Nanodiamond alternative to organic fluorophores to view inside living human cells

No sooner is a Nobel prize (2014) awarded for nanoscopy which makes use of fluorescence to observe processes in living cells than there is an announcement about a new technique that avoids fluorescence and its attendant shortcomings. From an Oct. 27, 2014 news item on Nanowerk (Note: A link has been removed),

Nanodiamonds are providing scientists with new possibilities for accurate measurements of processes inside living cells with potential to improve drug delivery and cancer therapeutics.

Published in Nature Nanotechnology (“Coherent anti-Stokes Raman scattering microscopy of single nanodiamonds”), researchers from Cardiff University have unveiled a new method for viewing nanodiamonds inside human living cells for purposes of biomedical research.

An Oct. 27, 2014 Cardiff University (Wales) news release, which originated the news item, explains why the use of nanodiamonds is superior to the use of organic flurophores,

Nanodiamonds are very small particles (a thousand times smaller than human hair) and because of their low toxicity they can be used as a carrier to transport drugs inside cells. They also show huge promise as an alternative to the organic fluorophores usually used by scientists to visualise processes inside cells and tissues.

A major limitation of organic fluorophores is that they have the tendency to degrade and bleach over time under light illumination. This makes it difficult to use them for accurate measurements of cellular processes. Moreover, the bleaching and chemical degradation can often be toxic and significantly perturb or even kill cells.

There is a growing consensus among scientists that nanodiamonds are one of the best inorganic material alternatives for use in biomedical research, because of their compatibility with human cells, and due to their stable structural and chemical properties.

Previous attempts by other research teams to visualise nanodiamonds under powerful light microscopes have run into the obstacle that the diamond material per se is transparent to visible light. Locating the nanodiamonds under a microscope had relied on tiny defects in the crystal lattice, which fluoresce under light illumination.

Production of the defects proved both costly and difficult to realise in a controlled way. Furthermore, the fluorescence light emitted by these defects, and in turn the image gleaned from the microscopic exploration of these flawed nanodiamonds, is sometimes also unstable.

In their latest paper, researchers from Cardiff University’s Schools of Biosciences and Physics showed that non-fluorescing nanodiamonds (diamonds without defects) can be imaged optically and far more stably via the interaction between the illuminating light and the vibrating chemical bonds in the diamond lattice structure which results in scattered light at a different colour.

The paper describes how two laser beams beating at a specific frequency are used to drive chemical bonds to vibrate in sync. One of these beams is then used to probe this vibration and generate a light, called coherent anti-Stokes Raman scattering (CARS).

By focusing these laser beams onto the nanodiamond, a high-resolution CARS image is generated. Using an in-house built microscope, the research team was able to measure the intensity of the CARS light on a series of single nanodiamonds of different sizes.

The nanodiamond size was accurately measured by means of electron microscopy and other quantitative optical contrast methods developed within the researcher’s lab. In this way, they were able to quantify the relationship between the CARS light intensity and the nanoparticle size.

Consequently, the calibrated CARS signal enabled the team to analyse the size and number of nanodiamonds that had been delivered into living cells, with a level of accuracy hitherto not achieved by other methods.

Professor Paola Borri from the School of Biosciences, who led the study, said: “This new imaging modality opens the exciting prospect of following complex cellular trafficking pathways quantitatively with important applications in drug delivery. The next step for us will be to push the technique to detect nanodiamonds of even smaller sizes than what we have shown so far and to demonstrate a specific application in drug delivery.”

Here’s a link to and a citation for the paper,

Coherent anti-Stokes Raman scattering microscopy of single nanodiamonds by Iestyn Pope, Lukas Payne, George Zoriniants, Evan Thomas, Oliver Williams, Peter Watson, Wolfgang Langbein, & Paola Borri. Nature Nanotechnology (2014) doi:10.1038/nnano.2014.210 Published online 12 October 2014

The paper is behind a paywall but there is a free preview with ReadCube Access.

For anyone who’d like to read more about fluorescence and its use in nanoscopy there’s my Oct. 8, 2014 posting about the 2014 Nobel Prize in Chemistry and in my Oct. 27, 2014 posting about a specific use for determining how bipolar disorder may affect the brain.

