Category Archives: science

The Imagineers of War: The Untold Story of DARPA, the Pentagon Agency That Changed the World on March 21, 2017 at the Woodrow Wilson International Center for Scholars

I received a March 17, 2017 Woodrow Wilson International Center for Scholars notice (via email) about this upcoming event,

The Imagineers of War: The Untold Story of DARPA [Defense Advanced Research Projects Agency], the Pentagon Agency That Changed the World

There will be a webcast of this event

In The Imagineers of War, Weinberger gives us a definitive history of the agency that has quietly shaped war and technology for nearly 60 years. Founded in 1958 in response to the launch of Sputnik, DARPA’s original mission was to create “the unimagined weapons of the future.” Over the decades, DARPA has been responsible for countless inventions and technologies that extend well beyond military technology.

Weinberger has interviewed more than one hundred former Pentagon officials and scientists involved in DARPA’s projects—many of whom have never spoken publicly about their work with the agency—and pored over countless declassified records from archives around the country, documents obtained under the Freedom of Information Act, and exclusive materials provided by sources. The Imagineers of War is a compelling and groundbreaking history in which science, technology, and politics collide.

Speakers


  • Sharon Weinberger

    Global Fellow
    Author, Imagineers of War, National Security Editor at The Intercept and former Wilson Center Fellow

  • Richard Whittle

    Global Fellow
    Author, Predator: The Secret Origins of the Drone Revolution and Wilson Center Global Fellow

The logistics:

6th Floor, Woodrow Wilson Center

I first heard about DARPA in reference to the internet. A developer I was working with noted that ARPA (DARPA’s predecessor agency) was instrumental in the development of the internet.

You can register for the event here. Should you be interested in the webcast, you can check this page.

As a point of interest, the Wilson Center (also known as the Woodrow Wilson International Center for Scholars) is one of the independent agencies slated to be defunded in the 2017 US budget as proposed by President Donald Trump according to a March 16, 2017 article by Elaine Godfrey for The Atlantic.

Poetry and the brain

It seems poetry goes deep into the brain. A Feb. 17, 2017 news item on ScienceDaily describes some blended poetry/brain research,

In 1932 T.S. Eliot famously argued, “Genuine poetry can communicate before it is understood.”

In a recent article published in the journal Frontiers in Psychology, Professor Guillaume Thierry and colleagues at Bangor University [Maine, US] have demonstrated that we do indeed appear to have an unconscious appreciation of poetic construction.

A Feb. 20, 2017 Frontiers (publications) blog posting, which despite the publication date appears to have originated the news item, provides more detail,

“Poetry,” explains Professor Thierry “is a particular type of literary expression that conveys feelings, thoughts and ideas by accentuating metric constraints, rhyme and alliteration.”

However, can we appreciate the musical sound of poetry independent of its literary meaning?

To address this question the authors created sentence sample sets that either conformed or violated poetic construction rules of Cynghanedd — a traditional form of Welsh poetry. These sentences were randomly presented to study participants; all of whom were native welsh speakers but had no prior knowledge of Cynghanedd poetic form.

Initially participants were asked to rate sentences as either “good” or “not good” depending on whether or not they found them aesthetically pleasing to the ear. The study revealed that the participants’ brains implicitly categorized Cyngahanedd-orthodox sentences as sounding “good” compared to sentences violating its construction rules.

The authors also mapped Event-Related Brain Potential (ERP) in participants a fraction of a second after they heard the final word in a poetic construction. These elegant results reveal an electrophysiological response in the brain when participants were exposed to consonantal repetition and stress patterns that are characteristic of Cynghanedd, but not when such patterns were violated.

Interestingly the positive responses from the brain to Cynghanedd were present even though participants could not explicitly tell which of the sentences were correct and which featured errors of rhythm or sound repetitions.

Professor Thierry concludes, “It is the first time that we show unconscious processing of poetic constructs by the brain, and of course, it is extremely exciting to think that one can inspire the human mind without being noticed!”

So when you read a poem, if you feel something special but you cannot really pinpoint what it is, make no mistake, your brain loves it even if you don’t really know why.

Here’s a link to and a citation for the paper,

Implicit Detection of Poetic Harmony by the Naïve Brain by Awel Vaughan-Evans, Robat Trefor, Llion Jones, Peredur Lynch, Manon W. Jones, and Guillaume Thierry. Front. Psychol., 25 November 2016 | https://doi.org/10.3389/fpsyg.2016.01859

This paper has been published in an open access. journal.

While I appreciate the enthusiasm, I think it might be better to do more research before making grand statements about poetry and the brain. For example, are they positive these native Welsh speakers had never ever encountered the poetic form being studied? Would a French or Farsi or Mandarin or Russian or … speaker respond the same way to a poem from their own poetic traditions? Is the effect cross cultural? Does a translation make a difference? Are there only certain poetic forms that create the effect?  I look forward to hearing more about this research in the years to come.

Why do objects feel solid when atoms are mostly empty space?

Roger Barlow (professor at University of Huddersfield, UK) has written a Feb. 16, 2017 essay for The Conversation explaining why objects feel solid (Note: A link has been removed),

Chemist John Dalton proposed the theory that all matter and objects are made up of particles called atoms, and this is still accepted by the scientific community, almost two centuries later. Each of these atoms is each made up of an incredibly small nucleus and even smaller electrons, which move around at quite a distance from the centre.

If you imagine a table that is a billion times larger, its atoms would be the size of melons. But even so, the nucleus at the centre would still be far too small to see and so would the electrons as they dance around it. So why don’t our fingers just pass through atoms, and why doesn’t light get through the gaps?

To explain why we must look at the electrons. Unfortunately, much of what we are taught at school is simplified – electrons do not orbit the centre of an atom like planets around the sun, like you may have been taught. Instead, think of electrons like a swarm of bees or birds, where the individual motions are too fast to track, but you still see the shape of the overall swarm.

In fact, electrons dance – there is no better word for it. …

Electrons are like a swarm of birds. John Holmes/Wikimedia Commons, CC BY-SA

Here’s one more excerpt from Barlow’s essay,

So why does a table also feel solid? Many websites will tell you that this is due to the repulsion – that two negatively charged things must repel each other. But this is wrong, and shows you should never trust some things on the internet. It feels solid because of the dancing electrons.

Do enjoy!

