Category Archives: science

Animal technology: a touchscreen for your dog, sonar lunch orders for dolphins, and more

A rather unexpected (for ignorant folks like me) approach to animal technology has been taken by Ilyena Hirskyj-Douglas in her June 17, 2016 piece on phys.org,

Imagine leaving your dog at home while it turns on the smart TV and chooses a programme to watch. Meanwhile you visit a zoo where you play interactive touchscreen games with the apes and watch the dolphins using sonar to order their lunch. In the field behind you, a farmer is stroking his flock of chickens virtually, leaving the drones to collect sheep while the cows milk themselves. Welcome to the unusual world of animal technology.

Hirskyj-Douglas’s piece was originally published as a June 15, 2016 essay  about animal-computer interaction (ACI) and some of the latest work being done in the field on The Conversation website (Note: Links have been removed),

Animals have interacted with technology for a long time, from tracking devices for conservation research to zoos with early touchscreen computers. But more recently, the field of animal-computer interaction (ACI) has begun to explore in more detail exactly how animals use technology like this. The hope is that better understanding animals’ relationship with technology will means we can use it to monitor and improve their welfare.

My own research involves building intelligent tracking devices for dogs that let them interact with media on a screen so we can study how dogs use TV and what they like to watch (if anything). Perhaps unsurprisingly, I’ve found that dogs like to watch videos of other dogs. This has led me to track dogs dogs’ gaze across individual and multiple screens and attempts to work out how best to make media just for dogs.

Eventually I hope to make an interactive system that allows a dog to pick what they want to watch and that evolves by learning what media they like. This isn’t to create a toy for indulgent pet owners. Dogs are often left at home alone during the day or isolated in kennels. So interactive media technology could improve the animals’ welfare by providing a stimulus and a source of entertainment. …

This 2014 video (embedded in Hirskyj-Douglas’s essay) illustrates how touchscreens are used by great apes,

It’s all quite intriguing and I encourage you to read the essay in it entirety.

If you find the great apes project interesting, you can find  out more about it (I believe it’s in the Primate Research category) and others at the Atlanta Zoo’s research webpage.

The ‘Lasso of Truth’ and the lie detector have a common origin

There’s a fascinating June 17, 2016 article about Wonder Woman’s seventy-fifth anniversary (points to anyone who her recognized her ‘Lasso of Truth’) by Susan Karlin for Fast Company,

William Moulton Marston—an attorney and psychologist who invented a systolic blood pressure deception test, the precursor to the modern polygraph—created Wonder Woman as a new type of superhero who, beyond her strength, used wisdom and compassion as weapons against evil—not to mention a magic golden lasso to compel people to tell the truth.

“Marston recognized not only the thereto untapped commercial market for a strong female superhero, but also the powerful potential for comic books to educate and inspire. He understood that education and entertainment need not be mutually exclusive,” says Vasilis Pozios, a forensic psychiatrist who cofounded [Broadcast Thought; mental health-and-media think tank with three forensic psychiatrists – H. Eric Bender, M.D., Praveen Kambam, M.D., and Pozios], which uses media and comic convention panels to educate about mental illness, and author of Aura, an award-winning comic about bipolar disorder.

The article has various versions of Wonder Woman images embedded throughout and it includes a few nuggets like this about her and her originator,

Wonder Woman is the only female comic book character to have her own stories continuously published for the past three-quarters of a century, spawning numerous other incarnations, including the hit 1975-1979 TV series starring Lynda Carter, and finally a big-screen introduction in this year’s [2016] Batman v Superman: Dawn of Justice.

Marston, who was strongly influenced by the women’s suffrage movement, devised that WW’s would lose her strength if men bound her in chains. Initially controversial due to a look inspired by pinup art and bondage intimations, she emerged as a symbol of equality and female empowerment—gracing Ms. magazine’s inaugural cover in 1972—that resonates today.

I gather this Wonder Woman 75th anniversary is going to be celebrated over a two year period with DC Comics hosting a 2016 Wonder Woman 75 San Diego Comic-Con panel and costume display and then, releasing the first (and fortuitously timed) Wonder Woman feature film starring Gal Gadot on June 2, 2017.