Friendlier (halogen-free) lithium-ion batteries

An Oct. 24, 2014 news item on ScienceDaily mentions a greener type of lithium-ion battery from a theoretical (keep reading till you reach the first paragraph of the university news release) perspective,

Physics researchers at Virginia Commonwealth University have discovered that most of the electrolytes used in lithium-ion batteries — commonly found in consumer electronic devices — are superhalogens, and that the vast majority of these electrolytes contain toxic halogens.

At the same time, the researchers also found that the electrolytes in lithium-ion batteries (also known as Li-ion batteries) could be replaced with halogen-free electrolytes that are both nontoxic and environmentally friendly.

“The significance [of our findings] is that one can have a safer battery without compromising its performance,” said lead author Puru Jena, Ph.D., distinguished professor in the Department of Physics of the College of Humanities and Sciences. “The implication of our research is that similar strategies can also be used to design cathode materials in Li-ion batteries.”

An Oct. 24, 2014 Virginia Commonwealth University news release by Brian McNeill (also on EurekAlert), which originated the news item, describes the researchers’ hopes and the inspiration for this work,

“We hope that our theoretical prediction will stimulate experimentalists to synthesize halogen-free salts which will then lead manufacturers to use such salts in commercial applications,” he said.

The researchers also found that the procedure outlined for Li-ion batteries is equally valid for other metal-ion batteries, such as sodium-ion or magnesium-ion batteries.

Jena became interested in the topic several months ago when he saw a flyer on Li-ion batteries that mentioned the need for halogen-free electrolytes.

“I had not done any work on Li-ion batteries at the time, but I was curious to see what the current electrolytes are,” he said. “I found that the negative ions that make up the electrolytes are large and complex in nature and they contain one less electron than what is needed for electronic shell closure.”

Jena had already been working for more than five years on superhalogens, a class of molecules that mimic the chemistry of halogens but have electron affinities that are much larger than that of the halogen atoms.

“I knew of many superhalogen molecules that do not contain a single halogen atom,” he said. “My immediate thought was first to see if the anionic components of the current electrolytes are indeed superhalogens. And, if so, do the halogen-free superhalogens that we knew serve the purpose as halogen-free electrolytes? Our research proved that to be the case.”

Here’s a link to and a citation for the paper,

Superhalogens as Building Blocks of Halogen-Free Electrolytes in Lithium-Ion Batteries by Dr. Santanab Giri, Swayamprabha Behera and Prof. Puru Jena. Angewandte Chemie, DOI: 10.1002/ange.201408648 Article first published online: 14 OCT 2014

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

Faster, cheaper, and just as good—nanoscale device for measuring cancer drug methotrexate

Lots of cancer drugs can be toxic if the dosage is too high for individual metabolisms, which can vary greatly in their ability to break drugs down. The University of Montréal (Université de Montréal) has announced a device that could help greatly in making the technology to determine toxicity in the bloodstream faster and cheaper according to an Oct. 27, 2014 news item on Nanowerk,

In less than a minute, a miniature device developed at the University of Montreal can measure a patient’s blood for methotrexate, a commonly used but potentially toxic cancer drug. Just as accurate and ten times less expensive than equipment currently used in hospitals, this nanoscale device has an optical system that can rapidly gauge the optimal dose of methotrexate a patient needs, while minimizing the drug’s adverse effects. The research was led by Jean-François Masson and Joelle Pelletier of the university’s Department of Chemistry.

An Oct. 27, 2014 University of Montréal news release, which originated the news item, provides more specifics about the cancer drug being monitored and the research that led to the new device,

Methotrexate has been used for many years to treat certain cancers, among other diseases, because of its ability to block the enzyme dihydrofolate reductase (DHFR). This enzyme is active in the synthesis of DNA precursors and thus promotes the proliferation of cancer cells. “While effective, methotrexate is also highly toxic and can damage the healthy cells of patients, hence the importance of closely monitoring the drug’s concentration in the serum of treated individuals to adjust the dosage,” Masson explained.

Until now, monitoring has been done in hospitals with a device using fluorescent bioassays to measure light polarization produced by a drug sample. “The operation of the current device is based on a cumbersome, expensive platform that requires experienced personnel because of the many samples that need to be manipulated,” Masson said.

Six years ago, Joelle Pelletier, a specialist of the DHFR enzyme, and Jean-François Masson, an expert in biomedical instrument design, investigated how to simplify the measurement of methotrexate concentration in patients.