International Women’s Day March 8, 2017 and UNESCO/L’Oréal’s For Women in Science (Rising Talents)

Before getting to the science, here’s a little music in honour of March 8, 2017 International Women’s Day,

There is is a Wikipedia entry devoted to Rise Up (Parachute Club song), Note: Links have been removed<

“Rise Up” is a pop song recorded by the Canadian group Parachute Club on their self-titled 1983 album. It was produced and engineered by Daniel Lanois, and written by Parachute Club members Billy Bryans, Lauri Conger, Lorraine Segato and Steve Webster with lyrics contributed by filmmaker Lynne Fernie.

An upbeat call for peace, celebration, and “freedom / to love who we please,” the song was a national hit in Canada, and was hailed as a unique achievement in Canadian pop music:

“ Rarely does one experience a piece of music in white North America where the barrier between participant and observer breaks down. Rise Up rises right up and breaks down the wall.[1] ”

According to Segato, the song was not written with any one individual group in mind, but as a universal anthem of freedom and equality;[2] Fernie described the song’s lyrics as having been inspired in part by West Coast First Nations rituals in which young girls would “rise up” at dawn to adopt their adult names as a rite of passage.[3]

It remains the band’s most famous song, and has been adopted as an activist anthem for causes as diverse as gay rights, feminism, anti-racism and the New Democratic Party.[4] As well, the song’s reggae and soca-influenced rhythms made it the first significant commercial breakthrough for Caribbean music in Canada.

L’Oréal UNESCO For Women in Science

From a March 8, 2017 UNESCO press release (received via email),

Fifteen outstanding young women researchers, selected
among more than 250 candidates in the framework of the 19th edition of
the L’Oréal-UNESCO For Women in Science awards, will receive the
International Rising Talent fellowship during a gala on 21 March at the
hotel Pullman Tour Eiffel de Paris. By recognizing their achievements at
a key moment in their careers, the _For Women in Science programme aims
to help them pursue their research.

Since 1998, the L’Oréal-UNESCO _For Women in Science programme [1]
has highlighted the achievements of outstanding women scientists and
supported promising younger women who are in the early stages of their
scientific careers. Selected among the best national and regional
L’Oréal-UNESCO fellows, the International Rising Talents come from
all regions of the world (Africa and Arab States, Asia-Pacific, Europe,
Latin America and North America).

Together with the five laureates of the 2017 L’Oreal-UNESCO For Women
in Science awards [2], they will participate in a week of events,
training and exchanges that will culminate with the award ceremony on 23
March 2017 at the Mutualité in Paris.

The 2017 International Rising Talent are recognized for their work in
the following five categories:

WATCHING THE BRAIN AT WORK

* DOCTOR LORINA NACI, Canada
Fundamental medicine
In a coma: is the patient conscious or unconscious?     * ASSOCIATE
PROFESSOR MUIREANN IRISH, Australia

Clinical medicine
Recognizing Alzheimer’s before the first signs appear.

ON THE ROAD TO CONCEIVING NEW MEDICAL TREATMENTS

* DOCTOR HYUN LEE, Germany
Biological Sciences
Neurodegenerative diseases: untangling aggregated proteins.
* DOCTOR NAM-KYUNG YU, Republic of Korea
Biological Sciences
Rett syndrome: neuronal cells come under fire
* DOCTOR STEPHANIE FANUCCHI, South Africa
Biological Sciences
Better understanding the immune system.
* DOCTOR JULIA ETULAIN, Argentina
Biological Sciences
Better tissue healing.

Finding potential new sources of drugs

* DOCTOR RYM BEN SALLEM, Tunisia
Biological Sciences
New antibiotics are right under our feet.
* DOCTOR HAB JOANNA SULKOWSKA, Poland
Biological Sciences
Unraveling the secrets of entangled proteins.

GETTING TO THE HEART OF MATTER

* MS NAZEK EL-ATAB, United Arab Emirates
Electrical, Electronic and Computer Engineering
Miniaturizing electronics without losing memory.
* DOCTOR BILGE DEMIRKOZ, Turkey
Physics
Piercing the secrets of cosmic radiation.
* DOCTOR TAMARA ELZEIN, Lebanon
Material Sciences
Trapping radioactivity.
* DOCTOR RAN LONG, China
Chemistry
Unlocking the potential of energy resources with nanochemistry.

EXAMINING THE PAST TO SHED LIGHT ON THE FUTURE – OR VICE VERSA

* DOCTOR FERNANDA WERNECK, Brazil
Biological Sciences
Predicting how animal biodiversity will evolve.
* DOCTOR SAM GILES, United Kingdom
Biological Sciences
Taking another look at the evolution of vertebrates thanks to their
braincases.
* DOCTOR ÁGNES KÓSPÁL, Hungary
Astronomy and Space Sciences
Looking at the birth of distant suns and planets to better understand
the solar system.

Congratulations to all of the winners!

You can find out more about these awards and others on the 2017 L’Oréal-UNESCO For Women in Science Awards webpage or on the For Women In Science website. (Again in honour of the 2017 International Women’s Day, I was the 92758th signer of the For Women in Science Manifesto.)

International Women’s Day origins

Thank you to Wikipedia (Note: Links have been removed),

International Women’s Day (IWD), originally called International Working Women’s Day, is celebrated on March 8 every year.[2] It commemorates the movement for women’s rights.

The earliest Women’s Day observance was held on February 28, 1909, in New York and organized by the Socialist Party of America.[3] On March 8, 1917, in the capital of the Russian Empire, Petrograd, a demonstration of women textile workers began, covering the whole city. This was the beginning of the Russian Revolution.[4] Seven days later, the Emperor of Russia Nicholas II abdicated and the provisional Government granted women the right to vote.[3] March 8 was declared a national holiday in Soviet Russia in 1917. The day was predominantly celebrated by the socialist movement and communist countries until it was adopted in 1975 by the United Nations.

It seems only fitting to bookend this post with another song (Happy International Women’s Day March 8, 2017),

While the lyrics are unabashedly romantic, the video is surprisingly moody with a bit of a ‘stalker vive’ although it does end up with her holding centre stage while singing and bouncing around in time to Walking on Sunshine.

York University (Toronto, Ontario, Canada) research team creates 3D beating heart and matters of the heart at the Ontario Institute for Regenerative Medicine

I have two items about cardiac research in Ontario. Not strictly speaking about nanotechnology, the two items do touch on topics covered here before, 3D organs and stem cells.

York University and its 3D beating heart

A Feb. 9, 2017 York University news release (also on EurekAlert), describe an innovative approach to creating 3D heart tissue,

Matters of the heart can be complicated, but York University scientists have found a way to create 3D heart tissue that beats in synchronized harmony, like a heart in love, that will lead to better understanding of cardiac health, and improved treatments.

