The imperfections of science advice noted amidst rumblings in Europe

The current science advice rumblings in Europe seem to have been launched on Tuesday, July 22, 2014 with an open letter to Jean-Claude Juncker, President-elect of the European Commission, from representatives of nine nongovernmental agencies (NGOs).

From the July 22, 2014 letter on the Corporate Europe Observatory website,

We are writing to you to express our concerns regarding the position of Chief Scientific Advisor to the President of the European Commission. This post was created by Commission President Barroso at the suggestion of the United Kingdom, and was held by Ms Anne Glover since January 2012. The mandate of the Chief Scientific Adviser (CSA) is “to provide independent expert advice on any aspect of science, technology and innovation as requested by the President”.1

We are aware that business lobbies urge you to continue with the practice established by Mr Barroso and even to strengthen the chief adviser’s formal role in policy making.2 We, by contrast, appeal to you to scrap this position. The post of Chief Scientific Adviser is fundamentally problematic as it concentrates too much influence in one person, and undermines in-depth scientific research and assessments carried out by or for the Commission directorates in the course of policy elaboration.

Interestingly, they offer only one specific instance of Glover’s  advice with which they disagree: genetically modified organisms (GMOs). Note: Links have been removed,

To the media, the current CSA presented one-sided, partial opinions in the debate on the use of genetically modified organisms in agriculture, repeatedly claiming that there was a scientific consensus about their safety3 whereas this claim is contradicted by an international statement of scientists (currently 297 signatories) saying that it “misrepresents the currently available scientific evidence and the broad diversity of opinion among scientists on this issue.”4

Unfortunately, that argument renders the letter into an expression of political pique especially since  the signatories are described as anti-GMO both in Roger Pielke’s July 24, 2014 opinion piece for the Guardian newspaper and in Sile Lane’s July 25, 2014 opinion piece for the New Scientist journal. As Pielke notes, the reference to GMOs overshadows some reasonable concerns expressed in their letter (from Pielke’s opinion piece; Note: Links have been removed),

While it is easy to ridicule the recommendation to abolish the science adviser, there is some merit in the complaints levied by the disaffected NGOs. They express concern that the CSA has been “unaccountable, intransparent and controversial”, singling out public statements by Anne Glover on genetically modified organisms. [emphasis mine]

Perhaps surprisingly, these groups find an ally in these complaints in none other than Glover herself who recently complained about the politicization of science advice within the European Union: “What happens at the moment – whether it’s in commission, parliament or council – is that time and time again, if people don’t like what’s being proposed, what they say is that there is something wrong with the evidence.” [emphasis mine]

Pielke’s piece draws parallels between the US situation (in particular but not confined to Richard Nixon’s policies in the 1970s) and Europe’s current situation. It is well worth reading as is Lane’s piece (Sile Lane is Director of Campaigns for Sense about Science; scroll down about 25% of the way), which amongst other arguments, provides a counter-argument to the criticism of Glover’s advice on GMOs,

… No matter that Glover has faithfully and accurately represented the strong scientific consensus on the safety of GMOs – that, in the words of a commission report, are “no more risky than conventional plant breeding technologies”.

This is a position supported by every major scientific institution in the world, and all the scientific academies of countries and regions, but denied by the anti-GMO lobby, which promotes its own alternative “consensus” of a small ragtag group of academics out on the fringes of the mainstream.

There are a number of letters from various organizations countering the July 22, 2014 salvo/letter including this from Sense about Science,

Many other organisations are sending their own letters including nine European medical research organisations and the European Plant Science Organisation representing 227 public research institutions across Europe.

Dear Mr Juncker

We write to you with some urgency in response to a letter you will have just received from nine NGOs urging you to abolish the position of Chief Scientific Advisor to the President of the European Commission. The letter, which includes Greenpeace as a signatory as well as other prominent NGO voices, alleges that the “post of Chief Scientific Adviser is fundamentally problematic” and asks you to “scrap this position”1.

As organisations and individuals who share a commitment to improving the evidence available to policy makers, we cannot stress strongly enough our objection to any attempt to undermine the integrity and independence of scientific advice received at the highest level of the European Commission. …

You can add your name to the letter by going here.

There is a July 28, 2014 posting on the Science Advice to Governments; a global conference website which provides a listing of the various opinion pieces, letters, and other responses. (Note: This global science advice conference being held in Auckland, New Zealand, Aug. 28 – 29, 2014 was first mentioned here in an April 8, 2014 posting which lists the then confirmed speakers and notes a few other tidbits.)

In the end, it seems that everyone can agree as per the comments in the July 22, 2014 letter from the nine NGOs that science advice needs to be transparent and accountable. As for controversy, that will remain a problem as long as human beings live on the earth.

Israeli scientists help us “sniff out” bombs

A July 23, 2014 news item on ScienceDaily describes the situation regarding bombs and other explosive devices and the Israelie research,

Security forces worldwide rely on sophisticated equipment, trained personnel, and detection dogs to safeguard airports and other public areas against terrorist attacks. A revolutionary new electronic chip with nano-sized chemical sensors is about to make their job much easier.