Gold nanoparticles on the surface of the receptacle change the colour of the light detected by the instrument. The detected colour reflects the exact concentration of the drug in the blood sample. In the course of their research, they developed and manufactured a miniaturized device that works by surface plasmon resonance. Roughly, it measures the concentration of serum (or blood) methotrexate through gold nanoparticles on the surface of a receptacle. In “competing” with methotrexate to block the enzyme, the gold nanoparticles change the colour of the light detected by the instrument. And the colour of the light detected reflects the exact concentration of the drug in the blood sample.

The accuracy of the measurements taken by the new device were compared with those produced by equipment used at the Maisonneuve-Rosemont Hospital in Montreal. “Testing was conclusive: not only were the measurements as accurate, but our device took less than 60 seconds to produce results, compared to 30 minutes for current devices,” Masson said. Moreover, the comparative tests were performed by laboratory technicians who were not experienced with surface plasmon resonance and did not encounter major difficulties in operating the new equipment or obtaining the same conclusive results as Masson and his research team.

In addition to producing results in real time, the device designed by Masson is small and portable and requires little manipulation of samples. “In the near future, we can foresee the device in doctors’ offices or even at the bedside, where patients would receive individualized and optimal doses while minimizing the risk of complications,” Masson said. Another benefit, and a considerable one: “While traditional equipment requires an investment of around $100,000, the new mobile device would likely cost ten times less, around $10,000.”

For those who prefer to read the material in French here’s a link to ‘le 27 Octobre 2014 communiqué de nouvelles‘.

Here’s a prototype of the device,

Les nanoparticules d’or situées à la surface de la languette réceptrice modifient la couleur de la lumière détectée par l’instrument. La couleur captée reflète la concentration exacte du médicament contenu dans l’échantillon sanguin. Courtesy  Université de Montréal

Les nanoparticules d’or situées à la surface de la languette réceptrice modifient la couleur de la lumière détectée par l’instrument. La couleur captée reflète la concentration exacte du médicament contenu dans l’échantillon sanguin. Courtesy Université de Montréal

There is no indication as to when this might come to market, in English  or in French.

Bipolar disorder at the nanoscale

In all the talk generated by the various brain projects (BRAIN initiative [US], The Human Brain Project [European Union], Brain Canada), there’s remarkably little discussion about mental illness. So, this news is a little unusual.

Using super-high resolution technique scientists at Northwestern University (Chicago, Illinois, US) believe they’ve made a discovery which explains how bipolar disorder affects the brain according to an Oct. 22, 2014 Northwestern University news release (also on EurekAlert and ScienceDaily) by Erin White,

Scientists used a new super-resolution imaging method — the same method recognized with the 2014 Nobel Prize in chemistry — to peer deep into brain tissue from mice with bipolar-like behaviors. In the synapses (where communication between brain cells occurs), they discovered tiny “nanodomain” structures with concentrated levels of ANK3 — the gene most strongly associated with bipolar disorder risk. ANK3 is coding for the protein ankyrin-G.

“We knew that ankyrin-G played an important role in bipolar disease, but we didn’t know how,” said Northwestern Medicine scientist Peter Penzes, corresponding author of the paper. “Through this imaging method we found the gene formed in nanodomain structures in the synapses, and we determined that these structures control or regulate the behavior of synapses.”

Penzes is a professor in physiology and psychiatry and behavioral sciences at Northwestern University Feinberg School of Medicine. The results were published Oct. 22 in the journal Neuron.

High-profile cases, including actress Catherine Zeta-Jones and politician Jesse Jackson, Jr., have brought attention to bipolar disorder. The illness causes unusual shifts in mood, energy, activity levels and the ability to carry out day-to-day tasks. About 3 percent of Americans experience bipolar disorder symptoms, and there is no cure.

Recent large-scale human genetic studies have shown that genes can contribute to disease risk along with stress and other environmental factors. However, how these risk genes affect the brain is not known.

This is the first time any psychiatric risk gene has been analyzed at such a detailed level of resolution. As explained in the paper, Penzes used the Nikon Structured Illumination Super-resolution Microscope to study a mouse model of bipolar disorder. The microscope realizes resolution of up to 115 nanometers. To put that size in perspective, a nanometer is one-tenth of a micron, and there are 25,400 microns in one inch. Very few of these microscopes exist worldwide.

“There is important information about genes and diseases that can only been seen at this level of resolution,” Penzes said. “We provide a neurobiological explanation of the function of the leading risk gene, and this might provide insight into the abnormalities in bipolar disorder.”