York U chemistry Professor Muhammad Yousaf and his team of grad students have devised a way to stick three different types of cardiac cells together, like Velcro, to make heart tissue that beats as one.

Until now, most 2D and 3D in vitro tissue did not beat in harmony and required scaffolding for the cells to hold onto and grow, causing limitations. In this research, Yousaf and his team made a scaffold free beating tissue out of three cell types found in the heart – contractile cardiac muscle cells, connective tissue cells and vascular cells.

The researchers believe this is the first 3D in vitro cardiac tissue with three cell types that can beat together as one entity rather than at different intervals.

“This breakthrough will allow better and earlier drug testing, and potentially eliminate harmful or toxic medications sooner,” said Yousaf of York U’s Faculty of Science.

In addition, the substance used to stick cells together (ViaGlue), will provide researchers with tools to create and test 3D in vitro cardiac tissue in their own labs to study heart disease and issues with transplantation. Cardiovascular associated diseases are the leading cause of death globally and are responsible for 40 per cent of deaths in North America.

“Making in vitro 3D cardiac tissue has long presented a challenge to scientists because of the high density of cells and muscularity of the heart,” said Dmitry Rogozhnikov, a chemistry PhD student at York. “For 2D or 3D cardiac tissue to be functional it needs the same high cellular density and the cells must be in contact to facilitate synchronized beating.”

Although the 3D cardiac tissue was created at a millimeter scale, larger versions could be made, said Yousaf, who has created a start-up company OrganoLinX to commercialize the ViaGlue reagent and to provide custom 3D tissues on demand.

Here’s a link to and a citation for the paper,

Scaffold Free Bio-orthogonal Assembly of 3-Dimensional Cardiac Tissue via Cell Surface Engineering by Dmitry Rogozhnikov, Paul J. O’Brien, Sina Elahipanah, & Muhammad N. Yousaf. Scientific Reports 6, Article number: 39806 (2016) doi:10.1038/srep39806 Published online: 23 December 2016

This paper is open access.

Ontario Institute for Regenerative Medicine and its heart stem cell research

Steven Erwood has written about how Toronto has become a centre for certain kinds of cardiac research by focusing on specific researchers in a Feb. 13, 2017 posting on the Ontario Institute for Regenerative Medicine’s expression blog (Note: Links have been removed),

You may have heard that Paris is the city of love, but you might not know that Toronto specializes in matters of the heart, particularly broken hearts.

Dr. Ren Ke Li, an investigator with the Ontario Institute for Regenerative Medicine, established his lab at the Toronto General Hospital Research Institute in 1993 hoping to find a way to replace the muscle cells, or cardiomyocytes, that are lost after a heart attack. Specifically, Li hoped to transplant a collection of cells, called stem cells, into a heart damaged by a heart attack. Stem cells have the power to differentiate into virtually any cell type, so if Li could coax them to become cardiomyocytes, they could theoretically reverse the damage caused by the heart attack.

Over the years, Li’s experiments using stem cells to regenerate and repair damaged heart tissue, which progressed all the way through to human clinical trials, pushed Li to rethink his approach to heart repair. Most of the transplanted cells failed to engraft to the host tissue and many of those that did successfully integrate into the patient’s heart remained non-contractile, sitting still beside the rest of the beating heart muscle. Despite this, the treatments were still proving beneficial — albeit less beneficial than Li had hoped. These cells weren’t replacing the lost cardiomyocytes, but they were still helping the patient recover. Li was then just beginning to reveal something that is now well described: transplanting exogenous stem cells (originating outside the patient) onto damaged tissue stimulated the endogenous stem cells to repair that damage. These transplanted stem cells were changing the behaviour of the patient’s own stem cells, enhancing their response to injury.

Li calls this process “rejuvenation” — arguing that the reason older populations can’t recover from cardiac injury is because they have fewer stem cells, and those stem cells have lost their ability to repair and regenerate damaged tissue over time. Li argues that the positive effects he was seeing in his experiments and clinical trials was a restoration or reversal of age-related deterioration in repair capability — a rejuvenation of the aged heart.

Li, alongside fellow OIRM [Ontario Institute for Regenerative Medicine] researcher and cardiac surgeon at Toronto General Hospital, Dr. Richard Weisel, dedicated a large part of their research effort to understanding this process. Weisel explains, “We put young cells into old animals, and we can get them to respond to a heart attack like a young person — which is remarkable!”

A team of researchers led by the duo published an article in Basic Research in Cardiology last month describing a new method to rejuvenate the aged heart, and characterizing this rejuvenation at the molecular and cellular level.

Successfully advancing this research to the clinic is where Weisel thinks Toronto provides a unique advantage. “We have the ability to do the clinical trials — the same people who are working on these projects [in the lab], can also take them into the clinic, and a lot of other places in the world [the clinicians and the researchers] are separate. We’ve been doing that for all the areas of stem cell research.” This unique set of circumstances, Weisel argues, more readily allows for a successful transition from research to clinical practice.

But an integrated research and clinical environment isn’t all the city has to offer to those looking to make substantial progress in stem cell therapies. Dr. Michael Laflamme, OIRM researcher and a leading authority on stem cell therapies for cardiac repair, called his decision to relocate to Toronto from the University of Washington in Seattle “a no-brainer”.

Laflamme focuses on improving the existing approaches to exogenous stem cell transplantation in cardiac repair and believes that solving the problems Li faced in his early experiments is just a matter of finding the right cell type. Laflamme, in an ongoing preclinical trial funded by OIRM, is differentiating stem cells in a bioreactor into ventricular cardiomyocytes, the specific type of cell lost after a heart attack, and delivering those cells directly to the scar tissue in hopes of turning it back into muscle. Laflamme is optimistic these ventricular cardiomyocytes might be just the cell type he’s looking for. Using these cells in animal models, although in a mixture of other cardiac cell types, Laflamme explains, “We’ve shown that those cells will stably engraft and they actually become electrically integrated with the rest of the tissue — they will [beat] in synchrony with the rest of the heart.”

Laflamme states that “Toronto is the place where we can get this stuff done better and we can get it done faster,” citing the existing Toronto-based expertise in both the differentiation of stem cells and the biotechnological means to scale these processes as being unparalleled elsewhere in the world.