The groundbreaking nanotechnology-inspired sensor, devised by Prof. Fernando Patolsky of Tel Aviv University’s School of Chemistry and Center for Nanoscience and Nanotechnology, and developed by the Herzliya company Tracense, picks up the scent of explosives molecules better than a detection dog’s nose. Research on the sensor was recently published in the journal Nature Communications.

Existing explosives sensors are expensive, bulky and require expert interpretation of the findings. In contrast, the new sensor is mobile, inexpensive, and identifies in real time — and with great accuracy — explosives in the air at concentrations as low as a few molecules per 1,000 trillion.

A July 23, 2014 American Friends of Tel Aviv University news release (also on EurekAlert), which originated the news item, gives more detail about the research and potential product,

“Using a single tiny chip that consists of hundreds of supersensitive sensors, we can detect ultra low traces of extremely volatile explosives in air samples, and clearly fingerprint and differentiate them from other non-hazardous materials,” said Prof. Patolsky, a top researcher in the field of nanotechnology. “In real time, it detects small molecular species in air down to concentrations of parts-per-quadrillion, which is four to five orders of magnitude more sensitive than any existing technological method, and two to three orders of magnitude more sensitive than a dog’s nose.

“This chip can also detect improvised explosives, such as TATP (triacetone triperoxide), used in suicide bombing attacks in Israel and abroad,” Prof. Patolsky added.

The clusters of nano-sized transistors used in the prototype are extremely sensitive to chemicals, which cause changes in the electrical conductance of the sensors upon surface contact. When just a single molecule of an explosive comes into contact with the sensors, it binds with them, triggering a rapid and accurate mathematical analysis of the material.

“Animals are influenced by mood, weather, state of health and working hours, the oversaturation of olfactory system, and much more,” said Prof. Patolsky. “They also cannot tell us what they smell. Automatic sensing systems are superior candidates to dogs, working at least as well or better than nature. This is not an easy task, but was achieved through the development of novel technologies such as our sensor.”

The trace detector, still in prototype, identifies several different types of explosives several meters from the source in real time. It has been tested on the explosives TNT, RDX, and HMX, used in commercial blasting and military applications, as well as peroxide-based explosives like TATP and HMTD. The latter are commonly used in homemade bombs and are very difficult to detect using existing technology.

“Our breakthrough has the potential to change the way hazardous materials are detected, and of course should provide populations with more security,” said Prof. Patolsky. “The faster, more sensitive detection of tiny amounts of explosives in the air will provide for a better and safer world.”

Tracense has invested over $10M in research and development of the device since 2007, and expects to go to market next year [2015]. Prof.Patolsky and his team of researchers are currently performing multiple and extensive field tests of prototype devices of the sensor.

Here’s a link to and a citation for a recent paper by Professor Patolsky and his team,

Supersensitive fingerprinting of explosives by chemically modified nanosensors arrays by Amir Lichtenstein, Ehud Havivi, Ronen Shacham, Ehud Hahamy, Ronit Leibovich, Alexander Pevzner, Vadim Krivitsky, Guy Davivi, Igor Presman, Roey Elnathan, Yoni Engel, Eli Flaxer, & Fernando Patolsky. Nature Communications 5, Article number: 4195 doi:10.1038/ncomms5195 Published 24 June 2014 Updated online 09 July 2014

This paper is behind a paywall but a free preview is available via ReadCube Access.

Science advice tidbits: Canada and New Zealand

Eight months after the fact, I find out from the Canadian Science Policy Centre website that a private member’s bill calling for the establishment of a parliamentary science officer was tabled (November 2013) in Canada’s House of Commons. From a Nov. 21, 2013 article by Ivan Semeniuk for the Globe and Mail,

With the Harper government facing continued criticism from many quarters over its policies towards science, the opposition has announced it wants to put in place a parliamentary champion to better shield government researchers and their work from political misuse.

In a private member’s bill to be tabled next week the NDP [New Democratic Party] science and technology critic, Kennedy Stewart, calls for the establishment of a parliamentary science officer reporting not to the government nor to the Prime Minister’s office, but to Parliament as a whole.

The role envisioned in the NDP bill is based in part on a U.K. model and is similar in its independence to that of the Parliamentary Budget Officer. The seven-year, one-term appointment would also work in concert with other federal science advisory bodies, including the Science, Technology and Innovation Council – which provides confidential scientific advice to the government but not to Parliament – and the Council of Canadian Academies, which provides publicly accessible information related to science policy but does not make recommendations.

Speaking to a room mainly filled with science policy professionals, Dr. Stewart drew applause for the idea but also skepticism about whether such an ambitious multi-faceted role could be realistically achieved or appropriately contained within one job.

Stewart was speaking about his private member’s bill at the 2013 Canadian Science Policy Conference held in Toronto, Ontario from Nov. 20 – 22, 2013.

More recently and in New Zealand, a national strategic plan for science in society was released (h/t to James Wilsdon’s twitter feed). From a July 29, 2014 Office of the Prime Minister’s Chief Science Advisor media release,

With today’s [July 29, 2014] launch of A Nation of Curious Minds, the national strategic plan for science in society by Ministers Joyce and Parata [Minister of Science and Innovation, Hon Steven Joyce, and Minister of Education, Hon Hekia Parata ], Sir Peter Gluckman, the Prime Minister’s Chief Science Advisor,called it an important next step in a journey. Sir Peter was Chair of the National Science Challenges Panel that recommended Government take action in this area, and was Chair of the Reference Group that advised on the plan.