The biological framework presented in this paper could be used in human studies of bipolar disorder in the future, with the goal of developing therapeutic approaches to target these genes.

Here’s a link to and a citation for the paper,

Psychiatric Risk Factor ANK3/Ankyrin-G Nanodomains Regulate the Structure and Function of Glutamatergic Synapses by Katharine R. Smith, Katherine J. Kopeikina, Jessica M. Fawcett-Patel, Katherine Leaderbrand, Ruoqi Gao, Britta Schürmann, Kristoffer Myczek, Jelena Radulovic, Geoffrey T. Swanson, and Peter Penzes. Neuron, Volume 84, Issue 2, p399–415, 22 October 2014 DOI: http://dx.doi.org/10.1016/j.neuron.2014.10.010

This paper is behind a paywall.

You can find more about super-high resolution and nanoscopy in my Oct. 8, 2014 post about the 2014 Nobel Chemistry prize winners.

Life in the frozen lane at Vancouver’s (Canada) Oct. 28, 2014 Café Scientifique

Vancouver’s next Café Scientifique is being held in the back room of the The Railway Club (2nd floor of 579 Dunsmuir St. [at Seymour St.], Vancouver, Canada), on Oct. 28,  2014. Here’s the meeting description (from the Oct. 21, 2014 announcement),

Our next café will happen on Tuesday, October 28th, at 7:30pm at The Railway Club. Our speaker for the evening will be Dr. Katie Marshall, Killam Postdoctoral Fellow at The University of British Columbia [UBC]. The title of her talk is:

Life in the Frozen Lane

There’s a long list of animals that can survive freezing solid that includes animals as diverse as mussels, woolly caterpillars, frogs, and turtles. How and why do they do it? What can we learn from the animals that do? Surviving freezing is a surprisingly complicated process that involves a wide array of biochemical tricks that we humans are just learning how to mimic. This talk will walk through the basics of how freezing happens, how it can be manipulated, and showcase some of Canada’s best freeze-tolerant animals.

You can find out more about Katie Marshall here on her UBC Department of Zoology webpage.

Simon Fraser University – SCFC861Nanotechnology, The Next Big Idea: course Week 1

Yesterday (Oct. 23, 2014) I started teaching a course called, Nanotechnology: The Next Big Idea for Simon Fraser University’s (SFU) Continuing Studies programme and understand that students want a copy of the slides. Unfortunately, SFU does not have a system in place for continuing studies instructors to make their course materials available online to students, so, at the end of this post you will find a link to my Week One PowerPoint slides.

For those who may be mildly curious, here’s a description of the course and of what I was covering in the first week (from SFU’s course description webpage),

Nano what? Well, it’s the manipulation of matter on an atomic, molecular and supra-molecular scale. Considered obscure and still little understood by many outside the scientific community, even the term is contested. Is it nanoscience or nanotechnoogy? The answer is: it depends. It is epxected that nanotechnology will have a greater social impact than computers and the Internet.

We will explore the world of carbon nanotubes, graphene and other nanomaterials; the formal (government) and informatl (popular culture) discussions regarding risks and benefits; and Canada’s place in the international race underway to develop this emerging science and technology.

Week 1: Nanotechnology: The Nitty Gritty

What is nanotechnology? Even scientists have a problem explaining it especially since definitions for it are relatively new and still evolving. We will largely focus on the nature of carbon nanotubes, buckyballs, grapheme and silver/gold nanoparticles as a means of understanding “nanotech.”

Here’s the week 1 slide deck (revised to reflect the material covered during the class):

Week1_definitions and the nitty grittyR

Here are my ‘notes’ for yesterday’s class consisting largely of brief heads designed to remind me of the content to be found by clicking the link directly after the head.

Week1_definitons and nitty gritty

Happy Reading!

Feathered flight and nanoscale research

Today (Oct. 24, 2014) is a day for flight as I posted this earlier, NASA, super-black nanotechnology, and an International Space Station livestreamed event. With that in mind, here’s an Oct. 23, 2014 news item on Nanowerk about feathers,

Scientists from the University of Southampton [UK] have revealed that feather shafts are made of a multi-layered fibrous composite material, much like carbon fibre, which allows the feather to bend and twist to cope with the stresses of flight.

Since their appearance over 150 million years ago, feather shafts (rachises) have evolved to be some of the lightest, strongest and most fatigue resistant natural structures. However, relatively little work has been done on their morphology, especially from a mechanical perspective and never at the nanoscale.