It’s not only academic researchers and clinicians that recognize Toronto’s potential to advance regenerative medicine and stem cell therapy. Pharmaceutical giant Bayer, partnered with San Francisco-based venture capital firm Versant Ventures, announced last December a USD 225 million investment in a stem cell biotechnology company called BlueRock Therapeutics — the second largest investment of it’s kind in the history of the biotechnology industry. …

There’s substantially to more Erwood’s piece in the original posting.

One final thought, I wonder if there is a possibility that York University’s ViaGlue might be useful in the work talking place at Ontario Institute for Regenerative Medicine. I realize the two institutions are in the same city but do the researchers even know about each other’s work?

Big data in the Cascadia region: a University of British Columbia (Canada) and University of Washington (US state) collaboration

Before moving onto the news and for anyone unfamiliar with the concept of the Cascadia region, it is an informally proposed political region or a bioregion, depending on your perspective. Adding to the lack of clarity, the region generally includes the province of British Columbia in Canada and the two US states, Washington and Oregon but Alaska (another US state) and the Yukon (a Canadian territory) may also be included, as well as, parts of California, Wyoming, Idaho, and Montana. (You can read more about the Cascadia bioregion here and the proposed political region here.)  While it sounds as if more of the US is part of the ‘Cascadia region’, British Columbia and the Yukon cover considerably more territory than all of the mentioned states combined, if you’re taking a landmass perspective.

Cascadia Urban Analytics Cooperative

There was some big news about the smallest version of the Cascadia region on Thursday, Feb. 23, 2017 when the University of British Columbia (UBC) , the University of Washington (state; UW), and Microsoft announced the launch of the Cascadia Urban Analytics Cooperative. From the joint Feb. 23, 2017 news release (read on the UBC website or read on the UW website),

In an expansion of regional cooperation, the University of British Columbia and the University of Washington today announced the establishment of the Cascadia Urban Analytics Cooperative to use data to help cities and communities address challenges from traffic to homelessness. The largest industry-funded research partnership between UBC and the UW, the collaborative will bring faculty, students and community stakeholders together to solve problems, and is made possible thanks to a $1-million gift from Microsoft.

“Thanks to this generous gift from Microsoft, our two universities are poised to help transform the Cascadia region into a technological hub comparable to Silicon Valley and Boston,” said Professor Santa J. Ono, President of the University of British Columbia. “This new partnership transcends borders and strives to unleash our collective brain power, to bring about economic growth that enriches the lives of Canadians and Americans as well as urban communities throughout the world.”

“We have an unprecedented opportunity to use data to help our communities make decisions, and as a result improve people’s lives and well-being. That commitment to the public good is at the core of the mission of our two universities, and we’re grateful to Microsoft for making a community-minded contribution that will spark a range of collaborations,” said UW President Ana Mari Cauce.

Today’s announcement follows last September’s [2016] Emerging Cascadia Innovation Corridor Conference in Vancouver, B.C. The forum brought together regional leaders for the first time to identify concrete opportunities for partnerships in education, transportation, university research, human capital and other areas.

A Boston Consulting Group study unveiled at the conference showed the region between Seattle and Vancouver has “high potential to cultivate an innovation corridor” that competes on an international scale, but only if regional leaders work together. The study says that could be possible through sustained collaboration aided by an educated and skilled workforce, a vibrant network of research universities and a dynamic policy environment.

Microsoft President Brad Smith, who helped convene the conference, said, “We believe that joint research based on data science can help unlock new solutions for some of the most pressing issues in both Vancouver and Seattle. But our goal is bigger than this one-time gift. We hope this investment will serve as a catalyst for broader and more sustainable efforts between these two institutions.”

As part of the Emerging Cascadia conference, British Columbia Premier Christy Clark and Washington Governor Jay Inslee signed a formal agreement that committed the two governments to work closely together to “enhance meaningful and results-driven innovation and collaboration.”  The agreement outlined steps the two governments will take to collaborate in several key areas including research and education.

“Increasingly, tech is not just another standalone sector of the economy, but fully integrated into everything from transportation to social work,” said Premier Clark. “That’s why we’ve invested in B.C.’s thriving tech sector, but committed to working with our neighbours in Washington – and we’re already seeing the results.”

“This data-driven collaboration among some of our smartest and most creative thought-leaders will help us tackle a host of urgent issues,” Gov. Inslee said. “I’m encouraged to see our partnership with British Columbia spurring such interesting cross-border dialogue and excited to see what our students and researchers come up with.”

The Cascadia Urban Analytics Cooperative will revolve around four main programs:

  • The Cascadia Data Science for Social Good (DSSG) Summer Program, which builds on the success of the DSSG program at the UW eScience Institute. The cooperative will coordinate a joint summer program for students across UW and UBC campuses where they work with faculty to create and incubate data-intensive research projects that have concrete benefits for urban communities. One past DSSG project analyzed data from Seattle’s regional transportation system – ORCA – to improve its effectiveness, particularly for low-income transit riders. Another project sought to improve food safety by text mining product reviews to identify unsafe products.
  • Cascadia Data Science for Social Good Scholar Symposium, which will foster innovation and collaboration by bringing together scholars from UBC and the UW involved in projects utilizing technology to advance the social good. The first symposium will be hosted at UW in 2017.
  • Sustained Research Partnerships designed to establish the Pacific Northwest as a center of expertise and activity in urban analytics. The cooperative will support sustained research partnerships between UW and UBC researchers, providing technical expertise, stakeholder engagement and seed funding.
  • Responsible Data Management Systems and Services to ensure data integrity, security and usability. The cooperative will develop new software, systems and services to facilitate data management and analysis, as well as ensure projects adhere to best practices in fairness, accountability and transparency.

At UW, the Cascadia Urban Analytics Collaborative will be overseen by Urbanalytics (urbanalytics.uw.edu), a new research unit in the Information School focused on responsible urban data science. The Collaborative builds on previous investments in data-intensive science through the UW eScience Institute (escience.washington.edu) and investments in urban scholarship through Urban@UW (urban.uw.edu), and also aligns with the UW’s Population Health Initiative (uw.edu/populationhealth) that is addressing the most persistent and emerging challenges in human health, environmental resiliency and social and economic equity. The gift counts toward the UW’s Be Boundless – For Washington, For the World campaign (uw.edu/boundless).

The Collaborative also aligns with the UBC Sustainability Initiative (sustain.ubc.ca) that fosters partnerships beyond traditional boundaries of disciplines, sectors and geographies to address critical issues of our time, as well as the UBC Data Science Institute (dsi.ubc.ca), which aims to advance data science research to address complex problems across domains, including health, science and arts.