Sir Peter noted that a stand-out feature of the plan is that it does not simply put the onus on the public – whether students, families, or communities – to become better informed about science. Rather, there is a clear indication of the responsibility of the science sector and the role of the media in making research more accessible and relevant to all New Zealanders. “It is a two-way conversation,” said Sir Peter. “Scientists can no longer assume that their research direction and their results are of interest only to their peers, just as the public and governments need to better understand the types of answers that they can and cannot expect from science.”

The plan also calls for a Participatory Science Platform. Curiosity aroused, I chased down more information, From p. 31 (PDF) of New Zealand’s national strategic plan for science in society,

The participatory science platform builds on traditional concepts in citizen science and enhances these through collaborative approaches more common to community-based participatory research. [emphasis mine] Participatory science is a method of undertaking scientific research where volunteers can be meaningfully involved in research in collaboration with science professionals (including post- graduate students or researchers and private sector scientists) and builds on international models of engagement.

The goal is to involve schools/kura and/or community-based organisations such as museums and associations in projects with broad appeal, that have both scientific value and pedagogical rigour, and that resonate with the community. In addition, several ideas are being tested for projects of national significance that would integrate with the National Science Challenges and be national in reach.

The participatory science platform has the potential to:

›offer inspiring and relevant learning opportunities for students and teachers
›engage learners and participants beyond the school/kura community to reach parents, whānau
and wider communities
›offer researchers opportunities to become involved in locally relevant  lines of enquiry, where data can be enriched by the local knowledge and contribution of citizens.

The participatory science platform is built on four core components and incorporates mātauranga
Māori:

1. A process that seeks ideas for participatory science projects both from the community (including early childhood education services and kōhanga reo, schools/kura, museums and other organisations, Kiwi authorities or community associations) and from science professionals (from post-graduate students to principal investigators in both the public and private sectors
2. A managed process for evaluating these ideas for both pedagogical potential (in the case of schools/kura) and scientific quality, and for ensuring their practicality and relevance to the participating partners (science sector and community-based)
3. A web-based match-making process between interested community-based partners and science professionals
4. A resource for teachers and other community or learning leaders to assist in developing their projects to robust standards.

The platform’s website will serve as a match-making tool between scientists and potential community-based partners seeking to take part in a research project by offering a platform for community-initiated and scientist-initiated research.

A multi-sectoral management and review panel will be established to maintain quality control over the programme and advise on any research ethics requirements.

All projects will have an institutional home which will provide a coordination role. This could be a school, museum, zoo, science centre, iwi office or research institute, university or other tertiary
organisation.

The projects will be offered as opportunities for community-based partners to participate in scientific research as a way to enhance their local input, their science knowledge and their interest,
and (in the case of schools) to strengthen learning programmes through stronger links to relevant learning environments and expertise.

Once matches are made between community-based partners and scientists, these partners would self-direct their involvement in carrying out the research according to an agreed plan and approach.

A multi-media campaign will accompany the launch of programme, and a dedicated website/social media site will provide a sustained channel of communication for ideas that continue to emerge. It will build on the momentum created by the Great New Zealand Science Project and leverages the legacy of that project, including its Facebook page. [emphasis mine]

To enable more sophisticated projects, a limited number of seed grants will be made available to help foster a meaningful level of community involvement. The seed grants will part-fund science professionals and community/school groups to plan together the research question, data collection, analysis and knowledge translation strategy for the project. In addition, eligible costs could include research tools or consumables that would not otherwise be accessible to community partners.

I admire the ambitiousness and imagination of the Participatory Science Platform project and hope that it will be successful. As for the rest of the report, there are 52 pp. in the PDF version for those who want to pore over it.

For anyone unfamiliar (such as me) with the Great New Zealand Science Project, it was a public consultation where New Zealanders were invited to submit ideas and comments about science to the government.  As a consequence of the project, 10 research areas were selected as New Zealand’s National Science Challenges. From a June 25, 2014 government update,

On 1 May 2013 Prime Minister John Key and Hon Steven Joyce, Minister of Science and Innovation, announced the final 10 National Science Challenges.

The ten research areas identified as New Zealand’s first National Science Challenges are:

Ageing well – harnessing science to sustain health and wellbeing into the later years of life …

A better start – improving the potential of young New Zealanders to have a healthy and successful life …

Healthier lives – research to reduce the burden of major New Zealand health problems …

High value nutrition – developing high value foods with validated health benefits …

New Zealand’s biological heritage – protecting and managing our biodiversity, improving our biosecurity, and enhancing our resilience to harmful organisms …

Our land and water  – Research to enhance primary sector production and productivity while maintaining and improving our land and water quality for future generations …

Sustainable seas – enhance utilisation of our marine resources within environmental and biological constraints.