Do read Karlin’s if only to catch sight of the images. I have written about Wonder Woman before notably in a July 1, 2010 (Canada Day) posting featuring a then new makeover,

wonder_woman_makeover

I wasn’t thrilled by the makeover and was not alone in my opinion although reasons for the ‘lack of thrill’ varied from mine.

‘Getting into’ cellulose walls at the University of Cambridge (UK) and University of Melbourne (Australia)

“Getting into” as used in the headline is slang for exploring a topic in more depth which is what an international team of researchers did when they ‘got into’ cellulose. From a June 9, 2016 news item on phys.org (Note: Links have been removed),

In the search for low emission plant-based fuels, new research may help avoid having to choose between growing crops for food or fuel.

Scientists have identified new steps in the way plants produce cellulose, the component of plant cell walls that provides strength, and forms insoluble fibre in the human diet.

The findings could lead to improved production of cellulose and guide plant breeding for specific uses such as wood products and ethanol fuel, which are sustainable alternatives to fossil fuel-based products.

Published in the journal Nature Communications today, the work was conducted by an international team of scientists, led by the University of Cambridge and the University of Melbourne.

A June 9, 2016 University of Cambridge press release, which originated the news item, provides more detail,

“Our research identified several proteins that are essential in the assembly of the protein machinery that makes cellulose”, said Melbourne’s Prof Staffan Persson.

“We found that these assembly factors control how much cellulose is made, and so plants without them can not produce cellulose very well and the defect substantially impairs plant biomass production. The ultimate aim of this research would be breed plants that have altered activity of these proteins so that cellulose production can be improved for the range of applications that use cellulose including paper, timber and ethanol fuels.”

The newly discovered proteins are located in an intracellular compartment called the Golgi where proteins are sorted and modified.

“If the function of this protein family is abolished the cellulose synthesizing complexes become stuck in the Golgi and have problems reaching the cell surface where they normally are active” said the lead authors of the study, Drs. Yi Zhang (Max-Planck Institute for Molecular Plant Physiology) and Nino Nikolovski (University of Cambridge).

“We therefore named the new proteins STELLO, which is Greek for to set in place, and deliver.”

“The findings are important to understand how plants produce their biomass”, said Professor Paul Dupree from the University of Cambridge’s Department of Biochemistry.

“Greenhouse-gas emissions from cellulosic ethanol, which is derived from the biomass of plants, are estimated to be roughly 85 percent less than from fossil fuel sources. Research to understand cellulose production in plants is therefore an important part of climate change mitigation.”

“In addition, by using cellulosic plant materials we get around the problem of food-versus-fuel scenario that is problematic when using corn as a basis for bioethanol.”

“It is therefore of great importance to find genes and mechanisms that can improve cellulose production in plants so that we can tailor cellulose production for various needs.”

Previous studies by Profs. Persson’s and Dupree’s research groups have, together with other scientists, identified many proteins that are important for cellulose synthesis and for other cell wall polymers.

With the newly presented research they substantially increase our understanding for how the bulk of a plant’s biomass is produced and is therefore of vast importance to industrial applications.

Here’s a link to and a citation for the paper,

Golgi-localized STELLO proteins regulate the assembly and trafficking of cellulose synthase complexes in Arabidopsis by Yi Zhang, Nino Nikolovski, Mathias Sorieul, Tamara Vellosillo, Heather E. McFarlane, Ray Dupree, Christopher Kesten, René Schneider, Carlos Driemeier, Rahul Lathe, Edwin Lampugnani, Xiaolan Yu, Alexander Ivakov, Monika S. Doblin, Jenny C. Mortimer, Steven P. Brown, Staffan Persson, & Paul Dupree. Nature Communications 7,
Article number: 11656 doi:10.1038/ncomms11656 Published  09 June 2016

This paper is open access.