An Oct. 22, 2014 University of Southampton news release, which originated the news item, describes the study, which may have paleontological implications, in more detail,

The study, which is published by the Royal Society in the journal Interface, is the first to use nano-indentation, a materials testing technique, on feathers. It reveals the number, proportion and relative orientation of rachis layers is not fixed, as previously thought, and varies according to flight style.

Christian Laurent, from Ocean and Earth Science at the University of Southampton, lead author of the study, says: “We started looking at the shape of the rachis and how it changes along the length of it to accommodate different stresses. Then we realised that we had no idea how elastic it was, so we indented some sample feathers.

“Previously, the only mechanical work on feathers was done in the 1970s but under the assumption that the material properties of feathers are the same when tested in different directions, known as isotropic – our work has now invalidated this.”

The researchers tested the material properties of feathers from three birds of different species with markedly different flight styles; the Mute Swan (Cygnus olor), the Bald Eagle (Haliaeetus leucocephalus) and the partridge (Perdix perdix).

Christian, who led the study as part of his research degree (MRes) in Vertebrate Palaeontology, adds: “Our results indicate that the number, and the relative thickness, of layers around the circumference of the rachis and along the feather’s length are not fixed, and may vary either in order to cope with the stresses of flight particular to the bird or to the lineage that the individual belongs to.”

The researchers soon hope to fully model feather functions and link morphological aspects to particular flight styles and lineages, which has several palaeontogical implications and engineering applications.

Christian says: “We hope to be able to scan fossil feathers and finally answer a number of questions – What flew first? Did flight start from the trees down, or from the ground up? Could Archaeopteryx fly? Was Archaeopteryx the first flying bird?

“In terms of engineering, we hope to apply our future findings in materials science to yacht masts and propeller blades, and to apply the aeronautical findings to build better micro air vehicles in a collaboration [with] engineers at the University.”

Here’s a link to and a citation for the paper,

Nanomechanical properties of bird feather rachises: exploring naturally occurring fibre reinforced laminar composites by Christian M. Laurent, Colin Palmer, Richard P. Boardman, Gareth Dyke, and Richard B. Cook. J. R. Soc. [Journal of the Royal Society] Interface 6 December 2014 vol. 11 no. 101 20140961 doi: 10.1098/​rsif.2014.0961  Published 22 October 2014

This is an open access paper.

NASA, super-black nanotechnology, and an International Space Station livestreamed event

A super-black nanotechnology-enabled coating (first mentioned here in a July 18, 2013 posting featuring work by John Hagopian, an optics engineer at the US National Aeronautics and Space Administration [NASA’s] Goddard Space Flight Center on this project) is about to be tested in outer space. From an Oct. 23, 2014 news item on Nanowerk,

An emerging super-black nanotechnology that is to be tested for the first time this fall on the International Space Station will be applied to a complex, 3-D component critical for suppressing stray light in a new, smaller, less-expensive solar coronagraph designed to ultimately fly on the orbiting outpost or as a hosted payload on a commercial satellite.

The super-black carbon-nanotube coating, whose development is six years in the making, is a thin, highly uniform coating of multi-walled nanotubes made of pure carbon about 10,000 times thinner than a strand of human hair. Recently delivered to the International Space Station for testing, the coating is considered especially promising as a technology to reduce stray light, which can overwhelm faint signals that sensitive detectors are supposed to retrieve.

An Oct. 24, 2014 NASA news release by Lori Keesey, which originated the news item, further describes the work being done on the ground simultaneous to the tests on the International Space Station,

While the coating undergoes testing to determine its robustness in space, a team at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, will apply the carbon-nanotube coating to a complex, cylindrically shaped baffle — a component that helps reduce stray light in telescopes.

Goddard optical engineer Qian Gong designed the baffle for a compact solar coronagraph that Principal Investigator Nat Gopalswamy is now developing. The goal is [to] build a solar coronagraph that could deploy on the International Space Station or as a hosted payload on a commercial satellite — a much-needed capability that could guarantee the continuation of important space weather-related measurements.

The effort will help determine whether the carbon nanotubes are as effective as black paint, the current state-of-the-art technology, for absorbing stray light in complex space instruments and components.

Preventing errant light is an especially tricky challenge for Gopalswamy’s team. “We have to have the right optical system and the best baffles going,” said Doug Rabin, a Goddard heliophysicist who studies diffraction and stray light in coronagraphs.