The deep south – understanding the role of the Antarctic and the Southern Ocean in determining our climate and our future environment …

Science for technological innovation – enhancing the capacity of New Zealand to use physical and engineering sciences for economic growth …

Resilience to nature’s challenges – research into enhancing our resilience to natural disasters …

The release of “A Nation of Curious Minds, the national strategic plan for science in society” is timely, given that the 2014 Science Advice to Governments; a global conference for leading practitioners is being held mere weeks away in Auckland, New Zealand (Aug. 28, – 29, 2014).

In Canada, we are waiting for the Council of Canadian Academies’ forthcoming assessment  The State of Canada’s Science Culture, sometime later in 2014. The assessment is mentioned at more length here in the context of a Feb. 22, 2013 posting where I commented on the expert panel assembled to investigate the situation and write the report.

Webcast of US NSF workshop for a future nanotechnology infrastructure support program

The US National Science Foundation (NSF) will be webcasting some of the Workshop for a Future Nanotechnology Infrastructure Support Program (Aug. 18 – 19, 2014) sessions live. From the NSF workshop notice (Note: Some links have been removed),

August 18, 2014 8:00 AM  to
August 18, 2014 12:00 PM
Arlington

August 19, 2014 8:00 AM  to
August 19, 2014 12:00 PM
Arlington

To broaden engagement, portions of the Workshop for a Future Nanotechnology Infrastructure Support Program will be webcast. (The approximate webcast times shown above are Eastern Daylight Time.)

The workshop will convene a panel of experts from academe, industry, and government to:

develop a vision of how a future nanotechnology infrastructure support program could be structured, and
determine the key needs for the broad user communities over the coming decade.

The workshop is a next step in NSF’s preparation for developing a program to succeed the National Nanotechnology Infrastructure Network (NNIN), after having received community input in response to a recent Dear Colleague Letter (DCL 14-068).

The workshop is co-chaired by Dr. Thomas Theis (IBM Research, on assignment to the Semiconductor Research Corporation) and Dr. Mark Tuominen (University of Massachusetts, Amherst).

The final agenda will be available on this page soon. Morning sessions of the workshop will be broadcast via WebEx; afternoon breakout sessions will not be broadcast.

If you have never used WebEx before or if you want to test your computer’s compatibility with WebEx, please go to http://www.webex.com/lp/jointest/, enter the session information and click “Join”. Please feel free to contact WebEx Support if you are having trouble joining the test meeting.

Session number: 643 345 106
Session password: This session does not require a password.

The notice goes on to offer specific instructions for joining the session online or by phone.

You can view the NSF’s Dear Colleague letter here and/or go here to find the previous infrastructure program (National Nanotechnology Infrastructure Network [NNIN]), which ended Feb. 28, 2014.

Green nanotechnology centre (meaningful science for helping humanity) launched in South Africa

On July 14, 2014, South Africa’s University of the Western Cape (UWC) launched its Centre for Green Nanotechnology. A July 23, 2014 news item on Nanowerk makes readers feel as if they were present,

The establishment of University of the Western Cape (UWC)’s Centre for Green Nanotechnology was made a reality through a positive partnership between the University of Missouri (UM) and UWC that has spanned approximately 30 years.

[Speakers at the launch of the Centre included Prof Brian O’Connell, Rector of UWC; Prof Richard Bowen Loftin, Chancellor of UM; Prof Ken Dean, Provost of UM; and Prof Ramesh Bharuthram, Deputy Vice-Chancellor of UWC.]

Green nanotechnology is a relatively new science which aims to create environmentally friendly technologies in an effort to tackle real problems. Nanotechnology has improved the design and performance of products in various areas such as electronics, medicine and medical devices, food and agriculture, cosmetics, chemicals, materials, coatings, energy and so forth. According to Prof Bharuthram, “Green nanotechnology provides an opportunity to combine the strengths of nanobioscience, nanochemistry and nanophysics towards innovative solutions for societal benefit.”

Another keynote speaker at the launch included Professor Kattesh Katti, who has been hailed as the “father of green nanotechnology” and cited as one of the 25 most influential scientists in molecular imaging in the world. Prof Katti will divide his time between the University of Missouri (where he heads up their Green Nanotechnology Centre) and UWC, where he will spend approximately 3-6 months of the year.

Prof Katti noted that nanotechnology involves various role players – including scientists, biologists and chemists – working together. During his lecture, he focused on the use of green nanotechnologies to treat cancer. While the treatment of cancer utilising green nanotechnologies is still at experimental stages, he illustrated how the use of nanotechnologies could be the treatment of the future. He explained that current drugs used to treat cancers don’t always have the desired effect as the drugs don’t always penetrate tumours effectively due to their large size and approximately 60% of drugs go away from the intended target (tumour). Nanotechnology particles, due to their small size and their functioning, have the ability to penetrate tumours much more effectively.

A July 14, 2014 UWC news release, which originated the news item, provides background about events leading to the inception of this new centre and provides insight into its purpose,

The establishment of the Centre for Green Nanotechnology started in 2008/09 when UWC embarked on developing a five-year institutional strategic plan for 2010-2014. The Institutional Operational Plan (IOP) identified eight institutional goals, which included: Goal 2 – Teaching & Learning; and Goal 3 – Research & Innovation. Prof Bharuthram explained, “The IOP articulated the need for UWC to identify emerging and established research niche areas that will not only contribute to high output in the form of research publications and graduating masters and doctoral students, but equally importantly give the University a set of distinctions that will set UWC apart from the other higher education institutions – a calculated move towards becoming a research intensive university. It is indeed fascinating that at the time UWC was engaged in this exercise, the University of Missouri was undertaking a similar comprehensive initiative which resulted in the identification and development of the five MIZZOU Advantage thematic areas. These two parallel undertakings helped to elevate the partnership between UWC and UM to hitherto unknown heights.”