Brad Smith, President and Chief Legal Officer of Microsoft, wrote about the joint centre in a Feb. 23, 2017 posting on the Microsoft on the Issues blog (Note:,

The cities of Vancouver and Seattle share many strengths: a long history of innovation, world-class universities and a region rich in cultural and ethnic diversity. While both cities have achieved great success on their own, leaders from both sides of the border realize that tighter partnership and collaboration, through the creation of a Cascadia Innovation Corridor, will expand economic opportunity and prosperity well beyond what each community can achieve separately.

Microsoft supports this vision and today is making a $1 million investment in the Cascadia Urban Analytics Cooperative (CUAC), which is a new joint effort by the University of British Columbia (UBC) and the University of Washington (UW).  It will use data to help local cities and communities address challenges from traffic to homelessness and will be the region’s single largest university-based, industry-funded joint research project. While we recognize the crucial role that universities play in building great companies in the Pacific Northwest, whether it be in computing, life sciences, aerospace or interactive entertainment, we also know research, particularly data science, holds the key to solving some of Vancouver and Seattle’s most pressing issues. This grant will advance this work.

An Oct. 21, 2016 article by Hana Golightly for the Ubyssey newspaper provides a little more detail about the province/state agreement mentioned in the joint UBC/UW news release,

An agreement between BC Premier Christy Clark and Washington Governor Jay Inslee means UBC will be collaborating with the University of Washington (UW) more in the future.

At last month’s [Sept. 2016] Cascadia Conference, Clark and Inslee signed a Memorandum of Understanding with the goal of fostering the growth of the technology sector in both regions. Officially referred to as the Cascadia Innovation Corridor, this partnership aims to reduce boundaries across the region — economic and otherwise.

While the memorandum provides broad goals and is not legally binding, it sets a precedent of collaboration between businesses, governments and universities, encouraging projects that span both jurisdictions. Aiming to capitalize on the cultural commonalities of regional centres Seattle and Vancouver, the agreement prioritizes development in life sciences, clean technology, data analytics and high tech.

Metropolitan centres like Seattle and Vancouver have experienced a surge in growth that sees planners envisioning them as the next Silicon Valleys. Premier Clark and Governor Inslee want to strengthen the ability of their jurisdictions to compete in innovation on a global scale. Accordingly, the memorandum encourages the exploration of “opportunities to advance research programs in key areas of innovation and future technologies among the region’s major universities and institutes.”

A few more questions about the Cooperative

I had a few more questions about the Feb. 23, 2017 announcement, for which (from UBC) Gail C. Murphy, PhD, FRSC, Associate Vice President Research pro tem, Professor, Computer Science of UBC and (from UW) Bill Howe, Associate Professor, Information School, Adjunct Associate Professor, Computer Science & Engineering, Associate Director and Senior Data Science Fellow,, UW eScience Institute Program Director and Faculty Chair, UW Data Science Masters Degree have kindly provided answers (Gail Murphy’s replies are prefaced with [GM] and one indent and Bill Howe’s replies are prefaced with [BH] and two indents),

  • Do you have any projects currently underway? e.g. I see a summer programme is planned. Will there be one in summer 2017? What focus will it have?

[GM] UW and UBC will each be running the Data Science for Social Good program in the summer of 2017. UBC’s announcement of the program is available at: http://dsi.ubc.ca/data-science-social-good-dssg-fellowships

  • Is the $1M from Microsoft going to be given in cash or as ‘in kind goods’ or some combination?

[GM] The $1-million donation is in cash. Microsoft organized the Emerging Cascadia Innovation Corridor Conference in September 2017. It was at the conference that the idea for the partnership was hatched. Through this initiative, UBC and UW will continue to engage with Microsoft to further shared goals in promoting evidence-based innovation to improve life for people in the Cascadia region and beyond.

  • How will the money or goods be disbursed? e.g. Will each institution get 1/2 or is there some sort of joint account?

[GM] The institutions are sharing the funds but will be separately administering the funds they receive.

  • Is data going to be crossing borders? e.g. You mentioned some health care projects. In that case, will data from BC residents be accessed and subject to US rules and regulations? Will BC residents know that there data is being accessed by a 3rd party? What level of consent is required?

[GM] As you point out, there are many issues involved with transferring data across the border. Any projects involving private data will adhere to local laws and ethical frameworks set out by the institutions.

  • Privacy rules vary greatly between the US and Canada. How is that being addressed in this proposed new research?

[No Reply]

  • Will new software and other products be created and who will own them?

[GM] It is too soon for us to comment on whether new software or other products will be created. Any creation of software or other products within the institutions will be governed by institutional policy.

  • Will the research be made freely available?

[GM] UBC researchers must be able to publish the results of research as set out by UBC policy.

[BH] Research output at UW will be made available according to UW policy, but I’ll point out that Microsoft has long been a fantastic partner in advancing our efforts in open and reproducible science, open source software, and open access publishing. 

 UW’s discussion on open access policies is available online.

 

  • What percentage of public funds will be used to enable this project? Will the province of BC and the state of Washington be splitting the costs evenly?

[GM] It is too soon for us to report on specific percentages. At UBC, we will be looking to partner with appropriate funding agencies to support more research with this donation. Applications to funding agencies will involve review of any proposals as per the rules of the funding agency.

  • Will there be any social science and/or ethics component to this collaboration? The press conference referenced data science only.

[GM] We expect, but cannot yet confirm, that some of the projects will involve collaborations with faculty from a broad range of research areas at UBC.

[BH] We are indeed placing a strong emphasis on the intersection between data science, the social sciences, and data ethics.  As examples of activities in this space around UW:

* The Information School at UW (my home school) is actively recruiting a new faculty candidate in data ethics this year

* The Education Working Group at the eScience Institute has created a new campus-wide Data & Society seminar course.

* The Center for Statistics in the Social Sciences (CSSS), which represents the marriage of data science and the social sciences, has been a long-term partner in our activities.

More specifically for this collaboration, we are collecting requirements for new software that emphasizes responsible data science: properly managing sensitive data, combating algorithmic bias, protecting privacy, and more.

Microsoft has been a key partner in this work through their Civic Technology group, for which the Seattle arm is led by Graham Thompson.

  • What impact do you see the new US federal government’s current concerns over borders and immigrants hav[ing] on this project? e.g. Are people whose origins are in Iran, Syria, Yemen, etc. and who are residents of Canada going to be able to participate?

