Fractal imagery (from nature or from art or from mathematics) soothes

Jackson Pollock’s work is often cited when fractal art is discussed. I think it’s largely because he likely produced the art without knowing about the concept.

No. 5, 1948 (Jackson Pollock, downloaded from Wikipedia essay about No. 5, 1948)

Richard Taylor, a professor of physics at the University of Oregon, provides more information about how fractals affect us and how this is relevant to his work with retinal implants in a March 30, 2017 essay for The Conversation (h/t Mar. 31, 2017 news item on phys.org), Note: Links have been removed),

Humans are visual creatures. Objects we call “beautiful” or “aesthetic” are a crucial part of our humanity. Even the oldest known examples of rock and cave art served aesthetic rather than utilitarian roles. Although aesthetics is often regarded as an ill-defined vague quality, research groups like mine are using sophisticated techniques to quantify it – and its impact on the observer.

We’re finding that aesthetic images can induce staggering changes to the body, including radical reductions in the observer’s stress levels. Job stress alone is estimated to cost American businesses many billions of dollars annually, so studying aesthetics holds a huge potential benefit to society.

Researchers are untangling just what makes particular works of art or natural scenes visually appealing and stress-relieving – and one crucial factor is the presence of the repetitive patterns called fractals.

When it comes to aesthetics, who better to study than famous artists? They are, after all, the visual experts. My research group took this approach with Jackson Pollock, who rose to the peak of modern art in the late 1940s by pouring paint directly from a can onto horizontal canvases laid across his studio floor. Although battles raged among Pollock scholars regarding the meaning of his splattered patterns, many agreed they had an organic, natural feel to them.

My scientific curiosity was stirred when I learned that many of nature’s objects are fractal, featuring patterns that repeat at increasingly fine magnifications. For example, think of a tree. First you see the big branches growing out of the trunk. Then you see smaller versions growing out of each big branch. As you keep zooming in, finer and finer branches appear, all the way down to the smallest twigs. Other examples of nature’s fractals include clouds, rivers, coastlines and mountains.

In 1999, my group used computer pattern analysis techniques to show that Pollock’s paintings are as fractal as patterns found in natural scenery. Since then, more than 10 different groups have performed various forms of fractal analysis on his paintings. Pollock’s ability to express nature’s fractal aesthetics helps explain the enduring popularity of his work.

The impact of nature’s aesthetics is surprisingly powerful. In the 1980s, architects found that patients recovered more quickly from surgery when given hospital rooms with windows looking out on nature. Other studies since then have demonstrated that just looking at pictures of natural scenes can change the way a person’s autonomic nervous system responds to stress.

Are fractals the secret to some soothing natural scenes? Ronan, CC BY-NC-ND

For me, this raises the same question I’d asked of Pollock: Are fractals responsible? Collaborating with psychologists and neuroscientists, we measured people’s responses to fractals found in nature (using photos of natural scenes), art (Pollock’s paintings) and mathematics (computer generated images) and discovered a universal effect we labeled “fractal fluency.”

Through exposure to nature’s fractal scenery, people’s visual systems have adapted to efficiently process fractals with ease. We found that this adaptation occurs at many stages of the visual system, from the way our eyes move to which regions of the brain get activated. This fluency puts us in a comfort zone and so we enjoy looking at fractals. Crucially, we used EEG to record the brain’s electrical activity and skin conductance techniques to show that this aesthetic experience is accompanied by stress reduction of 60 percent – a surprisingly large effect for a nonmedicinal treatment. This physiological change even accelerates post-surgical recovery rates.

Pollock’s motivation for continually increasing the complexity of his fractal patterns became apparent recently when I studied the fractal properties of Rorschach inkblots. These abstract blots are famous because people see imaginary forms (figures and animals) in them. I explained this process in terms of the fractal fluency effect, which enhances people’s pattern recognition processes. The low complexity fractal inkblots made this process trigger-happy, fooling observers into seeing images that aren’t there.

Pollock disliked the idea that viewers of his paintings were distracted by such imaginary figures, which he called “extra cargo.” He intuitively increased the complexity of his works to prevent this phenomenon.

Pollock’s abstract expressionist colleague, Willem De Kooning, also painted fractals. When he was diagnosed with dementia, some art scholars called for his retirement amid concerns that that it would reduce the nurture component of his work. Yet, although they predicted a deterioration in his paintings, his later works conveyed a peacefulness missing from his earlier pieces. Recently, the fractal complexity of his paintings was shown to drop steadily as he slipped into dementia. The study focused on seven artists with different neurological conditions and highlighted the potential of using art works as a new tool for studying these diseases. To me, the most inspiring message is that, when fighting these diseases, artists can still create beautiful artworks.

Recognizing how looking at fractals reduces stress means it’s possible to create retinal implants that mimic the mechanism. Nautilus image via www.shutterstock.com.

My main research focuses on developing retinal implants to restore vision to victims of retinal diseases. At first glance, this goal seems a long way from Pollock’s art. Yet, it was his work that gave me the first clue to fractal fluency and the role nature’s fractals can play in keeping people’s stress levels in check. To make sure my bio-inspired implants induce the same stress reduction when looking at nature’s fractals as normal eyes do, they closely mimic the retina’s design.

When I started my Pollock research, I never imagined it would inform artificial eye designs. This, though, is the power of interdisciplinary endeavors – thinking “out of the box” leads to unexpected but potentially revolutionary ideas.

Fabulous essay, eh?

I have previously featured Jackson Pollock in a June 30, 2011 posting titled: Jackson Pollock’s physics and and briefly mentioned him in a May 11, 2010 visual arts commentary titled: Rennie Collection’s latest: Richard Jackson, Georges Seurat & Jackson Pollock, guns, the act of painting, and women (scroll down about 45% of the way).

Solange Knowles and the Rennie Museum in Vancouver, Canada on April 27 and 28, 2017

Tickets ($35 CAD?) were sold out in less than an hour. Drat! On the upside, the Rennie Museum (formerly the Rennie Collection) is one of nine venues in nine cities hosting Solange Knowles’ music tour of art museums. (Not my usual topic but I have covered shows at the Rennie many times throughout the years.) This tour is discussed in Emilia Petrarca’s April 24, 2017 article for W magazine,

While Knowles isn’t formally touring for A Seat at the Table, she will continue on the festival circuit and is also working on a performance art-inspired “museum tour,” which she’ll perform at the San Francisco Museum of Modern Art as well as the Guggenheim Museum in May [2017].

On wanting to be more than just a singer:

“Singer is probably at the bottom of the barrel in terms of what I’m trying to achieve as an artist. Visually, through many mediums—through dance, through art direction, through color theory—there are so many things that I’ve dabbled in that I’ve yet to immerse myself in fully. But I think right now, I’m creating the live show and music composition, production, and creating from the ground up is when I feel the most at home.”

On her history as a dancer:

“I used to want to be a modern dancer when I was younger and go to Juilliard and do the whole thing, but I had a knee injury when I was 15. I was actually dancing for Destiny’s Child. And that was how I started to write, because I thought I was going to be an [Alvin] Ailey girl [emphasis mine] somewhere.”

On styling the costumes for her festival shows and museum tour:

“I’m touring two shows this spring/summer/fall, and one takes place in museum lobbies. For me, Donald Judd’s idea that we take on our surroundings as a part of the art itself really, really punctured me in the way that I look at performance art. It’s really rare that an artist gets to perform in daylight, unless it’s at a festival. So I really wanted to play with creating a strong color palette. I’ve been playing around with a lot of neutral tones since the record came out and Issey Miyake has been a huge influence. We’re also wearing a lot of Phillip Lim and really comfortable, moveable fabrics. On stage, I’ve really been empowered by the color red. I think it’s associated, especially with women, as this fiery, super volatile, and strong-willed color. Almost stubborn, if you will. So we’re wearing all-red for our festival shows and playing with the lighting for all the moods red can express. Color theory is this really nerdy side of me that I’ve been wanting to explore more of.”

It’s impossible to emphasize Alvin Ailey’s impact enough. Prior to him, there were no African American dancers in dance It was thought African Americans had the wrong body type until Alvin Ailey proved them wrong. (The topic of body type and dance is bizarre to an outsider, especially where ballet is concerned. It lends itself to racism but is rampant throughout the world of modern dance and ballet. I followed the topic for a number of years.)

Getting back to Solange Knowles, Tavi Gevinson’s Sept. 30, 2016 article for W explores her then new album ‘A Seat at the Table’,

Solange’s new album, A Seat at the Table, is so many things at once: an antidote to hate, a celebration of blackness, an expression of the right to feel it all. After a move to Louisiana and period of self-reflection, the artist joined forces with a range of collaborators to put her new discoveries to music. Hearing it for the very first time, my heart went in and out of slow motion: swelled at a layered vocal, stopped at a painfully apt choice of words, sped up with a perfect bass-line. Mostly I was struck by A Seat at the Table as a nurturing force among the trauma of anti-blackness; a further exploration of questions posed by Solange on her Twitter, last summer: “Where can we be safe? Where can we be free? Where can we be black?”

So much of your album explicitly discusses racism and celebrating blackness, and one of the interludes talks about taking all the anger and metabolizing it through the work. Does that start with you through the lyrics or the sounds?