UWC’s Centre for Green Nanotechnology aims to promote:

·    The development of fundamental sciences as they relate to chemistry, physics and biomedical and alternative energy aspects of green nanotechnology.

·   Research and application on indigenous phyto-chemicals and phyto-mediated technologies for the production of green nanotechnologies with applications in medicine, energy and allied disciplines.

· New green nanotechnological synthetic processes and their feasibilities at laboratory levels, pilot scale and industrial scale for mass manufacturing.

·    Green nanoparticles and green nanotechnologies in the design and development of new medical diagnostic/therapeutic agents, biological sensors, chemical sensors, smart electronic materials, nanoscale robots, environmentally benign breathing devices.

Furthermore the Centre aims to provide formal training to students at the undergraduate, graduate and post-doctoral levels in all aspects of green nanotechnology from blue sky to applied, including impact on socioeconomic development, policy development and revision.

UWC is exceptionally excited about this new venture and is proud that it continues to show great developmental strides in all academic spheres. At the launch of the Centre, Prof O’Connell said, “When there is robust engagement there is change. Knowledge and change goes together. The more ways of knowing is a more efficient way to tackle problems.”

There was a general consensus that education is the key factor in shaping our future. Prof Loftin, Chancellor of UM said, “We think of resources in terms of tangible things, but the most precious resource is human capital.

The strides that UM and UWC have made in staying current with regard to offering course studies that are new illustrates that these institutions are investing heavily in human capital and are committed to providing solutions for future challenges.

​As Prof O’Connell noted, “UWC is a metaphor for Africa. Despite being excluded and coming from a disadvantaged past, we are here to show that we can use our brain to push the boundaries.”

I wish them all the best.

Alberta’s summer of 2014 nano funding and the US nano community’s talks with the House of Representatives

I have two items concerning nanotechnology and funding. The first item features Michelle Rempel, Canada’s Minister of State for Western Economic Diversification (WD) who made two funding announcements this summer (2014) affecting the Canadian nanotechnology sector and, more specifically, the province of Alberta.

A June 20, 2014 WD Canada news release announced a $1.1M award to the University of Alberta,

Today, the Honourable Michelle Rempel, Minister of State for Western Economic Diversification, announced $1.1 million to help advance leading-edge atomic computing technologies.

Federal funds will support the University of Alberta with the purchase of an ultra-high resolution scanning tunneling microscope, which will enable researchers and scientists in western Canada and abroad to analyze electron dynamics and nanostructures at an atomic level. The first of its kind in North America, the microscope has the potential to significantly transform the semiconductor industry, as research findings aid in the prototype development and technology commercialization of new ultra low-power and low-temperature computing devices and industrial applications.

This initiative is expected to further strengthen Canada’s competitive position throughout the electronics value chain, such as microelectronics, information and communications technology, and the aerospace and defence sectors. The project will also equip graduate students with a solid foundation of knowledge and hands-on experience to become highly qualified, skilled individuals in today’s workforce.

One month later, a July 21, 2014 WD news release (hosted on the Alberta Centre for Advanced Micro and Nano Products [ACAMP]) announces this award,

Today, the Honourable Michelle Rempel, Minister of State for Western Economic Diversification, announced an investment of $3.3 million toward the purchase and installation of specialized advanced manufacturing and product development equipment at the Alberta Centre for Advanced Micro Nano Technology Products (ACAMP), as well as training on the use of this new equipment for small- and medium-sized enterprises (SMEs).

This support, combined with an investment of $800,000 from Alberta Innovates Technology Futures, will enable ACAMP to expand their services and provide businesses with affordable access to prototype manufacturing that is currently unavailable in western Canada. By helping SMEs accelerate the development and commercialization of innovative products, this project will help strengthen the global competitiveness of western Canadian technology companies.

Approximately 80 Alberta SMEs will benefit from this initiative, which is expected to result in the development of new product prototypes, the creation of new jobs in the field, as well as connections between SMEs and multi-national companies. This equipment will also assist ACAMP’s outreach activities across the western Canadian provinces.

I’m not entirely clear as to whether or not the June 2014 $1.1M award is considered part of the $3.3M award or if these are two different announcements. I am still waiting for answers to a June 20, 2014 query sent to Emily Goucher, Director of Communications to the Hon. Michelle Rempel,

Hi Emily!

Thank you for both the news release and the information about the embargo … happily not an issue at this point …

I noticed Robert Wolkow’s name in the release (I last posted about his work in a March 3, 2011 piece about his and his team’s entry into the Guinness Book of Records for the world’s smallest electron microscope tip (http://www.frogheart.ca/?tag=robert-wolkow) [Note: Wolkow was included in a list of quotees not included here in this July 29, 2014 posting]

I am assuming that the new microscope at the University of Alberta is specific to a different type of work than the one at UVic, which has a subatomic microscope (http://www.frogheart.ca/?p=10426)

Do I understand correctly that an STM is being purchased or is this an announcement of the funds and their intended use with no details about the STM available yet? After reading the news release closely, it looks to me like they do have a specific STM in mind but perhaps they don’t feel ready to make a purchase announcement yet?