[GM] Students and others eligible to participate in research projects in Canada will be welcomed into the UBC projects. Our hope is that faculty and students working on the Cascadia Urban Analytics Cooperative will be able to exchange ideas freely and move freely back and forth across the border.

  • How will seed funding for Sustained Research Partnerships’ be disbursed? Will there be a joint committee making these decisions?

[GM] We are in the process of elaborating this part of the program. At UBC, we are already experiencing, enjoying and benefitting from increased interaction with the University of Washington and look forward to elaborating more aspects of the program together as the year unfolds.

I had to make a few formatting changes when transferring the answers from emails to this posting: my numbered questions (1-11) became bulleted points and ‘have’ in what was question 10 was changed to ‘having’. The content for the answers has been untouched.

I’m surprised no one answered the privacy question but perhaps they thought the other answers sufficed. Despite an answer to my question, I don’t understand how the universities are sharing the funds but that may just mean I’m having a bad day. (Or perhaps the folks at UBC are being overly careful after the scandals rocking the Vancouver campus over the last 18 months to two years (see Sophie Sutcliffe’s Dec. 3, 2015 opinion piece for the Ubyssey for details about the scandals).

Bill Howe’s response about open access (where you can read the journal articles for free) and open source (where you have free access to the software code) was interesting to me as I once worked for a company where the developers complained loud and long about Microsoft’s failure to embrace open source code. Howe’s response is particularly interesting given that Microsoft’s president is also the Chief Legal Officer whose portfolio of responsibilities (I imagine) includes patents.

Matt Day in a Feb. 23, 2017 article for the The Seattle Times provides additional perspective (Note: Links have been removed),

Microsoft’s effort to nudge Seattle and Vancouver, B.C., a bit closer together got an endorsement Thursday [Feb. 23, 2017] from the leading university in each city.

The University of Washington and the University of British Columbia announced the establishment of a joint data-science research unit, called the Cascadia Urban Analytics Cooperative, funded by a $1 million grant from Microsoft.

The collaboration will support study of shared urban issues, from health to transit to homelessness, drawing on faculty and student input from both universities.

The partnership has its roots in a September [2016] conference in Vancouver organized by Microsoft’s public affairs and lobbying unit [emphasis mine.] That gathering was aimed at tying business, government and educational institutions in Microsoft’s home region in the Seattle area closer to its Canadian neighbor.

Microsoft last year [2016]* opened an expanded office in downtown Vancouver with space for 750 employees, an outpost partly designed to draw to the Northwest more engineers than the company can get through the U.S. guest worker system [emphasis mine].

There’s nothing wrong with a business offering to contribute to the social good but it does well to remember that a business’s primary agenda is not the social good.  So in this case, it seems that public affairs and lobbying is really governmental affairs and that Microsoft has anticipated, for some time, greater difficulties with getting workers from all sorts of countries across the US border to work in Washington state making an outpost in British Columbia and closer relations between the constituencies quite advantageous. I wonder what else is on their agenda.

Getting back to UBC and UW, thank you to both Gail Murphy (in particular) and Bill Howe for taking the time to answer my questions. I very much appreciate it as answering 10 questions is a lot of work.

There were one area of interest (cities) that I did not broach with the either academic but will mention here.

Cities and their increasing political heft

Clearly Microsoft is focused on urban issues and that would seem to be the ‘flavour du jour’. There’s a May 31, 2016 piece on the TED website by Robert Muggah and Benjamin Fowler titled: ‘Why cities rule the world‘ (there are video talks embedded in the piece),

Cities are the the 21st century’s dominant form of civilization — and they’re where humanity’s struggle for survival will take place. Robert Muggah and Benjamin Barber spell out the possibilities.

Half the planet’s population lives in cities. They are the world’s engines, generating four-fifths of the global GDP. There are over 2,100 cities with populations of 250,000 people or more, including a growing number of mega-cities and sprawling, networked-city areas — conurbations, they’re called — with at least 10 million residents. As the economist Ed Glaeser puts it, “we are an urban species.”

But what makes cities so incredibly important is not just population or economics stats. Cities are humanity’s most realistic hope for future democracy to thrive, from the grassroots to the global. This makes them a stark contrast to so many of today’s nations, increasingly paralyzed by polarization, corruption and scandal.

In a less hyperbolic vein, Parag Khanna’s April 20,2016 piece for Quartz describes why he (and others) believe that megacities are where the future lies (Note: A link has been removed),

Cities are mankind’s most enduring and stable mode of social organization, outlasting all empires and nations over which they have presided. Today cities have become the world’s dominant demographic and economic clusters.

As the sociologist Christopher Chase-Dunn has pointed out, it is not population or territorial size that drives world-city status, but economic weight, proximity to zones of growth, political stability, and attractiveness for foreign capital. In other words, connectivity matters more than size. Cities thus deserve more nuanced treatment on our maps than simply as homogeneous black dots.

Within many emerging markets such as Brazil, Turkey, Russia, and Indonesia, the leading commercial hub or financial center accounts for at least one-third or more of national GDP. In the UK, London accounts for almost half Britain’s GDP. And in America, the Boston-New York-Washington corridor and greater Los Angeles together combine for about one-third of America’s GDP.

By 2025, there will be at least 40 such megacities. The population of the greater Mexico City region is larger than that of Australia, as is that of Chongqing, a collection of connected urban enclaves in China spanning an area the size of Austria. Cities that were once hundreds of kilometers apart have now effectively fused into massive urban archipelagos, the largest of which is Japan’s Taiheiyo Belt that encompasses two-thirds of Japan’s population in the Tokyo-Nagoya-Osaka megalopolis.

Great and connected cities, Saskia Sassen argues, belong as much to global networks as to the country of their political geography. Today the world’s top 20 richest cities have forged a super-circuit driven by capital, talent, and services: they are home to more than 75% of the largest companies, which in turn invest in expanding across those cities and adding more to expand the intercity network. Indeed, global cities have forged a league of their own, in many ways as denationalized as Formula One racing teams, drawing talent from around the world and amassing capital to spend on themselves while they compete on the same circuit.

The rise of emerging market megacities as magnets for regional wealth and talent has been the most significant contributor to shifting the world’s focal point of economic activity. McKinsey Global Institute research suggests that from now until 2025, one-third of world growth will come from the key Western capitals and emerging market megacities, one-third from the heavily populous middle-weight cities of emerging markets, and one-third from small cities and rural areas in developing countries.

Khanna’s megacities all exist within one country. If Vancouver and Seattle (and perhaps Portland?) were to become a become a megacity it would be one of the only or few to cross national borders.

