Tag Archives: Yieu Chyan

Where do I stand? a graphene artwork

A May 2,2019 news item on Nanowerk describes some graphene-based artwork being created at Rice University (Texas, US), Note: A link has been removed,

When you read about electrifying art, “electrifying” isn’t usually a verb. But an artist working with a Rice University lab is in fact making artwork that can deliver a jolt.

The Rice lab of chemist James Tour introduced laser-induced graphene (LIG) to the world in 2014, and now the researchers are making art with the technique, which involves converting carbon in a common polymer or other material into microscopic flakes of graphene.

The “ink” in “Where Do I Stand?” by artist Joseph Cohen is actually laser-induced graphene (LIG). The design shows Cohen’s impression of what LIG looks like at the microscopic level. The work was produced in the Rice University lab where the technique of creating LIG was invented. Photo by Jeff Fitlow
A detail from “Where Do I Stand?” by artist Joseph Cohen, who created the work at Rice University using laser-induced graphene as the medium. Photo by Jeff Fitlow

A May 2, 2019 Rice university news release (also received via email), which originated the news item, describes laser-induced graphene (LIG) and the art in more detail (Note: Links have been removed),

LIG is metallic and conducts electricity. The interconnected flakes are effectively a wire that could empower electronic artworks.

The paper in the American Chemical Society journal ACS Applied Nano Materials – simply titled “Graphene Art” – lays out how the lab and Houston artist and co-author Joseph Cohen generated LIG portraits and prints, including a graphene-inspired landscape called “Where Do I Stand?”

While the work isn’t electrified, Cohen said it lays the groundwork for future possibilities.

“That’s what I would like to do,” he said. “Not make it kitsch or play off the novelty, but to have it have some true functionality that allows greater awareness about the material and opens up the experience.”

Cohen created the design in an illustration program and sent it directly to the industrial engraving laser Tour’s lab uses to create LIG on a variety of materials. The laser burned the artist’s fine lines into the substrate, in this case archive-quality paper treated with fire retardant.

The piece, which was part of Cohen’s exhibit at Rice’s BioScience Research Collaborative last year, peers into the depths of what a viewer shrunken to nanoscale might see when facing a field of LIG, with overlapping hexagons – the basic lattice of atom-thick graphene – disappearing into the distance.

“You’re looking at this image of a 3D foam matrix of laser-induced graphene and it’s actually made of LIG,” he said. “I didn’t base it on anything; I was just thinking about what it would look like. When I shared it with Jim, he said, ‘Wow, that’s what it would look like if you could really blow this up.’”

Cohen said his art is about media specificity.

“In terms of the artistic application, you’re not looking at a representation of something, as traditionally we would in the history of art,” he said. “Each piece is 100% original. That’s the key.”

He developed an interest in nanomaterials as media for his art when he began work with Rice alumnus Daniel Heller, a bioengineer at Memorial Sloan Kettering Cancer Center in New York who established an artist-in-residency position in his lab.

After two years of creating with carbon nanotube-infused paint, Cohen attended an Electrochemical Society conference and met Tour, who in turn introduced him to Rice chemists Bruce Weisman and Paul Cherukuri, who further inspired his investigation of nanotechnology.

The rest is art history.

It would be incorrect to think of the process as “printing,” Tour said. Instead of adding a substance to the treated paper, substance is burned away as the laser turns the surface into foamlike flakes of interconnected graphene.

The art itself can be much more than eye candy, given LIG’s potential for electronic applications like sensors or as triboelectric generators that turn mechanical actions into current.

“You could put LIG on your back and have it flash LEDs with every step you take,” Tour said.

The fact that graphene is a conductor — unlike paint, ink or graphite from a pencil — makes it particularly appealing to Cohen, who expects to take advantage of that capability in future works.

“It’s art with a capital A that is trying to do the most that it can with advancements in science and technology,” he said. “If we look back historically, from the Renaissance to today, the highest forms of art push the limits of human understanding.”

Here’s a link to and a citation for the paper,

Graphene Art by Yieu Chyan, Joseph Cohen, Winston Wang, Chenhao Zhang, and James M. Tour. ACS Appl. Nano Mater., Article ASAP DOI: 10.1021/acsanm.9b00391 Publication Date (Web): April 23, 2019

Copyright © 2019 American Chemical Society

This paper appears to be open access.

Because I can’t resist the delight beaming from these faces,

maging with laser-induced graphene (LIG) was taken to a new level in a Rice University lab. From left, chemist James Tour, holding a portrait of himself in LIG; artist Joseph Cohen, holding his work “Where Do I Stand?”; and Yieu Chyan, a Rice graduate student and lead author of a new paper detailing the process used to create the art. Photo by Jeff Fitlow

Do you want that coffee with some graphene on toast?

