affari Esteri e della Cooperazione Internazionale (MAECI), Direzione Generale per la Promozione del Sistema Paese.

The Italians also included an image to accompany their press release,

Image of the synthesized material and its band structure Courtesy: Consiglio Nazionale delle Ricerche

My heart sank when I saw the number of authors for this paper (WordPress no longer [since their Christmas 2018 update] makes it easy to add the author’s names quickly to the ‘tags field’). Regardless and in keeping with my practice, here’s a link to and a citation for the paper,

Synthesis of mesoscale ordered two-dimensional π-conjugated polymers with semiconducting properties by G. Galeotti, F. De Marchi, E. Hamzehpoor, O. MacLean, M. Rajeswara Rao, Y. Chen, L. V. Besteiro, D. Dettmann, L. Ferrari, F. Frezza, P. M. Sheverdyaeva, R. Liu, A. K. Kundu, P. Moras, M. Ebrahimi, M. C. Gallagher, F. Rosei, D. F. Perepichka & G. Contini. Nature Materials (2020) DOI: https://doi.org/10.1038/s41563-020-0682-z Published 18 May 2020

This paper is behind a paywall.

Genetic engineering: an eggplant in Bangladesh and a synthetic biology grant at Concordia University (Canada)

I have two bits of genetic engineering news.

Eggplants in Bangladesh

I always marvel at their beauty,

Bt eggplant is the first genetically engineered food crop to be successfully introduced in South Asia. The crop is helping some of the world’s poorest farmers feed their families and communities while reducing the use of pesticides. Photo by Cornell Alliance for Science.

A July 17, 2018 news item on phys.org describes a genetic engineering application,

Ansar Ali earned just 11,000 taka – about $130 U.S. dollars – from eggplant he grew last year in Bangladesh. This year, after planting Bt eggplant, he brought home more than double that amount, 27,000 taka. It’s a life-changing improvement for a subsistence farmer like Ali.

Bt eggplant, or brinjal as it’s known in Bangladesh, is the first genetically engineered food crop to be successfully introduced in South Asia. Bt brinjal is helping some of the world’s poorest farmers to feed their families and communities, improve profits and dramatically reduce pesticide use. That’s according to Tony Shelton, Cornell professor of entomology and director of the Bt brinjal project funded by the United States Agency for International Development (USAID). Shelton and Jahangir Hossain, the country coordinator for the project in Bangladesh, lead the Cornell initiative to get these seeds into the hands of the small-scale, resource-poor farmers who grow a crop consumed daily by millions of Bangladeshis.

A July 11, 2018 Cornell University news release by Krisy Gashler, which originated the news item, expands on the theme (Note: Links have been removed),

Bt brinjal was first developed by the Indian seed company Mahyco in the early 2000s. Scientists inserted a gene from the bacterium Bacillus thuringiensis (thus the name, Bt) into nine brinjal varieties. The plants were engineered to resist the fruit and shoot borer, a devastating insect whose larvae bore into the stem and fruit of an eggplant. The insects cause up to 80 percent crop loss.

The Bt protein produced by the engineered eggplant causes the fruit and shoot borer larva to stop feeding, but is safe for humans consuming the eggplant, as proven through years of biosafety trials. In fact, Bt is commonly used by organic farmers to control caterpillars but has to be sprayed frequently to be effective. The Bt eggplant produces essentially the same protein as in the spray. More than 80 percent of field corn and cotton grown in the U.S. contains a Bt gene for insect control.

“Farmers growing Bt brinjal in Bangladesh are seeing three times the production of other brinjal varieties, at half the production cost, and are getting better prices at the market,” Hossain said.

A recent survey found 50 percent of farmers in Bangladesh said that they experienced illness due to the intense spraying of insecticides. Most farmers work in bare feet and without eye protection, leading to pesticide exposure that causes skin and eye irritation, and vomiting.