Khanna has been mentioned here before in a Jan. 27, 2016 posting about cities and technology and a public engagement exercise with the National Research of Council of Canada (scroll down to the subsection titled: Cities rising in important as political entities).

Muggah/Fowler’s and Khanna’s 2016 pieces are well worth reading if you have the time.

For what it’s worth, I’m inclined to agree that cities will be and are increasing in political  importance along with this area of development:

Algorithms and big data

Concerns are being raised about how big data is being utilized so I was happy to see specific initiatives to address ethics issues in Howe’s response. For anyone not familiar with the concerns, here’s an excerpt from Cathy O’Neal’s Oct. 18, 2016 article for Wired magazine,

The age of Big Data has generated new tools and ideas on an enormous scale, with applications spreading from marketing to Wall Street, human resources, college admissions, and insurance. At the same time, Big Data has opened opportunities for a whole new class of professional gamers and manipulators, who take advantage of people using the power of statistics.

I should know. I was one of them.

Information is power, and in the age of corporate surveillance, profiles on every active American consumer means that the system is slanted in favor of those with the data. This data helps build tailor-made profiles that can be used for or against someone in a given situation. Insurance companies, which historically sold car insurance based on driving records, have more recently started using such data-driven profiling methods. A Florida insurance company has been found to charge people with low credit scores and good driving records more than people with high credit scores and a drunk driving conviction. It’s become standard practice for insurance companies to charge people not what they represent as a risk, but what they can get away with. The victims, of course, are those least likely to be able to afford the extra cost, but who need a car to get to work.

Big data profiling techniques are exploding in the world of politics. It’s estimated that over $1 billion will be spent on digital political ads in this election cycle, almost 50 times as much as was spent in 2008; this field is a growing part of the budget for presidential as well as down-ticket races. Political campaigns build scoring systems on potential voters—your likelihood of voting for a given party, your stance on a given issue, and the extent to which you are persuadable on that issue. It’s the ultimate example of asymmetric information, and the politicians can use what they know to manipulate your vote or your donation.

I highly recommend reading O’Neal’s article and, if you have the time, her book ‘Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy’.

Finally

I look forward to hearing more about the Cascadia Urban Analytics Cooperative and the Cascadia Innovation Corridor as they develop. This has the potential to be very exciting although I do have some concerns such as MIcrosoft and its agendas, both stated and unstated. After all, the Sept. 2016 meeting was convened by Microsoft and its public affairs/lobbying group and the topic was innovation, which is code for business and as hinted earlier, business is not synonymous with social good. Having said that I’m not about to demonize business either. I just think a healthy dose of skepticism is called for. Good things can happen but we need to ensure they do.

Thankfully, my concerns regarding algorithms and big data seem to be shared in some quarters, unfortunately none of these quarters appear to be located at the University of British Columbia. I hope that’s over caution with regard to communication rather than a failure to recognize any pitfalls.

ETA Mar. 1, 2017: Interestingly, the UK House of Commons Select Committee on Science and Technology announced an inquiry into the use of algorithms in public and business decision-making on Feb. 28, 2017. As this posting as much too big already, I’ve posted about the UK inquire separately in a Mar. 1, 2017 posting.

*’2016′ added for clarity on March 24, 2017.

New gecko species in Madagascar with skin specially adapted to tearing

After all these years of writing about geckos and their adhesive properties (they can hang off a wall or ceiling by a single toe), I’ve developed a mild interest in them. From a Feb. 7, 2017 posting by Dirk Steinke for the One species a day blog,

The new species was found in northern Madagascar and its name was build [sic] from the two Greek stems mégas, meaning ‘very large’ and lepís, meaning ‘scale’, and refers to the large size of the scales of this species in comparison to other geckos.

Caption: The new fish-scale gecko, Geckolepis megalepis, has the largest body scales of all geckos. This nocturnal lizard was discovered in the ‘tsingy’ karst formations in northern Madagascar Credit: F. Glaw

There’s more about the new species and the research in a Feb. 7, 2017 PeerJ news release on EurekAlert,

Many lizards can drop their tails when grabbed, but one group of geckos has gone to particularly extreme lengths to escape predation. Fish-scale geckos in the genus Geckolepis have large scales that tear away with ease, leaving them free to escape whilst the predator is left with a mouth full of scales. Scientists have now described a new species (Geckolepis megalepis) that is the master of this art, possessing the largest scales of any gecko.

The skin of fish-scale geckos is specially adapted to tearing. The large scales are attached only by a relatively narrow region that tears with ease, and beneath them they have a pre-formed splitting zone within the skin itself. Together, these features make them especially good at escaping from predators. Although several other geckos are able to lose their skin like this if they are grasped really firmly, Geckolepis are apparently able to do it actively, and at the slightest touch. And while others might take a long time to regenerate their scales, fish-scale geckos can grow them back, scar-free, in a matter of weeks.

This remarkable (if somewhat gruesome) ability has made these geckos a serious challenge to the scientists who want to study them. Early researchers described how it was necessary to catch them with bundles of cotton wool, to avoid them losing almost all of their skin. Today, little has changed, and researchers try to catch them without touching them if possible, by luring them into plastic bags. But once they are caught, the challenges are not over; identifying and describing them is even harder.

“A study a few years ago showed that our understanding of the diversity of fish-scale geckos was totally inadequate,” says Mark D. Scherz, lead author of the new study and PhD student at the Ludwig Maximilian University of Munich and Zoologische Staatssammlung München, “it showed us that there were actually about thirteen highly distinct genetic lineages in this genus, and not just the three or four species we thought existed. One of the divergent lineages they identified was immediately obvious as a new species, because it had such massive scales. But to name it, we had to find additional reliable characteristics that distinguish it from the other species.” A challenging task indeed: one of the main ways reptile species can be told apart is by their scale patterns, but these geckos lose their scales with such ease that the patterns are often lost by the time they reach adulthood. “You have to think a bit outside the box with Geckolepis. They’re a nightmare to identify. So we turned to micro-CT to get at their skeletons and search there for identifying features.” Micro-CT (micro-computed tomography) is essentially a 3D x-ray of an object. This method is allowing morphologists like Scherz to examine the skeletons of animals without having to dissect them, opening up new approaches to quickly study the internal morphology of animals.

By looking at the skeletons of the geckos, the team was able to identify some features of the skull that distinguish their new species from all others. But they also found some surprises; a species named 150 years ago, Geckolepis maculata, was confirmed to be different from the genetic lineage that it had been thought to be. “This is just typical of Geckolepis. You think you have them sorted out, but then you get a result that turns your hypothesis on its head. We still have no idea what Geckolepis maculata really is–we are just getting more and more certain what it’s not.”