A treasure trove of molecule and battery data released to the public

Scientists working on The Materials Project have taken the notion of open science to their hearts and opened up access to their data according to a June 9, 2016 news item on Nanowerk,

The Materials Project, a Google-like database of material properties aimed at accelerating innovation, has released an enormous trove of data to the public, giving scientists working on fuel cells, photovoltaics, thermoelectrics, and a host of other advanced materials a powerful tool to explore new research avenues. But it has become a particularly important resource for researchers working on batteries. Co-founded and directed by Lawrence Berkeley National Laboratory (Berkeley Lab) scientist Kristin Persson, the Materials Project uses supercomputers to calculate the properties of materials based on first-principles quantum-mechanical frameworks. It was launched in 2011 by the U.S. Department of Energy’s (DOE) Office of Science.

A June 8, 2016 Berkeley Lab news release, which originated the news item, provides more explanation about The Materials Project,

The idea behind the Materials Project is that it can save researchers time by predicting material properties without needing to synthesize the materials first in the lab. It can also suggest new candidate materials that experimentalists had not previously dreamed up. With a user-friendly web interface, users can look up the calculated properties, such as voltage, capacity, band gap, and density, for tens of thousands of materials.

Two sets of data were released last month: nearly 1,500 compounds investigated for multivalent intercalation electrodes and more than 21,000 organic molecules relevant for liquid electrolytes as well as a host of other research applications. Batteries with multivalent cathodes (which have multiple electrons per mobile ion available for charge transfer) are promising candidates for reducing cost and achieving higher energy density than that available with current lithium-ion technology.

The sheer volume and scope of the data is unprecedented, said Persson, who is also a professor in UC Berkeley’s Department of Materials Science and Engineering. “As far as the multivalent cathodes, there’s nothing similar in the world that exists,” she said. “To give you an idea, experimentalists are usually able to focus on one of these materials at a time. Using calculations, we’ve added data on 1,500 different compositions.”

While other research groups have made their data publicly available, what makes the Materials Project so useful are the online tools to search all that data. The recent release includes two new web apps—the Molecules Explorer and the Redox Flow Battery Dashboard—plus an add-on to the Battery Explorer web app enabling researchers to work with other ions in addition to lithium.

“Not only do we give the data freely, we also give algorithms and software to interpret or search over the data,” Persson said.

The Redox Flow Battery app gives scientific parameters as well as techno-economic ones, so battery designers can quickly rule out a molecule that might work well but be prohibitively expensive. The Molecules Explorer app will be useful to researchers far beyond the battery community.

“For multivalent batteries it’s so hard to get good experimental data,” Persson said. “The calculations provide rich and robust benchmarks to assess whether the experiments are actually measuring a valid intercalation process or a side reaction, which is particularly difficult for multivalent energy technology because there are so many problems with testing these batteries.”

Here’s a screen capture from the Battery Explorer app,

The Materials Project’s Battery Explorer app now allows researchers to work with other ions in addition to lithium.

The Materials Project’s Battery Explorer app now allows researchers to work with other ions in addition to lithium. Courtesy: The Materials Project

The news release goes on to describe a new discovery made possible by The Materials Project (Note: A link has been removed),

Together with Persson, Berkeley Lab scientist Gerbrand Ceder, postdoctoral associate Miao Liu, and MIT graduate student Ziqin Rong, the Materials Project team investigated some of the more promising materials in detail for high multivalent ion mobility, which is the most difficult property to achieve in these cathodes. This led the team to materials known as thiospinels. One of these thiospinels has double the capacity of the currently known multivalent cathodes and was recently synthesized and tested in the lab by JCESR researcher Linda Nazar of the University of Waterloo, Canada.

“These materials may not work well the first time you make them,” Persson said. “You have to be persistent; for example you may have to make the material very phase pure or smaller than a particular particle size and you have to test them under very controlled conditions. There are people who have actually tried this material before and discarded it because they thought it didn’t work particularly well. The power of the computations and the design metrics we have uncovered with their help is that it gives us the confidence to keep trying.”

The researchers were able to double the energy capacity of what had previously been achieved for this kind of multivalent battery. The study has been published in the journal Energy & Environmental Science in an article titled, “A High Capacity Thiospinel Cathode for Mg Batteries.”