The writing process of this album was not more unique than any of my other processes, in that it typically starts with the melody idea and the words evolve based off of what I listen back to. Nine times out of ten, you’re freestyling, but you’re piecing the puzzle pieces together after you settle on a melody that you like. I definitely had concepts I wanted to explore. I knew that I wanted to make a song experiencing and communicating the exhaustion, the feeling of being weary and tired and energetically drained. I knew that I wanted to discuss this idea of the “angry black woman” in society, and dissect a conversation that I’ve had one too many times. I knew I had these concepts that I wanted to communicate, but I was resistant to letting them lead the creative process. So the first layer of making the album, I just jammed in a room with some incredible musicians. It was a great energy in the room, because it was not so much like, ‘I’m going to make this album about this specific thing. It was just music-making. Then, I took that music and I went to New Iberia for that time, and I needed that insular time to break down what I was saying, what I was going to communicate and how I was going to do that. From there, I spent that summer writing lyrics. It was an interesting process because I’m a mother and I had to balance making an album and raising a preteen. And having my hands in all these different pots, so it was either all or nothing to me. I spent three months in New Iberia, and I recorded some of the album in Ghana and Jamaica. I had to have these isolated experiences creatively in order to turn off and listen to myself.

For all of the continued awareness of systemic violence and oppression, there isn’t a lot of talk about that psychological toll of racism, at least in white circles and white media. That is so heavy in the album, and I’m really excited for people to have that to turn to.

That is such an ignored part of the conversation. I feel there were a lot of traumas that I had to experience during this creative process, that I didn’t identify as traumas until I realized just how much weight and how many triggers [there are] like constantly seeing the images of young black people lifeless in the street, and how many cries of mothers that you’re constantly hearing on a daily basis. Outside of those traumas, just the nuances that you have to navigate through everyday as a black person living in this country. It absolutely has a psychological effect on you. There are clinical and scientific studies that show the brain dealing with the same type of PTSD that we know of in other traumatic instances and experiences, but society has not yet come to terms with applying it to race. But I have a lot of optimism in the fact that we’re even able to have this conversation now. This isn’t something that my mom and one of her white friends would be discussing in their time. It’s not always easy, and it’s not always comfortable, and the person leading it usually gets a lot of shit for it, but that’s with any revolution.

Here’s a little information about the upcoming Vancouver show from an April 21, 2017 news item on the Georgia Straight (Note: Links have been removed),

Solange Knowles, woke artist, activist, feminist, and producer of one of 2016’s most critically acclaimed albums, has announced that she will be playing a show at Vancouver’s Rennie Museum (51 East Pender Street) on April 27.

The singer published an image to her Instagram page yesterday (April 20), revealing that Vancouver is one of nine cities she will be stopping in over the next two months. Shortly after, the Rennie Collection, one of the country’s largest collections of contemporary art exhibited at the Wing Sang building in Chinatown, shared on its social media pages that Knowles will be conducting a “special performance”.

“Her album [A Seat at the Table] is very artistic,” Wendy Chang, director at the Rennie, tells the Straight by phone. “She’s on the West Coast this week and, because she has nothing planned for Vancouver at all, we thought we’d take advantage of that and have her perform and have all proceeds go to a charity.”

Chang reveals that the “very small, very intimate” performance will benefit the Atira Women’s Resource Society, a DTES–based nonprofit that provides safe housing and support for women and children affected by violence.

Not much else has been confirmed about the last-minute show, though given the venue and the sold-out act Knowles plans to present at New York’s Guggenheim Museum in May, fans can expect an interdisciplinary set that explores blackness, prejudice, and womanhood both visually and sonically.

In March, Knowles also debuted “Scales”, a performance project “examining protest as meditation through movement and experimentation of unique compositions and arrangements from A Seat at the Table”, at Houston’s Menil Collection. More recently, she appeared at the Pérez Art Museum Miami.

In addition to Vancouver, Knowles is making stops in cities such as San Francisco, Mayer, Arizona, and Boston between now and June [2017].

I did find a review for Knowles’ April 21, 2017 show in Portland, Oregon (from  Emerson Malone’s April 22, 2017 review for DailyEmerald.com,

The unsinkable Solange Knowles played the headlining slot for Soul’d Out Music Fest, a soul and R&B music festival based in multiple venues around Portland, on Friday, April 21, at the Arlene Schnitzer Concert Hall. The festival’s events from April 19–23 have included Travis Scott (who brought Drake out to get cozy in the crowd); Giorgio Moroder, The Ohio Players and Cory Henry and the Funk Apostles.

One of the most admirable elements of Solange’s live show is the impeccable choreography. It’s so precisely designed that every subtle movement, every head nod and jazz hand-wave, was on cue. At times the group would form a tight chorus line and sway back and forth in unison, with everyone (save the trombonists) continuing to play.

When she demanded that everyone dance during the bubblegum-pop hit “Losing You” from her 2012 EP “True,” the entire hall erupted at her behest. The encore performance “Don’t Touch My Hair” — Solange’s exhortation of the casual fetishization of black women  — was phenomenal. She turned her back to the audience and acted as conductor, commanding the musicians with loud, grandiose gestures. As the drummer smashed the cymbals, she mirrored him, thrashed her limbs and windmilled her arms.

Following the show, even one of the Arlene’s security guards — who just spent the last hour dancing — was quietly weeping and speechlessly shaking her head in awe. Solange isn’t just a firebrand individual, and her show isn’t just an opulent, elegant triumph of performance art. She is a puppet master; we’re marionettes.

Unfortunately, the Solange Knowles’ Vancouver show sold out within minutes (yes, I know I’m repeating it but it was heartbreaking) and I gather from the folks at the Rennie Museum that they had very little notice about the show which is being organized solely by Knowles’ people in response to my somewhat grumbling email. Ah well, them’s the breaks. In any event, there are only 100 tickets per performance available so for those who did get a ticket, you are going to have an intimate experience with the artist  and given the venue, this will be a performance art experience rather than a music show such as the one in Portland, Oregon. There will be three performances in Vancouver,. one on Thursday, April 27, 2017 and two on Friday, April 28, 2017 (you can see the listing here). Enjoy!

After the April 22, 2017 US March for Science

Since last Saturday’s (April 22, 2017) US March for Science, I’ve stumbled across three interesting perspectives on the ‘movement’. As I noted in my April 14, 2017 posting, the ‘march’ has reached out beyond US borders to become international in scope. (On the day, at least 18 marches were held in Canada alone.)

Canada

John Dupuis wrote about his experience as a featured speaker at the Toronto (Ontario) march in an April 24, 2017 posting on his Confessions of a Science Librarian blog (Note: Links have been removed),

My fellow presenters were Master of Ceremonies Rupinder Brar and speakers Dawn Martin-Hill, Josh Matlow, Tanya Harrison, Chelsea Rochman, Aadita Chaudhury, Eden Hennessey and Cody Looking Horse.

Here’s what I had to say:

Hi, my name is John and I’m a librarian. My librarian superpower is making lists, checking them twice and seeing who’s been naughty and who’s been nice. The nice ones are all of you out here marching for science. And the naughty ones are the ones out there that are attacking science and the environment.

Now I’ve been in the list-making business for quite a few years, making an awful lot of lists of how governments have attacked or ignored science. I did a lot of work making lists about the Harper government and their war on science. The nicest thing I’ve ever seen written about my strange little obsession was in The Guardian.

Here’s what they said, in an article titled, How science helped to swing the Canadian election.

“Things got so bad that scientists and their supporters took to the streets. They demonstrated in Ottawa. They formed an organization, Evidence for Democracy, to bring push back on political interference in science. Awareness-raising forums were held at campuses throughout Canada. And the onslaught on science was painstakingly documented, which tends to happen when you go after librarians.”

Yeah, watch out. Don’t go after libraries and librarians. The Harper govt learned its lesson. And we learned a lesson too. And that lesson was that keeping track of things, that painstakingly documenting all the apparently disconnected little bits and pieces of policies here, regulations changed there and a budget snipped somewhere else, it all adds up.

What before had seemed random and disconnected is suddenly a coherent story. All the dots are connected and everybody can see what’s happened. By telling the whole story, by laying it all out there for everyone to see, it’s suddenly easier for all of us to point to the list and to hold the government of the day accountable. That’s the lesson learned from making lists.

But back in 2013 what I saw the government doing wasn’t the run of the mill anti-science that we’d seen before. Prime Minister Harper’s long standing stated desire to make Canada a global energy superpower revealed the underlying motivation but it was the endless litany of program cuts, census cancellation, science library closures, regulatory changes and muzzling of government scientists that made up the action plan. But was it really a concerted action plan or was it a disconnected series of small changes that were really no big deal or just a little different from normal?

That’s where making lists comes in handy. If you’re keeping track, then, yeah, you see the plan. You see the mission, you see the goals, you see the strategy, you see the tactics. You see that the government was trying to be sneaky and stealthy and incremental and “normal” but that there was a revolution in the making. An anti-science revolution.

Fast forward to now, April 2017, and what do we see? The same game plan repeated, the same anti-science revolution under way [in the US]. Only this time not so stealthy. Instead of a steady drip, it’s a fire hose. Message control at the National Parks Service, climate change denial, slashing budgets and shutting down programs at the EPA and other vital agencies. Incompetent agency directors that don’t understand the mission of their agencies or who even want to destroy them completely.

Once again, we are called to document, document, document. Tell the stories, mobilize science supporters and hold the governments accountable at the ballot box. Hey, like the Guardian said, if we did it in Canada, maybe that game plan can be repeated too.

I invited my three government reps here to the march today, Rob Oliphant, Josh Matlow and Eric Hoskins and I invited them to march with me so we could talk about how evidence should inform public policy. Josh, of course, is up here on the podium with me. As for Rob Oliphant from the Federal Liberals and Eric Hoskins from the Ontario Liberals, well, let’s just say they never answered my tweets.

Keep track, tell the story, hold all of them from every party accountable. The lesson we learned here in Canada was that science can be a decisive issue. Real facts can mobilise people to vote against alternative facts.

Thank you.