The new compact coronagraph — designed to reduce the mass, volume, and cost of traditional coronagraphs by about 50 percent — will use a single set of lenses, rather than a conventional three-stage system, to image the solar corona, and more particularly, coronal mass ejections (CMEs). These powerful bursts of solar material erupt and hurdle across the solar system, sometimes colliding with Earth’s protective magnetosphere and posing significant hazards to spacecraft and astronauts.

“Compact coronagraphs make greater demands on controlling stray light and diffraction,” Rabin explained, adding that the corona is a million times fainter than the sun’s photosphere. Coating the baffle or occulter with the carbon-nanotube material should improve the component’s overall performance by preventing stray light from reaching the focal plane and contaminating measurements.

The project is well timed and much needed, Rabin added.

Currently, the heliophysics community receives coronagraphic measurements from the Solar and Heliospheric Observatory (SOHO) and the Solar Terrestrial Relations Observatory (STEREO).

“SOHO, which we launched in 1995, is one of our Great Observatories,” Rabin said. “But it won’t last forever.” Although somewhat newer, STEREO has operated in space since 2006. “If one of these systems fails, it will affect a lot of people inside and outside NASA, who study the sun and forecast space weather. Right now, we have no scheduled mission that will carry a solar coronagraph. We would like to get a compact coronagraph up there as soon as possible,” Rabin added.

Ground-based laboratory testing indicates it could be a good fit. Testing has proven that the coating absorbs 99.5 percent of the light in the ultraviolet and visible and 99.8 percent in the longer infrared bands due to the fact that the carbon atoms occupying the tiny nested tubes absorb the light and prevent it from reflecting off surfaces, said Goddard optics engineer John Hagopian, who is leading the technology’s advancement. Because only a tiny fraction of light reflects off the coating, the human eye and sensitive detectors see the material as black — in this case, extremely black.

“We’ve made great progress on the coating,” Hagopian said. “The fact the coatings have survived the trip to the space station already has raised the maturity of the technology to a level that qualifies them for flight use. In many ways the external exposure of the samples on the space station subjects them to a much harsher environment than components will ever see inside of an instrument.”

Given the need for a compact solar coronagraph, Hagopian said he’s especially excited about working with the instrument team. “This is an important instrument-development effort, and, of course, one that could showcase the effectiveness of our technology on 3-D parts,” he said, adding that the lion’s share of his work so far has concentrated on 2-D applications.

By teaming with Goddard technologist Vivek Dwivedi, Hagopian believes the baffle project now is within reach. Dwivedi is advancing a technique called atomic layer deposition (ALD) that lays down a catalyst layer necessary for carbon-nanotube growth on complex, 3-D parts. “Previous ALD chambers could only hold objects a few millimeters high, while the chamber Vivek has developed for us can accommodate objects 20 times bigger; a necessary step for baffles of this type,” Hagopian said.

Other NASA researchers have flown carbon nanotubes on the space station, but their samples were designed for structural applications, not stray-light suppression — a completely different use requiring that the material demonstrate greater absorption properties, Hagopian said.

“We have extreme stray light requirements. Let’s see how this turns out,” Rabin said.

The researchers from NASA have kindly made available an image of a baffle prior to receiving its super-black coating,

This is a close-up view of a baffle that will be coated with a carbon-nanotube coating. Image Credit:  NASA Goddard/Paul Nikulla

This is a close-up view of a baffle that will be coated with a carbon-nanotube coating.
Image Credit: NASA Goddard/Paul Nikulla

There’s more information about the project in this August 12, 2014 NASA news release first announcing the upcoming test.

Serendipitously or not, NASA is hosting an interactive Space Technology Forum on Oct. 27, 2014 (this coming Monday) focusing on technologies being demonstrated on the International Space Station (ISS) according to an Oct. 20, 2014 NASA media advisory,

Media are invited to interact with NASA experts who will answer questions about technologies being demonstrated on the International Space Station (ISS) during “Destination Station: ISS Technology Forum” from 10 to 11 a.m. EDT (9 to 10 a.m. CDT [7 to 8 am PDT]) Monday, Oct. 27, at the U.S. Space & Rocket Center in Huntsville, Alabama.

The forum will be broadcast live on NASA Television and the agency’s website.