If there is information about the STM that will be purchased I would deeply appreciate receiving it.

Thank you for your time.

As I wait, there’s more news from  the US as members of that country’s nanotechnology community testify at a second hearing before the House of Representatives. The first (a May 20, 2014 ‘National Nanotechnology Initiative’ hearing held before the Science, Space, and Technology
Subcommittee on Research and Technology) was mentioned in an May 23, 2014 posting  where I speculated about the community’s response to a smaller budget allocation (down to $1.5B in 2015 from $1.7B in 2014).

This second hearing is being held before the Energy and Commerce Subcommittee on Commerce, Manufacturing and Trade and features an appearance by James Tour from Rice University according to a July 28, 2014 news item on Azonano,

At the hearing, titled “Nanotechnology: Understanding How Small Solutions Drive Big Innovation,” Tour will discuss and provide written testimony on the future of nanotechnology and its impact on U.S. manufacturing and jobs. Tour is one of the most cited chemists in the country, and his Tour Group is a leader in patenting and bringing to market nanotechnology-based methods and materials.

Who: James Tour, Rice’s T.T. and W.F. Chao Chair in Chemistry and professor of materials science and nanoengineering and of computer science.

What: Exploring breakthrough nanotechnology opportunities.

When: 10:15 a.m. EDT Tuesday, July 29.

Where: Room 2322, Rayburn House Office Building, Washington, D.C.

The hearing will explore the current state of nanotechnology and the direction it is headed so that members can gain a better understanding of the policy changes that may be necessary to keep up with advancements. Ultimately, the subcommittee hopes to better understand what issues will confront regulators and how to assess the challenges and opportunities of nanotechnology.

You can find a notice for this July 2014 hearing and a list of witnesses along with their statements here. As for what a second hearing might mean within the context of the US National Nanotechnology Initiative, I cannot say with any certainty. But, this is the first time in six years of writing this blog where there have been two hearings post-budget but as a passive collector of this kind of information this may be a reflection of my information collection strategies rather than a response to a smaller budget allocation. Still, it’s interesting.

Laundry detergents that clean clothes and pollution from the air

Tony Ryan, as an individual (and with Helen Storey), knows how to provoke interest in a topic many of us find tired, air pollution. This time, Ryan and Storey have developed a laundry detergent additive through their Catalytic Clothing venture (mentioned previously in a Feb. 24, 2012 posting and in a July 8, 2011 posting). From Adele Peters’ July 22, 2014 article for Fast Company (Note: A link has been removed),

Here’s another reason cities need more pedestrians: If someone is wearing clothes that happened to be washed in the right detergent, just their walking down the street can suck smog out of the surrounding air.

For the last few years, researchers at the Catalytic Clothing project have been testing a pollution-fighting laundry detergent that coats clothing in nano-sized particles of titanium dioxide. The additive traps smog and converts it into a harmless byproduct. It’s the same principle that has been used smog-eating buildings and roads, but clothing has the advantage of actually taking up more space.

Kasey Lum in a June 25, 2014 article for Ecouterre describes the product as a “laundry additive [which] could turn clothing in mobile air purifiers,”

CatClo piggybacks the regular laundering process to deposit nanoparticles of titanium dioxide onto the fibers of the clothing. Exposure to light excites electrons on the particles’ surface, creating free radicals that react with water to make hydrogen peroxide. This, in turn, “bleaches out” volatile organic compounds and nitrogen oxides in the atmosphere, according to Storey, rendering them harmless.

Lum referenced a May 23, 2014 article written by Helen Storey and Tony Ryan for the UK’s Guardian, newspaper which gives a history of their venture, Catalytic Clothing, and an update on their laundry additive (Note: Links have been removed),

It was through a weird and wonderful coincidence on BBC [British Broadcasting Corporation] Radio 4 that we met to discuss quantum mechanics and plastic packaging, resulting in the Wonderland Project, where we created disappearing gowns and bottles as a metaphor for a planet that is going the same way.

Spurred by this collaborative way of working, Wonderland led to Catalytic Clothing, a liquid laundry additive. The idea came out of conversations about how we could harness the surface of our clothing and the power of fashion to communicate complex scientific ideas – and so began the campaign for clean air.

(When I first wrote about Catalytic Clothing I was under the impression that it was an art/science venture focused on clothing as a means of cleaning the air. I was unaware they were working on a laundry additive.)

Getting back to Storey’s and Ryan’s article (Note: A link has been removed),

Catalytic Clothing (CatClo) uses existing technology in a radical new way. Photocatalytic surface treatments that break down airborne pollutants are widely applied to urban spaces, in concrete, on buildings and self-cleaning glass. The efficacy is greatly increased when applied to clothing – not only is there a large surface area, but there is also a temperature gradient creating a constant flux of air, and movement through walking creates our own micro-wind, so catalysing ourselves makes us the most effective air purifiers of them all.