I’m not as sure as Dupuis that science was a decisive issue in our 2015 federal election; I’d say it was a factor. More importantly, I think the 2015 election showed Canadian scientists and those who feel science is important that it is possible to give it a voice and more prominence in the political discourse.

Rwanda

Eric Leeuwerck in an April 24, 2017 posting on one of the Agence Science-Press blogs describes his participation from Rwanda (I have provided a very rough translation after),

Un peu partout dans le monde, samedi 22 avril 2017, des milliers de personnes se sont mobilisées pour la « march for science », #sciencemarch, « une marche citoyenne pour les sciences, contre l’obscurantisme ». Et chez moi, au Rwanda ?

J’aurais bien voulu y aller moi à une « march for science », j’aurais bien voulu me joindre aux autres voix, me réconforter dans un esprit de franche camaraderie, à marcher comme un seul homme dans les rues, à dire que oui, nous sommes là ! La science vaincra, « No science, no futur ! » En Arctique, en Antarctique, en Amérique latine, en Asie, en Europe, sur la terre, sous l’eau…. Partout, des centaines de milliers de personnes ont marché ensemble. L’Afrique s’est mobilisée aussi, il y a eu des “march for science” au Kenya, Nigeria, Ouganda…

Et au Rwanda ? Eh bien, rien… Pourquoi suivre la masse, hein ? Pourquoi est-ce que je ne me suis pas bougé le cul pour faire une « march for science » au Rwanda ? Euh… et bien… Je vous avoue que je me vois mal organiser une manif au Rwanda en fait… Une collègue m’a même suggéré l’idée mais voilà, j’ai laissé tomber au moment même où l’idée m’a traversé l’esprit… Cependant, j’avais quand même cette envie d’exprimer ma sympathie et mon appartenance à ce mouvement mondial, à titre personnel, sans vouloir parler pour les autres, avec un GIF tout simple.

March for science RWanda

” March for science ” Rwanda

Je dois dire que je me sens bien souvent seul ici… Les cours de biologie de beaucoup d’écoles sont créationnistes, même au KICS (pour Kigali International Community School), une école internationale américaine (je tiens ça d’amis qui ont eu leurs enfants dans cette école). Sur son site, cette école de grande renommée ici ne cache pas ses penchants chrétiens : “KICS is a fully accredited member of the Association of Christian Schools International (ACSI) (…)” et, de plus, est reconnue par le ministère de l’éducation rwandais : “(KICS) is endorsed by the Rwandan Ministry of Education as a sound educational institution“. Et puis, il y a cette phrase sur leur page d’accueil : « Join the KICS family and impact the world for christ ».

Je réalise régulièrement des formations en pédagogie des sciences pour des profs locaux du primaire et du secondaire. Lors de ma formation sur la théorie de l’Evolution, qui a eu pas mal de succès, les enseignants de biologie m’ont confié que c’était la première fois, avec moi, qu’ils avaient eu de vrais cours sur la théorie de l’Evolution… (Je passe les débats sur l’athéisme, sur la « création » qui n’est pas un fait, sur ce qu’est un fait, qu’il ne faut pas faire « acte de foi » pour faire de la science et que donc on ne peut pas « croire » en la science, mais la comprendre…). Un thème délicat à aborder a été celui de la « construction des identités meurtrières » pour reprendre le titre du livre d’Amin Maalouf, au Rwanda comment est-ce qu’une pseudoscience, subjective, orientée politiquement et religieusement a pu mener au racisme et au génocide. On m’avait aussi formellement interdit d’en parler à l’époque, ma directrice de l’époque disait « ne te mêle pas de ça, ce n’est pas notre histoire », mais voilà, maintenant, ce thème est devenu un thème incontournable, même à l’Ecole Belge de Kigali !

Une autre formation sur l’éducation sexuelle a été très bien reçue aussi ! J’ai mis en place cette formation, aussi contre l’avis de ma directrice de l’époque (une autre) : des thèmes comme le planning familial, la contraception, l’homosexualité, gérer un débat houleux, les hormones… ont été abordées ! Première fois aussi, m’ont confié les enseignants, qu’ils ont reçu une formation objective sur ces sujets tabous.

Chaque année, je réunis un peu d’argent avec l’aide de l’École Belge de Kigali pour faire ces formations (même si mes directions ne sont pas toujours d’accord avec les thèmes ), je suis totalement indépendant et à part l’École Belge de Kigali, aucune autre institution dont j’ai sollicité le soutien n’a voulu me répondre. Mais je continue, ça relève parfois du militantisme, je l’avoue.

C’est comme mon blog, un des seuls blogs francophones de sciences en Afrique (en fait, je n’en ai jamais trouvé aucun en cherchant sur le net) dans un pays à la connexion Internet catastrophique, je me demande parfois pourquoi je continue… Je perds tellement de temps à attendre que mes pages chargent, à me reconnecter je ne sais pas combien de fois toutes les 5 minutes … En particulier lors de la saison des pluies ! Heureusement que je peux compter sur le soutien inconditionnel de mes communautés de blogueurs : le café des sciences , les Mondoblogueurs de RFI , l’Agence Science-Presse. Sans eux, j’aurais arrêté depuis longtemps ! Six ans de blogging scientifique quand même…

Alors, ce n’est pas que virtuel, vous savez ! Chaque jour, quand je vais au boulot pour donner mes cours de bio et chimie, quand j’organise mes formations, quand j’arrive à me connecter à mon blog, je « marche pour la science ».

Yeah. (De la route, de la science et du rock’n’roll : Rock’n’Science !)

(Un commentaire de soutien ça fait toujours plaisir !)

As I noted, this will be a very rough translation and anything in square brackets [] means that I’m even less sure about the translation in that bit,

Pretty much around the world, thousands will march for science against anti-knowledge/anti-science.

I would have liked to join in and to march with other kindred spirits as one in the streets. We are here! Science will triumph! No science .No future. In the Arctic, in the Antarctic, in Latin America, in Asia, in Europe,  on land, on water … Everywhere hundreds of thousands of people are marching together. Africa, too, has mobilized with marches in Kenya, Nigeria, Uganda ..

And in Rwanda? Well, no, nothing. Why follow everyone else? Why didn’t I get my butt in gear and organize a march? [I’m not good at organizing these kinds of things] A colleague even suggested I arrange something . I had an impulse to do it and then it left. Still, I want to express my solidarity with the March for Science without attempting to talk for or represent anyone other than myself. So, here’s a simple gif,

I have to say I often feel myself to be alone here. The biology courses taught in many of the schools here are creationist biology even at the KICS (Kigali International Community School), an international American school (I have friends whose children attend the school). On the school’s site there’s a sign that does nothing to hide its mission: “KICS is a fully accredited member of the Association of Christian Schools International (ACSI) (…)” and, further, it is recognized as such by the Rwandan Ministry of Education : “(KICS) is endorsed by the Rwandan Ministry of Education as a sound educational institution”. Finally, there’s this on their welcome page : « Join the KICS family and impact the world for christ ».

I regularly give science education prgorammes for local primary and secondary teachers. With regard to my teaching on the theory of evolution some have confided that this is the first time they’ve truly been exposed to a theory of evolution.  (I avoid the debates about atheism and the creation story. Science is not about faith it’s about understanding …). One theme that must be skirted with some delicacy in Rwanda is the notion of constructing a murderous/violent identity to borrow from Amin Maalouf’s book title, ‘Les Identités meurtrières’; in English: In the Name of Identity: Violence and the Need to Belong) as it has elements of a pseudoscience, subjectivity, political and religious connotations and has been used to justify racism and genocide. [Not sure here if he’s saying that the theory of evolution has been appropriated and juxtaposed with notions of violence and identify leading to racism and genocide. For anyone not familiar with the Rwandan genocide of 1994, see this Wikipedia entry.] Ihave been formally forbidden to discuss this period and my director said “Don’t meddle in this. It’s not our history.” But this theme/history has become essential/unavoidable even at the l’Ecole Belge de Kigali (Belgian School of Kigali).

A programme on sex education was well received and that subject too was forbidden to me (by a different director). I included topics such as  family planning, contraception, homosexuality, hormones and inspired a spirited debate. Many times my students have confided that they received good factual information on these taboo topics.

Each year with help from the Belgian School at Kigali, I raise money for these programmes (even if my directors don’t approve of the topics). I’m totally independent and other than the Belgian School at Kigali no other institution that I’ve appraoched has responded. But I continue as I hope that it can help lower milittancy.

My blog is one of the few French language science blogs in Africa (I rarely find any other such blogs when I search). In a country where the internet connection is catastrophically poor, I ask myself why I go on. I lose a lot of time waiting for pages to load or to re-establish a connection, especially in the rainy season. Happily I can depend on the communities of bloggers such as: café des sciences , les Mondoblogueurs de RFI , l’Agence Science-Presse. Without them I would have stopped long ago. It has been six years of blogging science …

It is virtual, you know. Each day when I deliver my courses in biology and chemistry, when I organize my programmes, when I post on my blog, ‘I march for science’.

Comments are gladly accepted. [http://www.sciencepresse.qc.ca/blogue/2017/04/24/march-science-rwanda]

All mistakes are mine.

US

My last bit is from an April 24, 2017 article by Jeremy Samuel Faust for Slate.com, (Note: Links have been removed),

Hundreds of thousands of self-professed science supporters turned out to over 600 iterations of the March for Science around the world this weekend. Thanks to the app Periscope, I attended half a dozen of them from the comfort of my apartment, thereby assiduously minimizing my carbon footprint.

Mainly, these marches appeared to be a pleasant excuse for liberals to write some really bad (and, OK, some truly superb) puns, and put them on cardboard signs. There were also some nicely stated slogans that roused support for important concepts such as reason and data and many that decried the defunding of scientific research and ignorance-driven policy.