“The new multivalent battery works really well,” Persson said. “It’s a significant advance and an excellent proof-of-concept for computational predictions as a valuable new tool for battery research.”

Here’s a link to and a citation for the paper,

A high capacity thiospinel cathode for Mg batteries by Xiaoqi Sun, Patrick Bonnick, Victor Duffort, Miao Liu, Ziqin Rong, Kristin A. Persson, Gerbrand Ceder and  Linda F. Nazar. Energy Environ. Sci., 2016, Advance Article DOI: 10.1039/C6EE00724D First published online 24 May 2016

This paper seems to be behind a paywall.

Getting back to the news release, there’s more about The Materials Project in relationship to its membership,

The Materials Project has attracted more than 20,000 users since launching five years ago. Every day about 20 new users register and 300 to 400 people log in to do research.

One of those users is Dane Morgan, a professor of engineering at the University of Wisconsin-Madison who develops new materials for a wide range of applications, including highly active catalysts for fuel cells, stable low-work function electron emitter cathodes for high-powered microwave devices, and efficient, inexpensive, and environmentally safe solar materials.

“The Materials Project has enabled some of the most exciting research in my group,” said Morgan, who also serves on the Materials Project’s advisory board. “By providing easy access to a huge database, as well as tools to process that data for thermodynamic predictions, the Materials Project has enabled my group to rapidly take on materials design projects that would have been prohibitive just a few years ago.”

More materials are being calculated and added to the database every day. In two years, Persson expects another trove of data to be released to the public.

“This is the way to reach a significant part of the research community, to reach students while they’re still learning material science,” she said. “It’s a teaching tool. It’s a science tool. It’s unprecedented.”

Supercomputing clusters at the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility hosted at Berkeley Lab, provide the infrastructure for the Materials Project.

Funding for the Materials Project is provided by the Office of Science (US Department of Energy], including support through JCESR [Joint Center for Energy Storage Research].

Happy researching!

New elements named (provisionally)

They say it’s provisionally but I suspect it would take an act of god for a change in the proposed names. From a June 8, 2016 blog posting (scroll down about 25% of the way) on the International Union of Pure and Applied Chemistry (IUPAC) website,

IUPAC is naming the four new elements nihonium, moscovium, tennessine, and oganesson

Following earlier reports that the claims for discovery of these elements have been fulfilled [1, 2], the discoverers have been invited to propose names and the following are now disclosed for public review:

  • Nihonium and symbol Nh, for the element 113,
  • Moscovium and symbol Mc, for the element 115,
  • Tennessine and symbol Ts, for the element 117, and
  • Oganesson and symbol Og, for the element 118.

The IUPAC Inorganic Chemistry Division has reviewed and considered these proposals and recommends these for acceptance. A five-month public review is now set, expiring 8 November 2016, prior to the formal approval by the IUPAC Council.

I can’t figure out how someone from the public might offer a comment about the names.

There’s more from the posting about what kinds of names are acceptable and how the names in this set of four were arrived at,

The guidelines for the naming the elements were recently revised [3] and shared with the discoverers to assist in their proposals. Keeping with tradition, newly discovered elements can be named after:
(a) a mythological concept or character (including an astronomical object),
(b) a mineral or similar substance,
(c) a place, or geographical region,
(d) a property of the element, or
(e) a scientist.
The names of all new elements in general would have an ending that reflects and maintains historical and chemical consistency. This would be in general “-ium” for elements belonging to groups 1-16, “-ine” for elements of group 17 and “-on” for elements of group 18. Finally, the names for new chemical elements in English should allow proper translation into other major languages.

For the element with atomic number 113 the discoverers at RIKEN Nishina Center for Accelerator-Based Science (Japan) proposed the name nihonium and the symbol Nh. Nihon is one of the two ways to say “Japan” in Japanese, and literally mean “the Land of Rising Sun”. The name is proposed to make a direct connection to the nation where the element was discovered. Element 113 is the first element to have been discovered in an Asian country. While presenting this proposal, the team headed by Professor Kosuke Morita pays homage to the trailblazing work by Masataka Ogawa done in 1908 surrounding the discovery of element 43. The team also hopes that pride and faith in science will displace the lost trust of those who suffered from the 2011 Fukushima nuclear disaster.