The Destination Station forums are a series of live, interactive panel discussions about the space station. This is the second in the series, and it will feature a discussion on how technologies are tested aboard the orbiting laboratory. Thousands of investigations have been performed on the space station, and although they provide benefits to people on Earth, they also prepare NASA to send humans farther into the solar system than ever before.

Forum panelists and exhibits will focus on space station environmental and life support systems; 3-D printing; Space Communications and Navigation (SCaN) systems; and Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES).

The forum’s panelists are:
– Jeffrey Sheehy, senior technologist in NASA’s Space Technology Mission Directorate
– Robyn Gatens, manager for space station System and Technology Demonstration, and Environmental Control Life Support System expert
– Jose Benavides, SPHERES chief engineer
– Rich Reinhart, principal investigator for the SCaN Testbed
– Niki Werkeiser, project manager for the space station 3-D printer

During the forum, questions will be taken from the audience, including media, students and social media participants. Online followers may submit questions via social media using the hashtag, #asknasa. [emphasis mine] …

The “Destination Station: ISS Technology Forum” coincides with the 7th Annual Von Braun Memorial Symposium at the University of Alabama in Huntsville Oct. 27-29. Media can attend the three-day symposium, which features NASA officials, including NASA Administrator Charles Bolden, Associate Administrator for Human Exploration and Operation William Gerstenmaier and Assistant Deputy Associate Administrator for Exploration Systems Development Bill Hill. Jean-Jacques Dordain, director general of the European Space Agency, will be a special guest speaker. Representatives from industry and academia also will be participating.

For NASA TV streaming video, scheduling and downlink information, visit:

http://www.nasa.gov/nasatv

For more information on the International Space Station and its crews, visit:

http://www.nasa.gov/station

I have checked out the livestreaming/tv site and it appears that registration is not required for access. Sadly, I don’t see any the ‘super-black’ coating team members mentioned in the news release on the list of forum participants.

ETA Oct. 27, 2014: You can check out Dexter Johnson’s Oct. 24, 2014 posting on the Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers] website for a little more information

See-through medical sensors from the University of Wisconsin-Madison

This is quite the week for see-through medical devices based on graphene. A second team has developed a transparent sensor which could allow scientists to make observations of brain activity that are now impossible, according to an Oct. 20, 2014 University of Wisconsin-Madison news release (also on EurekAlert),

Neural researchers study, monitor or stimulate the brain using imaging techniques in conjunction with implantable sensors that allow them to continuously capture and associate fleeting brain signals with the brain activity they can see.

However, it’s difficult to see brain activity when there are sensors blocking the view.

“One of the holy grails of neural implant technology is that we’d really like to have an implant device that doesn’t interfere with any of the traditional imaging diagnostics,” says Justin Williams, the Vilas Distinguished Achievement Professor of biomedical engineering and neurological surgery at UW-Madison. “A traditional implant looks like a square of dots, and you can’t see anything under it. We wanted to make a transparent electronic device.”

The researchers chose graphene, a material gaining wider use in everything from solar cells to electronics, because of its versatility and biocompatibility. And in fact, they can make their sensors incredibly flexible and transparent because the electronic circuit elements are only 4 atoms thick—an astounding thinness made possible by graphene’s excellent conductive properties. “It’s got to be very thin and robust to survive in the body,” says Zhenqiang (Jack) Ma, the Lynn H. Matthias Professor and Vilas Distinguished Achievement Professor of electrical and computer engineering at UW-Madison. “It is soft and flexible, and a good tradeoff between transparency, strength and conductivity.”

Drawing on his expertise in developing revolutionary flexible electronics, he, Williams and their students designed and fabricated the micro-electrode arrays, which—unlike existing devices—work in tandem with a range of imaging technologies. “Other implantable micro-devices might be transparent at one wavelength, but not at others, or they lose their properties,” says Ma. “Our devices are transparent across a large spectrum—all the way from ultraviolet to deep infrared.”

The transparent sensors could be a boon to neuromodulation therapies, which physicians increasingly are using to control symptoms, restore function, and relieve pain in patients with diseases or disorders such as hypertension, epilepsy, Parkinson’s disease, or others, says Kip Ludwig, a program director for the National Institutes of Health neural engineering research efforts. “Despite remarkable improvements seen in neuromodulation clinical trials for such diseases, our understanding of how these therapies work—and therefore our ability to improve existing or identify new therapies—is rudimentary.”