“It’s terrible for these farmers’ health and the health of the environment to spray so much,” said Shelton, who found that pesticide use on Bt eggplant was reduced as much as 92 percent in commercial Bt brinjal plantings. “Bt brinjal is a solution that’s really making a difference in people’s lives.”

Alhaz Uddin, a farmer in the Tangail district, made 6,000 taka growing traditional brinjal, but had to spend 4,000 taka on pesticides to combat fruit and shoot borer.

“I sprayed pesticides several times in a week,” he said. “I got sick many times during the spray.”

Mahyco initially wanted to introduce Bt brinjal in India and underwent years of successful safety testing. But in 2010, due to pressure from anti-biotechnology groups, the Indian minister of the environment placed a moratorium on the seeds. It is still in effect today, leaving brinjal farmers there without the effective and safe method of control available to their neighbors in Bangladesh.

Even before the Indian moratorium, Cornell scientists hosted delegations from Bangladesh that wanted to learn about Bt brinjal and the Agricultural Biotechnology Support Project II (ABSP II), a consortium of public and private institutions in Asia and Africa intended to help with the commercial development, regulatory approval and dissemination of bio-engineered crops, including Bt brinjal.

Cornell worked with USAID, Mahyco and the Bangladesh Agricultural Research Institute to secure regulatory approval, and in 2014 the Bangladeshi government distributed a small number of Bt brinjal plants to 20 farmers in four districts. The next year 108 farmers grew Bt brinjal, and the following year the number of farmers more than doubled to 250. In 2017 the number increased to 6,512 and in 2018 to 27,012. The numbers are likely even higher, according to Shelton, as there are no constraints against farmers saving seeds and replanting.

“Farmers who plant Bt brinjal are required to plant a small perimeter of traditional brinjal around the Bt variety; research has shown that the insects will infest plants in the buffer area, and this will slow their evolutionary development of resistance to the Bt plants,” Shelton said.

In a March 2017 workshop, Bangladeshi Agriculture Minister Begum Matia Chowdhury called Bt brinjal “a success story of local and foreign collaboration.”

“We will be guided by the science-based information, not by the nonscientific whispering of a section of people,” Chowdhury said. “As human beings, it is our moral obligation that all people in our country should get food and not go to bed on an empty stomach. Biotechnology can play an important role in this effect.”

Here’s what an infested eggplant looks like,

Non-Bt eggplant infested with fruit and shoot borer. Photo by Cornell Alliance for Science

It looks more like a fig than an eggplant.

This is part of a more comprehensive project as revealed in a March 29, 2016 Cornell University news release issued on the occasion of a $4.8M, three-year grant from the U.S. Agency for International Development (USAID),

… The award supports USAID’s work under Feed the Future, the U.S. government’s global initiative to fight hunger and improve food security using agricultural science and technology.

In the Feed the Future South Asia Eggplant Improvement Partnership, Cornell will protect eggplant farmers from yield losses and improve their livelihoods in partnership with the Bangladesh Agricultural Research Institute (BARI) and the University of the Philippines at Los Baños. Eggplant, or brinjal, is a staple crop that is an important source of income and nutrition for farmers and consumers in South Asia.

Over the past decade, Cornell has led the Agricultural Biotechnology Support Project II (ABSPII), also funded by USAID, that prompted a consortium of institutions in Asia and Africa to use the tools of modern biotechnology, particularly genetic engineering, to improve crops to address major production constraints for which conventional plant breeding tools have not been effective.

In October 2013, Bangladesh became the first country in South Asia to approve commercial cultivation of a genetically engineered food crop. In February 2014, Matia Chowdhury, the Bangladesh minister of agriculture, released four varieties of Bt brinjal to 20 farmers. With the establishment of the 20 Bt brinjal demonstration plots in 2014 and 104 more in 2015, BARI reported a noticeable decrease in fruit and shoot borer infestation, increased yields, decreased use of pesticide and improved income for farmers.

The Feed the Future South Asia Eggplant Improvement Partnership addresses and integrates all elements of the commercialization process — including technology development, regulation, marketing, seed distribution, and product stewardship. It also provides strong platforms for policy development, capacity building, gender equality, outreach and communication.