But here’s the problem: Little of what I observed dissuades me from my baseline belief that, even among the sanctimonious elite who want to own science (and pwn [sic] anyone who questions it), most people have no idea how science actually works. The scientific method itself is already under constant attack from within the scientific community itself and is ceaselessly undermined by its so-called supporters, including during marches like those on Saturday. [April 22, 2017] In the long run, such demonstrations will do little to resolve the myriad problems science faces and instead could continue to undermine our efforts to use science accurately and productively.

Indeed much of the sentiment of the March for Science seemed to fall firmly in the camp of people espousing a gee-whiz attitude in which science is just great and beyond reproach. They feel that way because, so often, the science they’re exposed to feels that way—it’s cherry-picked. Cherry-picking scientific findings that support an already cherished and firmly held belief (while often ignoring equally if not more compelling data that contradicts it) is epidemic—in scientific journals and in the media.

Let’s face it: People like science when it supports their views. I see this every day. When patients ask me for antibiotics to treat their common colds, I tell them that decades of science and research, let alone a basic understanding of microbiology, shows that antibiotics don’t work for cold viruses. Trust me, people don’t care. They have gotten antibiotics for their colds in the past, and, lo, they got better. (The human immune system, while a bit slower and clunkier than we’d like it to be, never seems to get the credit it deserves in these little anecdotal stories.) Who needs science when you have something mightier—personal experience?

Another example is the vocal wing of environmentalists who got up one day and decided that genetically modified organisms were bad for you. They had not one shred of evidence for this, but it just kind of felt true. As a result, responsible scientists will be fighting against these zealots for years to come. While the leaders of March for Science events are on the right side of this issue, many of its supporters are not. I’m looking at you, Bernie Sanders; the intellectual rigor behind your stance requiring GMO labelling reflects a level of scientific understanding that would likely lead for calls for self-defenestration from your own supporters if it were applied to, say, something like climate change.

But it does not stop there. Perhaps as irritating as people who know nothing about science are those who know just a little bit—just enough to think they have any idea as to what is going on. Take for example the clever cheer (and unparalleled public declaration of nerdiness):

What do we want?

Science!

When do we want it?

After peer review!

Of course, the quality of most peer-review research is somewhere between bad and unfair to the pixels that gave their lives to display it. Just this past week, a study published by the world’s most prestigious stroke research journal (Stroke), made headlines and achieved media virality by claiming a correlation between increased diet soda consumption and strokes and dementia. Oh, by the way, the authors didn’t control for body mass index [*], even though, unsurprisingly, people who have the highest BMIs had the most strokes. An earlier study that no one seems to remember showed a correlation of around the same magnitude between obesity and strokes alone. But, who cares, right? Ban diet sodas now! Science says they’re linked to strokes and dementia! By the way, Science used to say that diet sodas cause cancer. But Science was, perish the thought, wrong.

If you can get past the writer’s great disdain for just about everyone, he makes very good points.

To add some clarity with regard to “controlling for body mass index,” there’s a concept in research known as a confounding variable. In this case, people who have a higher body mass index (or are more obese) will tend to have more strokes according to previous research which qualifies as a confounding variable when studying the effect of diet soda on strokes. To control for obesity means you set up the research project in such a way you can compare (oranges to oranges) the stroke rates of obese people who drink x amount of diet soda with obese people who do not drink x amount of diet soda and compare stroke rates of standard weight people who drink x amount of diet soda with other standard weight people who do not drink x amount of diet soda. There are other aspects of the research that would also have be considered but to control for body mass index that’s the way I’d set it up.

One point that Faust makes that isn’t made often enough and certainly not within the context of the ‘evidence-based policy movement’ and ‘marches for science’ is the great upheaval taking place within the scientific endeavour (Note: Links have been removed),

… . There are a dozen other statistical games that researchers can play to get statistical significance. Such ruses do not rise to anything approaching clinical relevance. Nevertheless, fun truthy ones like the diet soda study grab headlines and often end up changing human behaviors.

The reason this problem, what one of my friends delightfully calls statistical chicanery, is so rampant is twofold. First, academics need to “publish or perish.” If researchers don’t publish in peer-reviewed journals, their careers will be short and undistinguished. Second, large pharmaceutical companies have learned how to game the science system so that their patented designer molecules can earn them billions of dollars, often treating made-up diseases (I won’t risk public opprobrium naming those) as well as other that we, the medical establishment, literally helped create (opioid-induced constipation being a recent flagrancy).

Of course, the journals themselves have suffered because their contributors know the game. There are now dozens of stories of phony research passing muster in peer-review journals, despite being intentionally badly written. These somewhat cynical, though hilarious, exposés have largely focused on outing predatory journals that charge authors money in exchange for publication (assuming the article is “accepted” by the rigorous peer-review process; the word rigorous, by the way, now means “the credit card payment went through and your email address didn’t bounce”). But even prestigious journals have been bamboozled. The Lancet famously published fabrications linking vaccines and autism in 1998. and it took it 12 years to retract the studies. Meanwhile, the United States Congress took only three years for its own inquiry to debunk any link. You know it’s bad when the U.S. Congress is running circles around the editorial board of one of the world’s most illustrious medical journals. Over the last couple of decades, multiple attempts to improve the quality of peer-review adjudication have disappointingly and largely failed to improve the situation.

While the scientific research community is in desperate need of an overhaul, the mainstream media (and social media influencers) could in the meantime play a tremendously helpful role in alleviating the situation. Rather than indiscriminately repeating the results of the latest headline-grabbing scientific journal article and quoting the authors who wrote the paper, journalists should also reach out to skeptics and use their comments not just to provide (false) balance in their articles but to assess whether the finding really warrants an entire article of coverage in the first place. Headlines should be vetted not for impact and virality but for honesty. As a reader, be wary of any headline that includes the phrase “Science says,” as well as anything that states that a particular study “proves” that a particular exposure “causes” a particular disease. Smoking causes cancer, heart disease, and emphysema, and that’s about as close to a causal statement as actual scientists will make, when it comes to health. Most of what you read and hear about turns out to be mere associations, and mostly fairly weak ones, at that.

Faust refers mostly to medical research but many of his comments are applicable to other science research as well. By the way, Faust has written an excellent description of p-values for which, if for no other reason, you should read his piece in its entirety.

One last comment about Faust’s piece, he exhorts journalists to take more care in their writing but fails to recognize the pressures on journalists and those who participate in social media. Briefly, journalists are under pressure to produce. Many of the journalists who write about science don’t know much about it and even the ones who have a science background may be quite ignorant about the particular piece of science they are covering, i.e., a physicist might have some problems covering medical research and vice versa. Also, mainstream media are in trouble as they struggle to find revenue models.

As for those of us who blog and others in the social media environment; we are a mixed bag in much the same way that mainstream media is. If you get your science from gossip rags such as the National Enquirer, it’s not likely to be as reliable as what you’d expect from The Guardian or the The New York Times. Still, those prestigious publications have gotten quite wrong on occasion.

In the end, readers (scientists, journalists, bloggers, etc.) need to be skeptical. It’s also helpful to be humble or at least willing to admit you’ve made a mistake (confession: I have my share on this blog, which are noted when I’ve found or when they’ve been pointed out to me).

Final comments

Hopefully, this has given you a taste for the wide ranges of experiences and perspectives on the April 22, 2017 March for Science.

Shades of the Nokia Morph: a smartphone than conforms to your wrist

A March 16, 2017 news item on Nanowerk brought back some memories for me,

Some day, your smartphone might completely conform to your wrist, and when it does, it might be covered in pure gold, thanks to researchers at Missouri University of Science and Technology.

Nokia, a Finnish telecommunications company, was promoting its idea for a smartphone ‘and more’ that could be worn around your wrist in a concept called the Morph. It was introduced in 2008 at the Museum of Modern Art in New York City (see my March 20, 2010 posting for one of my last updates on this moribund project). Here’s Nokia’s Morph video (almost 6 mins.),

Getting back to the present day, here’s what the Missouri researchers are working on,

An example of a gold foil peeled from single crystal silicon. Reprinted with permission from Naveen Mahenderkar et al., Science [355]:[1203] (2017)

A March 16, 2017 Missouri University of Science and Technology news release, by Greg Katski, which originated the news item, provides more details about this Missouri version (Note: A link has been removed),

Writing in the March 17 [2017] issue of the journal Science, the S&T researchers say they have developed a way to “grow” thin layers of gold on single crystal wafers of silicon, remove the gold foils, and use them as substrates on which to grow other electronic materials. The research team’s discovery could revolutionize wearable or “flexible” technology research, greatly improving the versatility of such electronics in the future.

According to lead researcher Jay A. Switzer, the majority of research into wearable technology has been done using polymer substrates, or substrates made up of multiple crystals. “And then they put some typically organic semiconductor on there that ends up being flexible, but you lose the order that (silicon) has,” says Switzer, Donald L. Castleman/FCR Endowed Professor of Discovery in Chemistry at S&T.

Because the polymer substrates are made up of multiple crystals, they have what are called grain boundaries, says Switzer. These grain boundaries can greatly limit the performance of an electronic device.

“Say you’re making a solar cell or an LED,” he says. “In a semiconductor, you have electrons and you have holes, which are the opposite of electrons. They can combine at grain boundaries and give off heat. And then you end up losing the light that you get out of an LED, or the current or voltage that you might get out of a solar cell.”

Most electronics on the market are made of silicon because it’s “relatively cheap, but also highly ordered,” Switzer says.

“99.99 percent of electronics are made out of silicon, and there’s a reason – it works great,” he says. “It’s a single crystal, and the atoms are perfectly aligned. But, when you have a single crystal like that, typically, it’s not flexible.”