The new species, Geckolepis megalepis, which was described by researchers from the US, Germany, and Columbia [sic] in a paper published today in the open access journal PeerJ, is most remarkable because of its huge scales, which are by far the largest of any gecko. The researchers hypothesize that the larger scales tear more easily than smaller scales, because of their greater surface area relative to the attachment area, and larger friction surface. “What’s really remarkable though is that these scales–which are really dense and may even be bony, and must be quite energetically costly to produce–and the skin beneath them tear away with such ease, and can be regenerated quickly and without a scar,” says Scherz. The mechanism for regeneration, which is not well understood, could potentially have applications in human medicine, where regeneration research is already being informed by studies on salamander limbs and lizard tails.

Here’s a link to and a citation for the paper,

Off the scale: a new species of fish-scale gecko (Squamata: Gekkonidae: Geckolepis) with exceptionally large scales by Mark D. Scherz​, Juan D. Daza, Jörn Köhler, Miguel Vences, Frank Glaw. PeerJ 5:e2955 https://doi.org/10.7717/peerj.2955

This paper is open access.

For anyone unfamiliar with ‘gecko research’, scientists are fascinated by their abilities and have been researching them (in a field known as biomimicry or bioinspired engineering or biomimetics) for years with the hope of mimicking those abilities for new applications. You can check out a March 19, 2015 posting or this July 10, 2014 posting for examples or you can search ‘gecko’ on this blog for more examples.

Wars (such as they are) on science

I hinted in a Jan. 27, 2017 posting (scroll down abotu 15% of the way) that advice from Canadians with regard to an ‘American war on science’ might not be such a good idea. It seems that John Dupuis (mentioned in the Jan. 27, 2017 posting) has yet more advice for our neighbours to the south in his Feb. 5, 2017 posting (on the Confessions of a Science Librarian blog; Note: A link has been removed),

My advice? Don’t bring a test tube to a Bunsen burner fight. Mobilize, protest, form partnerships, wrote op-eds and blog posts and books and articles, speak about science at every public event you get a chance, run for office, help out someone who’s a science supporter run for office.

Don’t want your science to be seen as political or for your “objectivity” to be compromised? Too late, the other side made it political while you weren’t looking. And you’re the only one that thinks you’re objective. What difference will it make?

Don’t worry about changing the other side’s mind. Worry about mobilizing and energizing your side so they’ll turn out to protest and vote and send letters and all those other good things.

Worried that you will ruin your reputation and that when the good guys come back into power your “objectivity” will be forever compromised? Worry first about getting the good guys back in power. They will understand what you went through and why you had to mobilize. And they never thought your were “objective” to begin with.

Proof? The Canadian experience. After all, even the Guardian wants to talk about How science helped to swing the Canadian election? Two or four years from now, you want them to be writing articles about how science swung the US mid-term or presidential elections.

Dupuis goes on to offer a good set of links to articles about the Canadian experience written for media outlets from across the world.

The thing is, Stephen Harper is not Donald Trump. So, all this Canadian experience may not be as helpful as we or our neighbours to the south might like.

This Feb . 6, 2017 article by Daniel Engber for Slate.com gives a perspective that I think has been missed in this ‘Canadian’ discussion about the latest US ‘war on science’ (Note: Link have been removed),

An army of advocates for science will march on Washington, D.C. on April 22, according to a press release out last Thursday. The show of force aims to “draw attention to dangerous trends in the politicization of science,” the organizers say, citing “threats to the scientific community” and the need to “safeguard” researchers from a menacing regime. If Donald Trump plans to escalate his apparent assault on scientific values, then let him be on notice: Science will fight back.

We’ve been through this before. Casting opposition to a sitting president as resistance to a “war on science” likely helped progressives 10 or 15 years ago, when George W. Bush alienated voters with his apparent disrespect for climate science and embryonic stem-cell research (among other fields of study). The Bush administration’s meddling in research and disregard for expertise turned out to be a weakness, as the historian Daniel Sarewitz described in an insightful essay from 2009. Who could really argue with the free pursuit of knowledge? Democratic challengers made a weapon of their support for scientific progress: “Americans deserve a president who believes in science,” said John Kerry during the 2004 campaign. “We will end the Bush administration’s war on science, restore scientific integrity and return to evidence-based decision-making,” the Democratic Party platform stated four years later.

But what had been a sharp-edged political strategy may now have lost its edge. I don’t mean to say that the broad appeal of science has been on the wane; overall, Americans are about as sanguine on the value of our scientific institutions as they were before. Rather, the electorate has reorganized itself, or has been reorganized by Trump, in such a way that fighting on behalf of science no longer cuts across party lines, and it doesn’t influence as many votes beyond the Democratic base.

The War on Science works for Trump because it’s always had more to do with social class than politics. A glance at data from the National Science Foundation shows how support for science tracks reliably with socioeconomic status. As of 2014, 50 percent of Americans in the highest income quartile and more than 55 percent of those with college degrees reported having great confidence in the nation’s scientific leaders. Among those in the lowest income bracket or with very little education, that support drops to 33 percent or less. Meanwhile, about five-sixths of rich or college-educated people—compared to less than half of poor people or those who never finished high school—say they believe that the benefits of science outweigh the potential harms. To put this in crude, horse-race terms, the institution of scientific research consistently polls about 30 points higher among the elites than it does among the uneducated working class.

Ten years ago, that distinction didn’t matter quite so much for politics. …

… with the battle lines redrawn, the same approach to activism now seems as though it could have the opposite effect. In the same way that fighting the War on Journalism delegitimizes the press by making it seem partisan and petty, so might the present fight against the War on Science sap scientific credibility. By confronting it directly, science activists may end up helping to consolidate Trump’s support among his most ardent, science-skeptical constituency. If they’re not careful where and how they step, the science march could turn into an ambush.

I think Engber is making an important point and the strategies and tactics being employed need to be carefully reviewed.

As for the Canadian situation, things are indeed better now but my experience is that while we rarely duplicate the situation in the US, we often find ourselves echoing their cries, albeit years later and more faintly. The current leadership race for the Conservative party has at least one Trump admirer (Kelly Leitch see the section titled: Controversy) fashioning her campaign in light of his perceived successes. Our next so called ‘war on science’ could echo in some ways the current situation in the US and we’d best keep that in mind.