Moving on from practical applications …

Canada’s synthetic biology training centre

It seems Concordia University (Montréa) is a major Canadian centre for all things ‘synthetic biological’. (from the History and Vision webpage on Concordia University’s Centre for Applied Synthetic Biology webspace),

History and vision

Emerging in 2012 from a collaboration between the Biology and Electrical and Computer Engineering Departments, the Centre received University-wide status in 2016 growing its membership to include Biochemistry, Journalism, Communication Studies, Mechanical, Industrial and Chemical Engineering.


Timeline

T17-36393-VPRG-Timeline-graphic-promo-v4

You can see the timeline does not yet include 2018 development(s). Also it started as “a collaboration between the Biology and Electrical and Computer Engineering Departments?” This suggests a vastly different approach to genetic engineering that that employed in the “eggplant” research. From a July 16, 2018 posting on the Genome Alberta blog,

The Natural Sciences and Engineering Research Council of Canada (NSERC) has committed $1.65 million dollars over six years to establish a research and training program at Concordia’s Centre for Applied Synthetic Biology.

The funds were awarded after Malcolm Whiteway (…), professor of biology and the Canada Research Chair in Microbial Genomics, and the grant application team submitted a proposal to NSERC’s Collaborative Research and Training Experience (CREATE) program.

The Synthetic Biology Applications CREATE program — or SynBioApps — will help students acquire and develop important professional skills that complement their academic education and improve their job-readiness.

‘Concordia is a natural fit’

“As the Canadian leader in synthetic biology and as the home of the country’s only genome foundry, Concordia is a natural fit for a training program in this growing area of research,” says Christophe Guy, vice-president of Research and Graduate Studies.

“In offering a program like SynBioApps, we are providing our students with both a fundamental education in science and the business skills they’ll need to transition into their professional careers.”

The program’s aims are twofold: First, it will teach students how to design and construct cells and proteins for the development of new products related to human health, green technologies, and fundamental biological investigations. Second, it will provide cross-disciplinary training and internship opportunities through the university’s District 3 Innovation Center.

SynBioApps will be open to students from biology, biochemistry, engineering, computing, and mathematics.

“The ability to apply engineering approaches to biological systems promises to revolutionize both biology and industry,” says Whiteway, who is also a member of the Centre for Applied Synthetic Biology.

“The SynBioApps program at Concordia will provide a training program to develop the students who will both investigate the biology and build these industries.”

You can find out more about Concordia’s Centre for Applied Synthetic Biology here (there are jobs listed on their home page) and you can find information about the Synthetic Biology Applications (SynBioApps) training programme here.

Trans-Atlantic Platform (T-AP) is a unique collaboration of humanities and social science researchers from Europe and the Americas

Launched in 2013, the Trans-Atlantic Platform is co-chaired by Dr.Ted Hewitt, president of the Social Sciences and Humanities Research Council of Canada (SSHRC) , and Dr. Renée van Kessel-Hagesteijn, Netherlands Organisation for Scientific Research—Social Sciences (NWO—Social Sciences).

An EU (European Union) publication, International Innovation features an interview about T-AP with Ted Hewitt in a June 30, 2016 posting,

The Trans-Atlantic Platform is a unique collaboration of humanities and social science funders from Europe and the Americas. International Innovation’s Rebecca Torr speaks with Ted Hewitt, President of the Social Sciences and Humanities Research Council and Co-Chair of T-AP to understand more about the Platform and its pilot funding programme, Digging into Data.

Many commentators have called for better integration between natural and social scientists, to ensure that the societal benefits of STEM research are fully realised. Does the integration of diverse scientific disciplines form part of T-AP’s remit, and if so, how are you working to achieve this?

T-AP was designed primarily to promote and facilitate research across SSH. However, given the Platform’s thematic priorities and the funding opportunities being contemplated, we anticipate that a good number of non-SSH [emphasis mine] researchers will be involved.