By starting with single crystal silicon and growing gold foils on it, Switzer is able to keep the high order of silicon on the foil. But because the foil is gold, it’s also highly durable and flexible.

“We bent it 4,000 times, and basically the resistance didn’t change,” he says.

The gold foils are also essentially transparent because they are so thin. According to Switzer, his team has peeled foils as thin as seven nanometers.

Switzer says the challenge his research team faced was not in growing gold on the single crystal silicon, but getting it to peel off as such a thin layer of foil. Gold typically bonds very well to silicon.

“So we came up with this trick where we could photo-electrochemically oxidize the silicon,” Switzer says. “And the gold just slides off.”

Photoelectrochemical oxidation is the process by which light enables a semiconductor material, in this case silicon, to promote a catalytic oxidation reaction.

Switzer says thousands of gold foils—or foils of any number of other metals—can be made from a single crystal wafer of silicon.

The research team’s discovery can be considered a “happy accident.” Switzer says they were looking for a cheap way to make single crystals when they discovered this process.

“This is something that I think a lot of people who are interested in working with highly ordered materials like single crystals would appreciate making really easily,” he says. “Besides making flexible devices, it’s just going to open up a field for anybody who wants to work with single crystals.”

Here’s a link to and a citation for the paper,

Epitaxial lift-off of electrodeposited single-crystal gold foils for flexible electronics by Naveen K. Mahenderkar, Qingzhi Chen, Ying-Chau Liu, Alexander R. Duchild, Seth Hofheins, Eric Chason, Jay A. Switzer. Science  17 Mar 2017: Vol. 355, Issue 6330, pp. 1203-1206 DOI: 10.1126/science.aam5830

This paper is behind a paywall.

Quadriplegic man reanimates a limb with implanted brain-recording and muscle-stimulating systems

It took me a few minutes to figure out why this item about a quadriplegic (also known as, tetraplegic) man is news. After all, I have a May 17, 2012 posting which features a video and information about a quadri(tetra)plegic woman who was drinking her first cup of coffee, independently, in many years. The difference is that she was using an external robotic arm and this man is using *his own arm*,

This Case Western Reserve University (CRWU) video accompanies a March 28, 2017 CRWU news release, (h/t ScienceDaily March 28, 2017 news item)

Bill Kochevar grabbed a mug of water, drew it to his lips and drank through the straw.

His motions were slow and deliberate, but then Kochevar hadn’t moved his right arm or hand for eight years.

And it took some practice to reach and grasp just by thinking about it.

Kochevar, who was paralyzed below his shoulders in a bicycling accident, is believed to be the first person with quadriplegia in the world to have arm and hand movements restored with the help of two temporarily implanted technologies.

A brain-computer interface with recording electrodes under his skull, and a functional electrical stimulation (FES) system* activating his arm and hand, reconnect his brain to paralyzed muscles.

Holding a makeshift handle pierced through a dry sponge, Kochevar scratched the side of his nose with the sponge. He scooped forkfuls of mashed potatoes from a bowl—perhaps his top goal—and savored each mouthful.

“For somebody who’s been injured eight years and couldn’t move, being able to move just that little bit is awesome to me,” said Kochevar, 56, of Cleveland. “It’s better than I thought it would be.”

Kochevar is the focal point of research led by Case Western Reserve University, the Cleveland Functional Electrical Stimulation (FES) Center at the Louis Stokes Cleveland VA Medical Center and University Hospitals Cleveland Medical Center (UH). A study of the work was published in the The Lancet March 28 [2017] at 6:30 p.m. U.S. Eastern time.

“He’s really breaking ground for the spinal cord injury community,” said Bob Kirsch, chair of Case Western Reserve’s Department of Biomedical Engineering, executive director of the FES Center and principal investigator (PI) and senior author of the research. “This is a major step toward restoring some independence.”

When asked, people with quadriplegia say their first priority is to scratch an itch, feed themselves or perform other simple functions with their arm and hand, instead of relying on caregivers.

“By taking the brain signals generated when Bill attempts to move, and using them to control the stimulation of his arm and hand, he was able to perform personal functions that were important to him,” said Bolu Ajiboye, assistant professor of biomedical engineering and lead study author.

Technology and training

The research with Kochevar is part of the ongoing BrainGate2* pilot clinical trial being conducted by a consortium of academic and VA institutions assessing the safety and feasibility of the implanted brain-computer interface (BCI) system in people with paralysis. Other investigational BrainGate research has shown that people with paralysis can control a cursor on a computer screen or a robotic arm (braingate.org).

“Every day, most of us take for granted that when we will to move, we can move any part of our body with precision and control in multiple directions and those with traumatic spinal cord injury or any other form of paralysis cannot,” said Benjamin Walter, associate professor of neurology at Case Western Reserve School of Medicine, clinical PI of the Cleveland BrainGate2 trial and medical director of the Deep Brain Stimulation Program at UH Cleveland Medical Center.

“The ultimate hope of any of these individuals is to restore this function,” Walter said. “By restoring the communication of the will to move from the brain directly to the body this work will hopefully begin to restore the hope of millions of paralyzed individuals that someday they will be able to move freely again.”

Jonathan Miller, assistant professor of neurosurgery at Case Western Reserve School of Medicine and director of the Functional and Restorative Neurosurgery Center at UH, led a team of surgeons who implanted two 96-channel electrode arrays—each about the size of a baby aspirin—in Kochevar’s motor cortex, on the surface of the brain.

The arrays record brain signals created when Kochevar imagines movement of his own arm and hand. The brain-computer interface extracts information from the brain signals about what movements he intends to make, then passes the information to command the electrical stimulation system.

To prepare him to use his arm again, Kochevar first learned how to use his brain signals to move a virtual-reality arm on a computer screen.

“He was able to do it within a few minutes,” Kirsch said. “The code was still in his brain.”

As Kochevar’s ability to move the virtual arm improved through four months of training, the researchers believed he would be capable of controlling his own arm and hand.

Miller then led a team that implanted the FES systems’ 36 electrodes that animate muscles in the upper and lower arm.

The BCI decodes the recorded brain signals into the intended movement command, which is then converted by the FES system into patterns of electrical pulses.

The pulses sent through the FES electrodes trigger the muscles controlling Kochevar’s hand, wrist, arm, elbow and shoulder. To overcome gravity that would otherwise prevent him from raising his arm and reaching, Kochevar uses a mobile arm support, which is also under his brain’s control.

New Capabilities

Eight years of muscle atrophy required rehabilitation. The researchers exercised Kochevar’s arm and hand with cyclical electrical stimulation patterns. Over 45 weeks, his strength, range of motion and endurance improved. As he practiced movements, the researchers adjusted stimulation patterns to further his abilities.

Kochevar can make each joint in his right arm move individually. Or, just by thinking about a task such as feeding himself or getting a drink, the muscles are activated in a coordinated fashion.

When asked to describe how he commanded the arm movements, Kochevar told investigators, “I’m making it move without having to really concentrate hard at it…I just think ‘out’…and it goes.”

Kocehvar is fitted with temporarily implanted FES technology that has a track record of reliable use in people. The BCI and FES system together represent early feasibility that gives the research team insights into the potential future benefit of the combined system.

Advances needed to make the combined technology usable outside of a lab are not far from reality, the researchers say. Work is underway to make the brain implant wireless, and the investigators are improving decoding and stimulation patterns needed to make movements more precise. Fully implantable FES systems have already been developed and are also being tested in separate clinical research.

Kochevar welcomes new technology—even if it requires more surgery—that will enable him to move better. “This won’t replace caregivers,” he said. “But, in the long term, people will be able, in a limited way, to do more for themselves.”

There is more about the research in a March 29, 2017 article by Sarah Boseley for The Guardian,

Bill Kochevar, 53, has had electrical implants in the motor cortex of his brain and sensors inserted in his forearm, which allow the muscles of his arm and hand to be stimulated in response to signals from his brain, decoded by computer. After eight years, he is able to drink and feed himself without assistance.

“I think about what I want to do and the system does it for me,” Kochevar told the Guardian. “It’s not a lot of thinking about it. When I want to do something, my brain does what it does.”

The experimental technology, pioneered by the Case Western Reserve University in Cleveland, Ohio, is the first in the world to restore brain-controlled reaching and grasping in a person with complete paralysis.

For now, the process is relatively slow, but the scientists behind the breakthrough say this is proof of concept and that they hope to streamline the technology until it becomes a routine treatment for people with paralysis. In the future, they say, it will also be wireless and the electrical arrays and sensors will all be implanted under the skin and invisible.

A March 28, 2017 Lancet news release on EurekAlert provides a little more technical insight into the research and Kochevar’s efforts,

Although only tested with one participant, the study is a major advance and the first to restore brain-controlled reaching and grasping in a person with complete paralysis. The technology, which is only for experimental use in the USA, circumvents rather than repairs spinal injuries, meaning the participant relies on the device being implanted and switched on to move.

“Our research is at an early stage, but we believe that this neuro-prosthesis could offer individuals with paralysis the possibility of regaining arm and hand functions to perform day-to-day activities, offering them greater independence,” said lead author Dr Bolu Ajiboye, Case Western Reserve University, USA. “So far it has helped a man with tetraplegia to reach and grasp, meaning he could feed himself and drink. With further development, we believe the technology could give more accurate control, allowing a wider range of actions, which could begin to transform the lives of people living with paralysis.” [1]

Previous research has used similar elements of the neuro-prosthesis. For example, a brain-computer interface linked to electrodes on the skin has helped a person with less severe paralysis open and close his hand, while other studies have allowed participants to control a robotic arm using their brain signals. However, this is the first to restore reaching and grasping via the system in a person with a chronic spinal cord injury.