Currently, he says, researchers are limited in their ability to directly observe how the body generates electrical signals, as well as how it reacts to externally generated electrical signals. “Clear electrodes in combination with recent technological advances in optogenetics and optical voltage probes will enable researchers to isolate those biological mechanisms. This fundamental knowledge could be catalytic in dramatically improving existing neuromodulation therapies and identifying new therapies.”

The advance aligns with bold goals set forth in President Barack Obama’s BRAIN (Brain Research through Advancing Innovative Neurotechnologies) Initiative. Obama announced the initiative in April 2013 as an effort to spur innovations that can revolutionize understanding of the brain and unlock ways to prevent, treat or cure such disorders as Alzheimer’s and Parkinson’s disease, post-traumatic stress disorder, epilepsy, traumatic brain injury, and others.

The UW-Madison researchers developed the technology with funding from the Reliable Neural-Interface Technology program at the Defense Advanced Research Projects Agency.

While the researchers centered their efforts around neural research, they already have started to explore other medical device applications. For example, working with researchers at the University of Illinois-Chicago, they prototyped a contact lens instrumented with dozens of invisible sensors to detect injury to the retina; the UIC team is exploring applications such as early diagnosis of glaucoma.

Here’s an image of the see-through medical implant,

Caption: A blue light shines through a clear implantable medical sensor onto a brain model. See-through sensors, which have been developed by a team of University of Wisconsin Madison engineers, should help neural researchers better view brain activity. Credit: Justin Williams research group

Caption: A blue light shines through a clear implantable medical sensor onto a brain model. See-through sensors, which have been developed by a team of University of Wisconsin Madison engineers, should help neural researchers better view brain activity.
Credit: Justin Williams research group

Here’s a link to and a citation for the paper,

Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications by Dong-Wook Park, Amelia A. Schendel, Solomon Mikael, Sarah K. Brodnick, Thomas J. Richner, Jared P. Ness, Mohammed R. Hayat, Farid Atry, Seth T. Frye, Ramin Pashaie, Sanitta Thongpang, Zhenqiang Ma, & Justin C. Williams. Nature Communications 5, Article number: 5258 doi:10.1038/ncomms6258 Published
20 October 2014

This is an open access paper.

DARPA (US Defense Advanced Research Projects Agency), which funds this work at the University of Wisconsin-Madison, has also provided an Oct. 20, 2014 news release (also published an an Oct. 27, 2014 news item on Nanowerk) describing this research from the military perspective, which may not be what you might expect. First, here’s a description of the DARPA funding programme underwriting this research, from DARPA’s Reliable Neural-Interface Technology (RE-NET) webpage,

Advancing technology for military uniforms, body armor and equipment have saved countless lives of our servicemembers injured on the battlefield.  Unfortunately, many of those survivors are seriously and permanently wounded, with unprecedented rates of limb loss and traumatic brain injury among our returning soldiers. This crisis has motivated great interest in the science of and technology for restoring sensorimotor functions lost to amputation and injury of the central nervous system. For a decade now, DARPA has been leading efforts aimed at ‘revolutionizing’ the state-of-the-art in prosthetic limbs, recently debuting 2 advanced mechatronic limbs for the upper extremity. These new devices are truly anthropomorphic and capable of performing dexterous manipulation functions that finally begin to approach the capabilities of natural limbs. However, in the absence of a high bandwidth, intuitive interface for the user, these limbs will never achieve their full potential in improving the quality of life for the wounded soldiers that could benefit from this advanced technology.

DARPA created the Reliable Neural-Interface Technology (RE-NET) program in 2010 to directly address the need for high performance neural interfaces to control dexterous functions made possible with advanced prosthetic limbs.  Specifically, RE-NET seeks to develop the technologies needed to reliably extract information from the nervous system, and to do so at a scale and rate necessary to control many degree-of-freedom (DOF) machines, such as high-performance prosthetic limbs. Prior to the DARPA RE-NET program, all existing methods to extract neural control signals were inadequate for amputees to control high-performance prostheses, either because the level of extracted information was too low or the functional lifetime was too short. However, recent technological advances create new opportunities to solve both of these neural-interface problems. For example, it is now feasible to develop high-resolution peripheral neuromuscular interfaces that increase the amount of information obtained from the peripheral nervous system.  Furthermore, advances in cortical microelectrode technologies are extending the durability of neural signals obtained from the brain, making it possible to create brain-controlled prosthetics that remain useful over the full lifetime of the patient.