As an example, on March 1, T-AP launched its first pilot funding opportunity: the T-AP Digging into Data Challenge. One of the sponsors is the Natural Sciences and Engineering Research Council of Canada (NSERC), Canada’s federal funding agency for research in the natural sciences and engineering. Their involvement ensures that the perspective of the natural sciences is included in the challenge. The Digging into Data Challenge is open to any project that addresses research questions in the SSH by using large-scale digital data analysis techniques, and is then able to show how these techniques can lead to new insights. And the challenge specifically aims to advance multidisciplinary collaborative projects.

When you tackle a research question or undertake research to address a social challenge, you need collaboration between various SSH disciplines or between SSH and STEM disciplines. So, while proposals must address SSH research questions, the individual teams often involve STEM researchers, such as computer scientists.

In previous rounds of the Digging into Data Challenge, this has led to invaluable research. One project looked at how the media shaped public opinion around the 1918 Spanish flu pandemic. Another used CT scans to examine hundreds of mummies, ultimately discovering that atherosclerosis, a form of heart disease, was prevalent 4,000 years ago. In both cases, these multidisciplinary historical research projects have helped inform our thinking of the present.

Of course, Digging into Data isn’t the only research area in which T-AP will be involved. Since its inception, T-AP partners have identified three priority areas beyond digital scholarship: diversity, inequality and difference; resilient and innovative societies; and transformative research on the environment. Each of these areas touches on a variety of SSH fields, while the transformative research on the environment area has strong connections with STEM fields. In September 2015, T-AP organised a workshop around this third priority area; environmental science researchers were among the workshop participants.

I wish Hewitt hadn’t described researchers from disciplines other than the humanities and social sciences as “non-SSH.” The designation divides the world in two: us and non-take your pick: non-Catholic/Muslim/American/STEM/SSH/etc.

Getting back to the interview, it is surprisingly Canuck-centric in places,

How does T-AP fit in with Social Sciences and Humanities Research Council of Canada (SSHRC)’s priorities?

One of the objectives in SSHRC’s new strategic plan is to develop partnerships that enable us to expand the reach of our funding. As T-AP provides SSHRC with links to 16 agencies across Europe and the Americas, it is an efficient mechanism for us to broaden the scope of our support and promotion of post-secondary-based research and training in SSH.

It also provides an opportunity to explore cutting edge areas of research, such as big data (as we did with the first call we put out, Digging into Data). The research enterprise is becoming increasingly international, by which I mean that researchers are working on issues with international dimensions or collaborating in international teams. In this globalised environment, SSHRC must partner with international funders to support research excellence. By developing international funding opportunities, T-AP helps researchers create teams better positioned to tackle the most exciting and promising research topics.

Finally, it is a highly effective way of broadly promoting the value of SSH research throughout Canada and around the globe. There are significant costs and complexities involved in international research, and uncoordinated funding from multiple national funders can actually create barriers to collaboration. A platform like T-AP helps funders coordinate and streamline processes.

The interview gets a little more international scope when it turns to the data project,

What is the significance of your pilot funding programme in digital scholarship and what types of projects will it support?

The T-AP Digging into Data Challenge is significant for several reasons. First, the geographic reach of Digging is truly significant. With 16 participants from 11 countries, this round of Digging has significantly broader participation from previous rounds. This is also the first time Digging into Data includes funders from South America.

The T-AP Digging into Data Challenge is open to any research project that addresses questions in SSH. In terms of what those projects will end up being is anybody’s guess – projects from past competitions have involved fields ranging from musicology to anthropology to political science.

The Challenge’s main focus is, of course, the use of big data in research.

You may want to read the interview in its entirety here.

I have checked out the Trans-Atlantic Platform website but cannot determine how someone or some institution might consult that site for information on how to get involved in their projects or get funding. However, there is a T-AP Digging into Data website where there is evidence of the first international call for funding submissions. Sadly, the deadline for the 2016 call has passed if the website is to be believed (sometimes people are late when changing deadline dates).