In this study, a 53 year-old man who had been paralysed below the shoulders for eight years underwent surgery to have the neuro-prosthesis fitted.

This involved brain surgery to place sensors in the motor cortex area of his brain responsible for hand movement – creating a brain-computer interface that learnt which movements his brain signals were instructing for. This initial stage took four months and included training using a virtual reality arm.

He then underwent another procedure placing 36 muscle stimulating electrodes into his upper and lower arm, including four that helped restore finger and thumb, wrist, elbow and shoulder movements. These were switched on 17 days after the procedure, and began stimulating the muscles for eight hours a week over 18 weeks to improve strength, movement and reduce muscle fatigue.

The researchers then wired the brain-computer interface to the electrical stimulators in his arm, using a decoder (mathematical algorithm) to translate his brain signals into commands for the electrodes in his arm. The electrodes stimulated the muscles to produce contractions, helping the participant intuitively complete the movements he was thinking of. The system also involved an arm support to stop gravity simply pulling his arm down.

During his training, the participant described how he controlled the neuro-prosthesis: “It’s probably a good thing that I’m making it move without having to really concentrate hard at it. I just think ‘out’ and it just goes.”

After 12 months of having the neuro-prosthesis fitted, the participant was asked to complete day-to-day tasks, including drinking a cup of coffee and feeding himself. First of all, he observed while his arm completed the action under computer control. During this, he thought about making the same movement so that the system could recognise the corresponding brain signals. The two systems were then linked and he was able to use it to drink a coffee and feed himself.

He successfully drank in 11 out of 12 attempts, and it took him roughly 20-40 seconds to complete the task. When feeding himself, he did so multiple times – scooping forkfuls of food and navigating his hand to his mouth to take several bites.

“Although similar systems have been used before, none of them have been as easy to adopt for day-to-day use and they have not been able to restore both reaching and grasping actions,” said Dr Ajiboye. “Our system builds on muscle stimulating electrode technology that is already available and will continue to improve with the development of new fully implanted and wireless brain-computer interface systems. This could lead to enhanced performance of the neuro-prosthesis with better speed, precision and control.” [1]

At the time of the study, the participant had had the neuro-prosthesis implanted for almost two years (717 days) and in this time experienced four minor, non-serious adverse events which were treated and resolved.

Despite its achievements, the neuro-prosthesis still had some limitations, including that movements made using it were slower and less accurate than those made using the virtual reality arm the participant used for training. When using the technology, the participant also needed to watch his arm as he lost his sense of proprioception – the ability to intuitively sense the position and movement of limbs – as a result of the paralysis.

Writing in a linked Comment, Dr Steve Perlmutter, University of Washington, USA, said: “The goal is futuristic: a paralysed individual thinks about moving her arm as if her brain and muscles were not disconnected, and implanted technology seamlessly executes the desired movement… This study is groundbreaking as the first report of a person executing functional, multi-joint movements of a paralysed limb with a motor neuro-prosthesis. However, this treatment is not nearly ready for use outside the lab. The movements were rough and slow and required continuous visual feedback, as is the case for most available brain-machine interfaces, and had restricted range due to the use of a motorised device to assist shoulder movements… Thus, the study is a proof-of-principle demonstration of what is possible, rather than a fundamental advance in neuro-prosthetic concepts or technology. But it is an exciting demonstration nonetheless, and the future of motor neuro-prosthetics to overcome paralysis is brighter.”

[1] Quote direct from author and cannot be found in the text of the Article.

Here’s a link to and a citation for the paper,

Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration by A Bolu Ajiboye, Francis R Willett, Daniel R Young, William D Memberg, Brian A Murphy, Jonathan P Miller, Benjamin L Walter, Jennifer A Sweet, Harry A Hoyen, Michael W Keith, Prof P Hunter Peckham, John D Simeral, Prof John P Donoghue, Prof Leigh R Hochberg, Prof Robert F Kirsch. The Lancet DOI: http://dx.doi.org/10.1016/S0140-6736(17)30601-3 Published: 28 March 2017 [online?]

This paper is behind a paywall.

For anyone  who’s interested, you can find the BrainGate website here.

*I initially misidentified the nature of the achievement and stated that Kochevar used a “robotic arm, which is attached to his body” when it was his own reanimated arm. Corrected on April 25, 2017.

European Commission has issued evaluation of nanomaterial risk frameworks and tools

Despite complaints that there should have been more, there has been some research into risks where nanomaterials are concerned. While additional research would be welcome, it’s perhaps more imperative that standardized testing and risk frameworks are developed so, for example, carbon nanotube safety research in Japan can be compared with the similar research in the Netherlands, the US, and elsewhere. This March 15, 2017 news item on Nanowerk features some research analyzing risk assessment frameworks and tools in Europe,

A recent study has evaluated frameworks and tools used in Europe to assess the potential health and environmental risks of manufactured nanomaterials. The study identifies a trend towards tools that provide protocols for conducting experiments, which enable more flexible and efficient hazard testing. Among its conclusions, however, it notes that no existing frameworks meet all the study’s evaluation criteria and calls for a new, more comprehensive framework.

A March 9, 2017 news alert in the European Commission’s Science for Environment Policy series, which originated the news item, provides more detail (Note: Links have been removed),

Nanotechnology is identified as a key emerging technology in the EU’s growth strategy, Europe 2020. It has great potential to contribute to innovation and economic growth and many of its applications have already received large investments. However,there are some uncertainties surrounding the environmental, health and safety risks of manufactured nanomaterials. For effective regulation, careful scientific analysis of their potential impacts is needed, as conducted through risk assessment exercises.

This study, conducted under the EU-funded MARINA project1, reviewed existing frameworks and tools for risk assessing manufactured nanomaterials. The researchers define a framework as a ‘conceptual paradigm’ of how a risk assessment should be conducted and understood, and give the REACH chemical safety assessment as an example. Tools are defined as implements used to carry out a specific task or function, such as experimental protocols, computer models or databases.

In all, 12 frameworks and 48 tools were evaluated. These were identified from other studies and projects. The frameworks were assessed against eight criteria which represent different strengths, such as whether they consider properties specific to nanomaterials, whether they consider the entire life cycle of a nanomaterial and whether they include careful planning and prioritise objectives before the risk assessment is conducted.

The tools were assessed against seven criteria, such as ease of use, whether they provide quantitative information and if they clearly communicate uncertainty in their results. The researchers defined the criteria for both frameworks and tools by reviewing other studies and by interviewing staff at organisations who develop tools.

The evaluation was thus able to produce a list of strengths and areas for improvement for the frameworks and tools, based on whether they meet each of the criteria. Among its many findings, the evaluation showed that most of the frameworks stress that ‘problem formulation’, which sets the goals and scope of an assessment during the planning process, is essential to avoid unnecessary testing. In addition, most frameworks consider routes of exposure in the initial stages of assessment, which is beneficial as it can exclude irrelevant exposure routes and avoid unnecessary tests.

However, none of the frameworks met all eight of the criteria. The study therefore recommends that a new, comprehensive framework is developed that meets all criteria. Such a framework is needed to inform regulation, the researchers say, and should integrate human health and environmental factors, and cover all stages of the life cycle of a product containing nanomaterials.

The evaluation of the tools suggested that many of them are designed to screen risks, and not necessarily to support regulatory risk assessment. However, their strengths include a growing trend in quantitative models, which can assess uncertainty; for example, one tool analysed can identify uncertainties in its results that are due to gaps in knowledge about a material’s origin, characteristics and use.

The researchers also identified a growing trend in tools that provide protocols for experiments, such as identifying materials and test hazards, which are reproducible across laboratories. These tools could lead to a shift from expensive case-by-case testing for risk assessment of manufactured nanomaterials towards a more efficient process based on groupings of nanomaterials; and ‘read-across’ methods, where the properties of one material can be inferred without testing, based on the known properties of a similar material. The researchers do note, however, that although read-across methods are well established for chemical substances, they are still being developed for nanomaterials. To improve nanomaterial read-across methods, they suggest that more data are needed on the links between nanomaterials’ specific properties and their biological effects.

That’s all, folks.

Does understanding your pet mean understanding artificial intelligence better?

Heather Roff’s take on artificial intelligence features an approach I haven’t seen before. From her March 30, 2017 essay for The Conversation (h/t March 31, 2017 news item on phys.org),

It turns out, though, that we already have a concept we can use when we think about AI: It’s how we think about animals. As a former animal trainer (albeit briefly) who now studies how people use AI, I know that animals and animal training can teach us quite a lot about how we ought to think about, approach and interact with artificial intelligence, both now and in the future.

Using animal analogies can help regular people understand many of the complex aspects of artificial intelligence. It can also help us think about how best to teach these systems new skills and, perhaps most importantly, how we can properly conceive of their limitations, even as we celebrate AI’s new possibilities.
Looking at constraints

As AI expert Maggie Boden explains, “Artificial intelligence seeks to make computers do the sorts of things that minds can do.” AI researchers are working on teaching computers to reason, perceive, plan, move and make associations. AI can see patterns in large data sets, predict the likelihood of an event occurring, plan a route, manage a person’s meeting schedule and even play war-game scenarios.

Many of these capabilities are, in themselves, unsurprising: Of course a robot can roll around a space and not collide with anything. But somehow AI seems more magical when the computer starts to put these skills together to accomplish tasks.

Thinking of AI as a trainable animal isn’t just useful for explaining it to the general public. It is also helpful for the researchers and engineers building the technology. If an AI scholar is trying to teach a system a new skill, thinking of the process from the perspective of an animal trainer could help identify potential problems or complications.