CatClo contains nanoparticles of titania (TiO2) a thousand times finer than a human hair. [generally nanoscale is described as between 1/60,000 to 1/100,000 of a hair's width] When clothes are laundered through the washing process, particles are deposited onto the fibres of the fabric. When the catalysed clothes are worn, light shines on the titanium particles and it excites the electrons on the particle surface. These electrons cause oxygen molecules to split creating free-radicals that then react with water to make hydrogen peroxide. This then bleaches out the volatile organic compounds and nitrogen oxides (NOx) that are polluting the atmosphere.

The whole process is sped up when people, wearing the clothes, are walking down the street. The collective power of everyone wearing clothes treated with CatClo is extraordinary. If the whole population of a city such as Sheffield was to launder their clothes at home with a product containing CatClo technology they would have the power to remove three tonnes per day of harmful NOx pollution.

So, if the technology exists to clear the air, why isn’t it available? From Storey’s and Ryan’s article,

Altruism, is a hard concept to sell to big business. We have approached and worked with some of the world’s largest producers of laundry products but even though the technology exists and could be relatively cheap to add to existing products, it’s proved to be a tough sell. The fact that by catalysing your clothes the clean air you create will be breathed in by the person behind you is not seen as marketable.

A more serious issue is that photocatalysts can’t tell the difference between a bad pollutant and a “good” one; for example, it treats perfume as just another volatile organic compound like pollution. This is an untenable threat to an entire industry and existing products owned by those best able to take CatClo to market.

We’ve recently travelled to China to see whether CatClo could work there. China is a place where perfume isn’t culturally valued, but the common good is, so a country with one of the biggest pollution problems on the planet, and a government that isn’t hidebound by business as usual, might be the best place to start.

In the midst of developing their laundry additive, Storey and Ryan produced a pop-up exhibition, A Field of Jeans (first mentioned here in an Oct. 13, 2011 posting which lists events for the 2011 London Science Festival), to raise public awareness and support (from the article),

During the research period, we realised that there were more jeans on the planet than people. Knowing this, we launched a pop-up exhibition, A Field of Jeans. The jeans we catalysed are all recycled and as it turns out, because of the special nature of cotton denim, are the most efficacious fabric of all to support the catalysts.

The public have been overwhelmingly supportive; once fears about the “chemicals”, “nanotech” or becoming dirt magnets were dispelled, we captured people’s imagination and proved that CatClo could eventually be as normal as fluoride in toothpaste with enormous potential to increase wellbeing and clean up our polluted cities.

The pop-up exhibition is now at Thomas Tallis School in London (from the Catalytic Clothing homepage),

New 2013/2014
Field of Jeans is at Thomas Tallis school from December 2nd 2013 until further notice. Jeans can be viewed from Kidbrooke Park Road, London SE3 outside the main school entrance. This will inspire a piece of work across the school called Catalytic Learning. More will be posted here soon.
Click here for images

http://www.thomastallis.co.uk/

Here’s an image from the Field of Jeans,

Image can be found here at: https://www.flickr.com/photos/helenstoreyfoundation/sets/72157638346745735/

Image can be found here at: https://www.flickr.com/photos/helenstoreyfoundation/sets/72157638346745735/

I last featured Tony Ryan’s work here in a May 15, 2014 posting about a poem and a catalytic billboard at the University of Sheffield where Ryan is the Pro-Vice-Chancellor for Science.

A vaccine for dust-mite allergies

I like the illustration which the University of Iowa has used to illustrate work on a nanscale vaccine for dust-mite allergies,

Dust mites are tiny and ubiquitous, but they cause big allergic reactions for many people. University of Iowa researchers have created a vaccine that may provide relief to dust-mite allergies. Illustration by Austin Smoldt-Sáenz. [downloaded from http://now.uiowa.edu/2014/06/researchers-create-vaccine-dust-mite-allergies?utm_source=News&utm_medium=dustmiteallergiesvacine&utm_campaign=UI%20Home%20Page]

Dust mites are tiny and ubiquitous, but they cause big allergic reactions for many people. University of Iowa researchers have created a vaccine that may provide relief to dust-mite allergies. Illustration by Austin Smoldt-Sáenz. [downloaded from http://now.uiowa.edu/2014/06/researchers-create-vaccine-dust-mite-allergies?utm_source=News&utm_medium=dustmiteallergiesvacine&utm_campaign=UI%20Home%20Page]

A July 23, 2014 news item on Azonano tells more about the vaccine,

If you’re allergic to dust mites (and chances are you are), help may be on the way.

Researchers at the University of Iowa have developed a vaccine that can combat dust-mite allergies by naturally switching the body’s immune response. In animal tests, the nano-sized vaccine package lowered lung inflammation by 83 percent despite repeated exposure to the allergens, according to the paper, published in the AAPS (American Association of Pharmaceutical Scientists) Journal. One big reason why it works, the researchers contend, is because the vaccine package contains a booster that alters the body’s inflammatory response to dust-mite allergens.

“What is new about this is we have developed a vaccine against dust-mite allergens that hasn’t been used before,” says Aliasger Salem, professor in pharmaceutical sciences at the UI and a corresponding author on the paper.