These scientists are excited:

For those who prefer text, here’s the Rice University Feb. 13, 2018 news release (received via email and available online here and on EurekAlert here) Note: Links have been removed),

Rice University scientists who introduced laser-induced graphene (LIG) have enhanced their technique to produce what may become a new class of edible electronics.

The Rice lab of chemist James Tour, which once turned Girl Scout cookies into graphene, is investigating ways to write graphene patterns onto food and other materials to quickly embed conductive identification tags and sensors into the products themselves.

“This is not ink,” Tour said. “This is taking the material itself and converting it into graphene.”

The process is an extension of the Tour lab’s contention that anything with the proper carbon content can be turned into graphene. In recent years, the lab has developed and expanded upon its method to make graphene foam by using a commercial laser to transform the top layer of an inexpensive polymer film.

The foam consists of microscopic, cross-linked flakes of graphene, the two-dimensional form of carbon. LIG can be written into target materials in patterns and used as a supercapacitor, an electrocatalyst for fuel cells, radio-frequency identification (RFID) antennas and biological sensors, among other potential applications.

The new work reported in the American Chemical Society journal ACS Nano demonstrated that laser-induced graphene can be burned into paper, cardboard, cloth, coal and certain foods, even toast.

“Very often, we don’t see the advantage of something until we make it available,” Tour said. “Perhaps all food will have a tiny RFID tag that gives you information about where it’s been, how long it’s been stored, its country and city of origin and the path it took to get to your table.”

He said LIG tags could also be sensors that detect E. coli or other microorganisms on food. “They could light up and give you a signal that you don’t want to eat this,” Tour said. “All that could be placed not on a separate tag on the food, but on the food itself.”

Multiple laser passes with a defocused beam allowed the researchers to write LIG patterns into cloth, paper, potatoes, coconut shells and cork, as well as toast. (The bread is toasted first to “carbonize” the surface.) The process happens in air at ambient temperatures.

“In some cases, multiple lasing creates a two-step reaction,” Tour said. “First, the laser photothermally converts the target surface into amorphous carbon. Then on subsequent passes of the laser, the selective absorption of infrared light turns the amorphous carbon into LIG. We discovered that the wavelength clearly matters.”

The researchers turned to multiple lasing and defocusing when they discovered that simply turning up the laser’s power didn’t make better graphene on a coconut or other organic materials. But adjusting the process allowed them to make a micro supercapacitor in the shape of a Rice “R” on their twice-lased coconut skin.

Defocusing the laser sped the process for many materials as the wider beam allowed each spot on a target to be lased many times in a single raster scan. That also allowed for fine control over the product, Tour said. Defocusing allowed them to turn previously unsuitable polyetherimide into LIG.

“We also found we could take bread or paper or cloth and add fire retardant to them to promote the formation of amorphous carbon,” said Rice graduate student Yieu Chyan, co-lead author of the paper. “Now we’re able to take all these materials and convert them directly in air without requiring a controlled atmosphere box or more complicated methods.”

The common element of all the targeted materials appears to be lignin, Tour said. An earlier study relied on lignin, a complex organic polymer that forms rigid cell walls, as a carbon precursor to burn LIG in oven-dried wood. Cork, coconut shells and potato skins have even higher lignin content, which made it easier to convert them to graphene.

Tour said flexible, wearable electronics may be an early market for the technique. “This has applications to put conductive traces on clothing, whether you want to heat the clothing or add a sensor or conductive pattern,” he said.

Rice alumnus Ruquan Ye is co-lead author of the study. Co-authors are Rice graduate student Yilun Li and postdoctoral fellow Swatantra Pratap Singh and Professor Christopher Arnusch of Ben-Gurion University of the Negev, Israel. Tour is the T.T. and W.F. Chao Chair in Chemistry as well as a professor of computer science and of materials science and nanoengineering at Rice.

The Air Force Office of Scientific Research supported the research.

Here’s a link to and a citation for the paper,

Laser-Induced Graphene by Multiple Lasing: Toward Electronics on Cloth, Paper, and Food by Yieu Chyan, Ruquan Ye†, Yilun Li, Swatantra Pratap Singh, Christopher J. Arnusch, and James M. Tour. ACS Nano DOI: 10.1021/acsnano.7b08539 Publication Date (Web): February 13, 2018

Copyright © 2018 American Chemical Society

This paper is behind a paywall.

h/t Feb. 13, 2018 news item on Nanowerk