For instance, if I try to train my dog to sit, and every time I say “sit” the buzzer to the oven goes off, then my dog will begin to associate sitting not only with my command, but also with the sound of the oven’s buzzer. In essence, the buzzer becomes another signal telling the dog to sit, which is called an “accidental reinforcement.” If we look for accidental reinforcements or signals in AI systems that are not working properly, then we’ll know better not only what’s going wrong, but also what specific retraining will be most effective.

This requires us to understand what messages we are giving during AI training, as well as what the AI might be observing in the surrounding environment. The oven buzzer is a simple example; in the real world it will be far more complicated.

Before we welcome our AI overlords and hand over our lives and jobs to robots, we ought to pause and think about the kind of intelligences we are creating. …

Source: pixabay.com

It’s just last year (2016) that an AI system beat a human Go master player. Here’s how a March 17, 2016 article by John Russell for TechCrunch described the feat (Note: Links have been removed),

Much was written of an historic moment for artificial intelligence last week when a Google-developed AI beat one of the planet’s most sophisticated players of Go, an East Asia strategy game renowned for its deep thinking and strategy.

Go is viewed as one of the ultimate tests for an AI given the sheer possibilities on hand. “There are 1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 possible positions [in the game] — that’s more than the number of atoms in the universe, and more than a googol times larger than chess,” Google said earlier this year.

If you missed the series — which AlphaGo, the AI, won 4-1 — or were unsure of exactly why it was so significant, Google summed the general importance up in a post this week.

Far from just being a game, Demis Hassabis, CEO and Co-Founder of DeepMind — the Google-owned company behind AlphaGo — said the AI’s development is proof that it can be used to solve problems in ways that humans may be not be accustomed or able to do:

We’ve learned two important things from this experience. First, this test bodes well for AI’s potential in solving other problems. AlphaGo has the ability to look “globally” across a board—and find solutions that humans either have been trained not to play or would not consider. This has huge potential for using AlphaGo-like technology to find solutions that humans don’t necessarily see in other areas.

I find Roff’s thesis intriguing and is likely applicable to the short-term but in the longer term and in light of the attempts to  create devices that mimic neural plasticity and neuromorphic engineering  I don’t find her thesis convincing.

Recycling apples to regenerate bone and cartilage tissue

A March 30, 2017 news item on phys.org announces research utilizing apple waste as a matrix for regenerating bones and cartilage,

Researchers from UPM and CSIC [both organizations are in Spain] have employed waste from the agri-food industry to develop biomaterials that act as matrices to regenerate bone and cartilage tissues, which is of great interest for the treatment of diseases related to aging.

The researchers have produced biocompatible materials from apple pomace resulting from juice production. These materials can be used as 3-D matrices for the regeneration of bone and cartilage tissues, useful in regenerative medicine for diseases such as osteoporosis, arthritis or osteoarthritis, all of them rising due to the increasing average age of the population.

A March 30, 2017 Universidad Politécnica de Madrid (UPM) press release, which originated the news item,, expands on the theme,

Apple pomace is an abundant raw material. The world production of apples was more than 70 million tons in 2015, of which the European Union contributed with more than 15%, while half a million tons of which came from Spain. About 75% of apples can be converted into juice and the rest, known as apple pomace, that contains approximately 20–30% dried matter, is used mainly as animal feed or for compost. Since apple pomace is generated in vast quantities and contains a large fraction of water, it poses storage problems and requires immediate treatments to prevent putrefaction. An alternative of great environmental interest is its transformation into value added commodities, thus reducing the volume of waste.

The procedure of the multivalorization of apple pomace carried out by the UPM and CSIC researchers are based on sequential extractions of different bioactive molecules, such as antioxidants or pectin, to finally obtain the waste from which they prepare a biomaterial with suitable porosity and texture to be used in tissue engineering.

The primary extraction of antioxidants and carbohydrates constitutes 2% of the dry weight of apple pomace and pectin extraction is 10%. The extracted chemical cells have a recognized value as nutraceuticals and pectin is a material of great utility in different medical applications, given its high biocompatibility and being part of antitumor drugs or in the treatment of coetaneous wounds.

Furthermore, it has been found that the materials remaining after antioxidant and pectin removal from apple pomace can still be designed with adequate structure, texture and composition to grow diverse types of cells. In this particularly case, the chosen cells were osteoblasts and chondrocytes, both of them related to the regeneration of bone and cartilage tissues because of their application in regenerative medicine in diseases such as osteoporosis, arthritis or osteoarthritis.

Today, there are products in the market with the same applications, however they have a high price reaching over €100 per gram, while waste used in this work hardly reaches €100 per ton. For this reason, there are consistent incentives to convert this waste into final products of great added value.

According to Milagro Ramos, a female researcher of the study, “with this approach we achieve a double goal, firstly using waste as a renewable raw material of high value and chemical diversity, and secondly, to reduce the impact of such waste accumulation on the environment”.

Thanks to the new materials obtained in this work, researchers are developing new technological applications that allow them to structure customized biomaterials through 3D printing techniques.

Here’s a link to and a citation for the paper,

Multivalorization of apple pomace towards materials and chemicals. Waste to wealth by Malcolm Yates, Milagros Ramos Gomez, Maria A. Martin-Luengo, Violeta Zurdo Ibañez, Ana Maria Martinez Serrano. Journal of Cleaner Production Volume 143, 1 February 2017, Pages 847–853  http://doi.org/10.1016/j.jclepro.2016.12.036

This paper is behind a paywall.

Dancing quantum entanglement (Ap. 20 – 22, 2017) and performing mathematics (Ap. 26 – 30, 2017) in Vancouver, Canada

I have listings for two art/science events in Vancouver (Canada).

Dance, poetry and quantum entanglement

From April 20, 2017 (tonight) – April 22, 2017, there will be 8 p.m. performances of Lesley Telford’s ‘Three Sets/Relating At A Distance; My tongue, your ear / If / Spooky Action at a Distance (phase 1)’ at the Scotiabank Dance Centre, 677 Davie St, Yes, that third title is a reference to Einstein’s famous phrase describing his response of the concept of quantum entanglement.

An April 19, 2017 article by Janet Smith for the Georgia Straight features the dancer’s description of the upcoming performances,

One of the clearest definitions of quantum entanglement—a phenomenon Albert Einstein dubbed “spooky action at a distance”—can be found in a vampire movie.

In Jim Jarmusch’s Only Lovers Left Alive Tom Hiddleston’s depressed rock-star bloodsucker explains it this way to Tilda Swinton’s Eve, his centuries-long partner: “When you separate an entwined particle and you move both parts away from the other, even at opposite ends of the universe, if you alter or affect one, the other will be identically altered or affected.”

In fact, it was by watching the dark love story that Vancouver dance artist Lesley Telford learned about quantum entanglement—in which particles are so closely connected that they cannot act independently of one another, no matter how much space lies between them. She became fascinated not just with the scientific possibilities of the concept but with the romantic ones. …

 “I thought, ‘What a great metaphor,’ ” the choreographer tells the Straight over sushi before heading into a Dance Centre studio. “It’s the idea of quantum entanglement and how that could relate to human entanglement.…It’s really a metaphor for human interactions.”

First, though, as is so often the case with Telford, she needed to form those ideas into words. So she approached poet Barbara Adler to talk about the phenomenon, and then to have her build poetry around it—text that the writer will perform live in Telford’s first full evening of work here.

“Barbara talked a lot about how you feel this resonance with people that have been in your life, and how it’s tied into romantic connections and love stories,” Telford explains. “As we dig into it, it’s become less about that and more of an underlying vibration in the work; it feels like we’ve gone beyond that starting point.…I feel like she has a way of making it so down-to-earth and it’s given us so much food to work with. Are we in control of the universe or is it in control of us?”

Spooky Action at a Distance, a work for seven dancers, ends up being a string of duets that weave—entangle—into other duets. …

There’s more information about the performance, which concerns itself with more than quantum entanglement in the Scotiabank Dance Centre’s event webpage,

Lesley Telford’s choreography brings together a technically rigorous vocabulary and a thought-provoking approach, refined by her years dancing with Nederlands Dans Theater and creating for companies at home and abroad, most recently Ballet BC. This triple bill features an excerpt of a new creation inspired by Einstein’s famous phrase “spooky action at a distance”, referring to particles that are so closely linked, they share the same existence: a collaboration with poet Barbara Adler, the piece seeks to extend the theory to human connections in our phenomenally interconnected world. The program also includes a new extended version of If, a trio based on Anne Carson’s poem, and the duet My tongue, your ear, with text by Wislawa Szymborska.

Here’s what appears to be an excerpt from a rehearsal for ‘Spooky Action …’,

I’m not super fond of the atonal music/sound they’re using. The voice you hear is Adler’s and here’s more about Barbara Adler from her Wikipedia entry (Note: Links have been removed),

Barbara Adler is a musician, poet, and storyteller based in Vancouver, British Columbia. She is a past Canadian Team Slam Champion, was a founding member of the Vancouver Youth Slam, and a past CBC Poetry Face Off winner.[1]

She was a founding member of the folk band The Fugitives with Brendan McLeod, C.R. Avery and Mark Berube[2][3] until she left the band in 2011 to pursue other artistic ventures. She was a member of the accordion shout-rock band Fang, later Proud Animal, and works under the pseudonym Ten Thousand Wolves.[4][5][6][7][8]

In 2004 she participated in the inaugural Canadian Festival of Spoken Word, winning the Spoken Wordlympics with her fellow team members Shane Koyczan, C.R. Avery, and Brendan McLeod.[9][10] In 2010 she started on The BC Memory Game, a traveling storytelling project based on the game of memory[11] and has also been involved with the B.C. Schizophrenia Society Reach Out Tour for several years.[12][13][14] She is of Czech-Jewish descent.[15][16]

Barbara Adler has her bachelor’s degree and MFA from Simon Fraser University, with a focus on songwriting, storytelling, and community engagement.[17][18] In 2015 she was a co-star in the film Amerika, directed by Jan Foukal,[19][20] which premiered at the Karlovy Vary International Film Festival.[21]

Finally, Telford is Artist in Residence at the Dance Centre and TRIUMF, Canada’s national laboratory for particle and nuclear physics and accelerator-based science.