A July 22, 2014 University of Iowa news release by Richard C. Lewis provides information on dust mites and gives insight into the body’s immune responses and the proposed vaccine’s circumvention of those responses,

Dust mites are ubiquitous, microscopic buggers who burrow in mattresses, sofas, and other homey spots. They are found in 84 percent of households in the United States, according to a published, national survey. Preying on skin cells on the body, the mites trigger allergies and breathing difficulties among 45 percent of those who suffer from asthma, according to some studies. Prolonged exposure can cause lung damage.

Treatment is limited to getting temporary relief from inhalers or undergoing regular exposure to build up tolerance, which is long term and holds no guarantee of success.

“Our research explores a novel approach to treating mite allergy in which specially-encapsulated miniscule particles are administered with sequences of bacterial DNA that direct the immune system to suppress allergic immune responses,” says Peter Thorne, public health professor at the UI and a contributing author on the paper. “This work suggests a way forward to alleviate mite-induced asthma in allergy sufferers.”

The UI-developed vaccine takes advantage of the body’s natural inclination to defend itself against foreign bodies. A key to the formula lies in the use of an adjuvant—which boosts the potency of the vaccine—called CpG. The booster has been used successfully in cancer vaccines but never had been tested as a vaccine for dust-mite allergies. Put broadly, CpG sets off a fire alarm within the body, springing immune cells into action. Those immune cells absorb the CpG and dispose of it.

This is important, because as the immune cells absorb CpG, they’re also taking in the vaccine, which has been added to the package, much like your mother may have wrapped a bitter pill around something tasty to get you to swallow it. In another twist, combining the antigen (the vaccine) and CpG causes the body to change its immune response, producing antibodies that dampen the damaging health effects dust-mite allergens generally cause.

In lab tests, the CpG-antigen package, at 300 nanometers in size, was absorbed 90 percent of the time by immune cells, the UI-led team reports. The researchers followed up those experiments by giving the package to mice and exposing the animals to dust-mite allergens every other day for nine days total. In analyses conducted at the UI College of Public Health, packages with CpG yielded greater production of the desirable antibodies, while lung inflammation was lower than particles that did not contain CpG, the researchers report.

“This is exactly what we were hoping for,” says Salem, whose primary appointment is in the College of Pharmacy.

The researchers will continue to test the vaccine in the hope that it can eventually be used to treat patients.

I wonder what “eventually” means. Three to five years? Five to 10? In any event, here’s a link to and a citation for the paper,

Development of a Poly (lactic-co-glycolic acid) Particle Vaccine to Protect Against House Dust Mite Induced Allergy by Vijaya B. Joshi, Andrea Adamcakova-Dodd, Xuefang Jing, Amaraporn Wongrakpanich, Katherine N. Gibson-Corley, Peter S. Thorne, and Aliasger K. Salem. The AAPS Journal (Themed Issue: Nanoparticles in Vaccine Delivery) Pages: 1-11 DOI: 10.1208/s12248-014-9624-5 Published online July 1, 2014

This paper is behind a paywall.

I last mentioned Aliasger K. Salem in a Nov. 8, 2013 posting about bone bio-patches.

Newcastle University (UK) has a PhD Studentship in Synthetic Biology and Nanotechnology available

Open to UK, European Union, and international students, the studentship deadline for applying is Aug. 18, 2014. Here’s more from the Newcastle University notice on the jobs.ac.uk website (Note: Links have been removed),

PhD Studentship in Synthetic Biology and Nanotechnology – Towards Algorithmic Living Manufacturing (TALIsMAN)

Value, Duration and Start Date of the Award
The Doctoral Training Award is for £20,000 per annum. This award covers fees and a contribution to an annual stipend (living expenses).

Three year PhD

Start date: 14 September 2014

Sponsor
Science Agriculture and Engineering Faculty Doctoral Training Awards

Project Description
The discipline of Synthetic Biology (SB), considers the cell to be a machine that can be built -from parts- in a manner similar to, e.g., electronic circuits, airplanes, etc. SB has sought to co-opt cells for nano-computation and nano-manufacturing purposes. During this scholarship programme of doctoral studies the student will pursue investigations at the interface of computing science (biodesign & biomodeling), chemical sciences (nanoparticle delivery systems), microbiology (bacterial genetic engineering) and nanoscience (DNA origami).

Name of the Supervisors
Professor Natalio Krasnogor (Lead Supervisor), School of Computing Science

Dr David Fulton, School of Chemistry

Dr Chien-Yi Chang, Centre for Bacterial Cell Biology

Person Specification and Eligibility Criteria
You must have an MSc in synthetic biology, microbiology, organic chemistry or computing science. You also should have demonstrable independent research skills, e.g. having completed a successful MSc dissertation or having a publication in a recognised peer reviewed conference or, ideally, journal. The candidate must have substantial laboratory experience and excellent programming and numeracy skills.

This award is available to UK/EU and International candidates. If English is not your first language, you must have IELTS 6.5.

Closing Date for Applications
Applications will be considered until Monday 18 August 2014. However, awards may be made to successful applicants before this date and early application is recommended.

So according to the line above, it’s better to apply sooner rather than later. Good luck!