To buy tickets ($32 or less with a discount), go here. Telford will be present on April 21, 2017 for a post-show talk.

Pi Theatre’s ‘Long Division’

This theatrical performance of concepts in mathematics runs from April 26 – 30, 2017 (check here for the times as they vary) at the Annex at 823 Seymour St.  From the Georgia Straight’s April 12, 2017 Arts notice,

Mathematics is an art form in itself, as proven by Pi Theatre’s number-charged Long Division. This is a “refreshed remount” of Peter Dickinson’s ambitious work, one that circles around seven seemingly unrelated characters (including a high-school math teacher, a soccer-loving imam, and a lesbian bar owner) bound together by a single traumatic incident. Directed by Richard Wolfe, with choreography by Lesley Telford and musical score by Owen Belton, it’s a multimedia, movement-driven piece that has a strong cast. …

Here’s more about the play from Pi Theatre’s Long Division page,

Long Division uses text, multimedia, and physical theatre to create a play about the mathematics of human connection.

Long Division focuses on seven characters linked – sometimes directly, sometimes more obliquely – by a sequence of tragic events. These characters offer lessons on number theory, geometry and logic, while revealing aspects of their inner lives, and collectively the nature of their relationships to one another.

Playwright: Peter Dickinson
Director: Richard Wolfe
Choreographer: Lesley Telford, Inverso Productions
Composer: Owen Belton
Assistant Director: Keltie Forsyth

Cast:  Anousha Alamian, Jay Clift, Nicco Lorenzo Garcia, Jennifer Lines, Melissa Oei, LInda Quibell & Kerry Sandomirsky

Costume Designer: Connie Hosie
Lighting Designer: Jergus Oprsal
Set Designer: Lauchlin Johnston
Projection Designer: Jamie Nesbitt
Production Manager: Jayson Mclean
Stage Manager: Jethelo E. Cabilete
Assistant Projection Designer: Cameron Fraser
Lighting Design Associate: Jeff Harrison

Dates/Times: April 26 – 29 at 8pm, April 29 and 30 at 2pm
Student performance on April 27 at 1pm

A Talk-Back will take place after the 2pm show on April 29th.

Shawn Conner engaged the playwright, Peter Dickinson in an April 20, 2017 Q&A (question and answer) for the Vancouver Sun,

Q: Had you been working on Long Division for a long time?

A: I’d been working on it for about five years. I wrote a previous play called The Objecthood of Chairs, which has a similar style in that I combine lecture performance with physical and dance theatre. There are movement scores in both pieces.

In that first play, I told the story of two men and their relationship through the history of chair design. It was a combination of mining my research about that and trying to craft a story that was human and where the audience could find a way in. When I was thinking about a subject for a new play, I took the profession of one of the characters in that first play, who was a math teacher, and said, “Let’s see what happens to his character, let’s see where he goes after the breakup of his relationship.”

At first, I wrote it (Long Division) in an attempt at completely real, kitchen-sink naturalism, and it was a complete disaster. So I went back into this lecture-style performance.

Q: Long Division is set in a bar. Is the setting left over from that attempt at realism?

A: I guess so. It’s kind of a meta-theatrical play in the sense that the characters address the audience, and they’re aware they’re in a theatrical setting. One of the characters is an actress, and she comments on the connection between mathematics and theatre.

Q: This is being called a “refreshed” remount. What’s changed since its first run 

A: It’s mostly been cuts, and some massaging of certain sections. And I think it’s a play that actually needs a little distance.

Like mathematics, the patterns only reveal themselves at a remove. I think I needed that distance to see where things were working and where they could be better. So it’s a gift for me to be given this opportunity, to make things pop a little more and to make the math, which isn’t meant to be difficult, more understandable and relatable.

You may have noticed that Lesley Telford from Spooky Action is also choreographer for this production. I gather she’s making a career of art/science pieces, at least for now.

In the category of ‘Vancouver being a small town’, Telford lists a review of one of her pieces,  ‘AUDC’s Season Finale at The Playhouse’, on her website. Intriguingly, the reviewer is Peter Dickinson who in addition to being the playwright with whom she has collaborated for Pi Theatre’s ‘Long Division’ is also the Director of SFU’s (Simon Fraser University’s) Institute for Performance Studies. I wonder how many more ways these two crisscross professionally? Personally and for what it’s worth, it might be a good idea for Telford (and Dickinson, if he hasn’t already done so) to make readers aware of their professional connections when there’s a review at stake.

Final comment: I’m not sure how quantum entanglement or mathematics with the pieces attributed to concepts from those fields but I’m sure anyone attempting to make the links will find themselves stimulated.

ETA April 21, 2017: I’m adding this event even though the tickets are completely subscribed. There will be a standby line the night of the event (from the Peter Wall Institute for Advanced Studies The Hidden Beauty of Mathematics event page,

02 May 2017

7:00 pm (doors open at 6:00 pm)

The Vogue Theatre

918 Granville St.

Vancouver, BC

Register

Good luck!

Why are jokes funny? There may be a quantum explanation

Some years ago a friend who’d attended a conference on humour told me I really shouldn’t talk about humour until I had a degree on the topic. I decided the best way to deal with that piece of advice was to avoid all mention of any theories about humour to that friend. I’m happy to say the strategy has worked well although this latest research may allow me to broach the topic once again. From a March 17, 2017 Frontiers (publishing) news release on EurekAlert (Note: A link has been removed),

Why was 6 afraid of 7? Because 789. Whether this pun makes you giggle or groan in pain, your reaction is a consequence of the ambiguity of the joke. Thus far, models have not been able to fully account for the complexity of humor or exactly why we find puns and jokes funny, but a research article recently published in Frontiers in Physics suggests a novel approach: quantum theory.

By the way, it took me forever to get the joke. I always blame these things on the fact that I learned French before English (although my English is now my strongest language). So, for anyone who may immediately grasp the pun: Why was 6 afraid of 7? Because 78 (ate) 9.

This news release was posted by Anna Sigurdsson on March 22, 2017 on the Frontiers blog,

Aiming to answer the question of what kind of formal theory is needed to model the cognitive representation of a joke, researchers suggest that a quantum theory approach might be a contender. In their paper, they outline a quantum inspired model of humor, hoping that this new approach may succeed at a more nuanced modeling of the cognition of humor than previous attempts and lead to the development of a full-fledged, formal quantum theory model of humor. This initial model was tested in a study where participants rated the funniness of verbal puns, as well as the funniness of variants of these jokes (e.g. the punchline on its own, the set-up on its own). The results indicate that apart from the delivery of information, something else is happening on a cognitive level that makes the joke as a whole funny whereas its deconstructed components are not, and which makes a quantum approach appropriate to study this phenomenon.

For decades, researchers from a range of different fields have tried to explain the phenomenon of humor and what happens on a cognitive level in the moment when we “get the joke”. Even within the field of psychology, the topic of humor has been studied using many different approaches, and although the last two decades have seen an upswing of the application of quantum models to the study of psychological phenomena, this is the first time that a quantum theory approach has been suggested as a way to better understand the complexity of humor.

Previous computational models of humor have suggested that the funny element of a joke may be explained by a word’s ability to hold two different meanings (bisociation), and the existence of multiple, but incompatible, ways of interpreting a statement or situation (incongruity). During the build-up of the joke, we interpret the situation one way, and once the punch line comes, there is a shift in our understanding of the situation, which gives it a new meaning and creates the comical effect.

However, the authors argue that it is not the shift of meaning, but rather our ability to perceive both meanings simultaneously, that makes a pun funny. This is where a quantum approach might be able to account for the complexity of humor in a way that earlier models cannot. “Quantum formalisms are highly useful for describing cognitive states that entail this form of ambiguity,” says Dr. Liane Gabora from the University of British Columbia, corresponding author of the paper. “Funniness is not a pre-existing ‘element of reality’ that can be measured; it emerges from an interaction between the underlying nature of the joke, the cognitive state of the listener, and other social and environmental factors. This makes the quantum formalism an excellent candidate for modeling humor,” says Dr. Liane Gabora.

Although much work and testing remains before the completion of a formal quantum theory model of humor to explain the cognitive aspects of reacting to a pun, these first findings provide an exciting first step and opens for the possibility of a more nuanced modeling of humor. “The cognitive process of “getting” a joke is a difficult process to model, and we consider the work in this paper to be an early first step toward an eventually more comprehensive theory of humor that includes predictive models. We believe that the approach promises an exciting step toward a formal theory of humor, and that future research will build upon this modest beginning,” concludes Dr. Liane Gabora.

Here’s a link to and a citation for the paper,

Toward a Quantum Theory of Humor by Liane Gabora and Kirsty Kitto. Front. Phys., 26 January 2017 | https://doi.org/10.3389/fphy.2016.00053

This paper has been published in an open access journal. In viewing the acknowledgements at the end of the paper I found what I found to be a surprising funding agency,

This work was supported by a grant (62R06523) from the Natural Sciences and Engineering Research Council of Canada. We are grateful to Samantha Thomson who assisted with the development of the questionnaire and the collection of the data for the study reported here.

While I’m at this, I might as well mention that Kirsty Katto is from the Queensland University of Technology (QUT) in Australia and, for those unfamiliar with the geography, the University of British Columbia is the the Canada’s province of British Columbia.