For the element with atomic number 115 the name proposed is moscovium with the symbol Mc and for element with atomic number 117, the name proposed is tennessine with the symbol Ts. These are in line with tradition honoring a place or geographical region and are proposed jointly by the discoverers at the Joint Institute for Nuclear Research, Dubna (Russia), Oak Ridge National Laboratory (USA), Vanderbilt University (USA) and Lawrence Livermore National Laboratory (USA).

Moscovium is in recognition of the Moscow region and honors the ancient Russian land that is the home of the Joint Institute for Nuclear Research, where the discovery experiments were conducted using the Dubna Gas-Filled Recoil Separator in combination with the heavy ion accelerator capabilities of the Flerov Laboratory of Nuclear Reactions.

Tennessine is in recognition of the contribution of the Tennessee region, including Oak Ridge National Laboratory, Vanderbilt University, and the University of Tennessee at Knoxville, to superheavy element research, including the production and chemical separation of unique actinide target materials for superheavy element synthesis at ORNL’s High Flux Isotope Reactor (HFIR) and Radiochemical Engineering Development Center (REDC).

For the element with atomic number 118 the collaborating teams of discoverers at the Joint Institute for Nuclear Research, Dubna (Russia) and Lawrence Livermore National Laboratory (USA) proposed the name oganesson and symbol Og. The proposal is in line with the tradition of honoring a scientist and recognizes Professor Yuri Oganessian (born 1933) for his pioneering contributions to transactinoid elements research. His many achievements include the discovery of superheavy elements and significant advances in the nuclear physics of superheavy nuclei including experimental evidence for the “island of stability”.

“It is a pleasure to see that specific places and names (country, state, city, and scientist) related to the new elements is recognized in these four names. Although these choices may perhaps be viewed by some as slightly self-indulgent, the names are completely in accordance with IUPAC rules”, commented Jan Reedijk, who corresponded with the various laboratories and invited the discoverers to make proposals. “In fact, I see it as thrilling to recognize that international collaborations were at the core of these discoveries and that these new names also make the discoveries somewhat tangible.”

So, let’s welcome Tennessine, Muscovium, Nihonium, and Oganesson to the table of periodic elements. I imagine Don Lehrer’s Elements Song will be updated soon. In the meantime we have this from ASAP Science, which includes the new elements under their placeholder names (when the addition was first publicized in January 2016. All of the placeholder names start with U,

Enjoy!

Accountability for artificial intelligence decision-making

How does an artificial intelligence program arrive at its decisions? It’s a question that’s not academic any more as these programs take on more decision-making chores according to a May 25, 2016 Carnegie Mellon University news release (also on EurekAlert) by Bryon Spice (Note: Links have been removed),

Machine-learning algorithms increasingly make decisions about credit, medical diagnoses, personalized recommendations, advertising and job opportunities, among other things, but exactly how usually remains a mystery. Now, new measurement methods developed by Carnegie Mellon University [CMU] researchers could provide important insights to this process.

Was it a person’s age, gender or education level that had the most influence on a decision? Was it a particular combination of factors? CMU’s Quantitative Input Influence (QII) measures can provide the relative weight of each factor in the final decision, said Anupam Datta, associate professor of computer science and electrical and computer engineering.

It’s reassuring to know that more requests for transparency of the decision-making process are being made. After all, it’s disconcerting that someone with the life experience of a gnat and/or possibly some issues might be developing an algorithm that could affection your life in some fundamental ways. Here’s more from the news release (Note: Links have been removed),

“Demands for algorithmic transparency are increasing as the use of algorithmic decision-making systems grows and as people realize the potential of these systems to introduce or perpetuate racial or sex discrimination or other social harms,” Datta said.

“Some companies are already beginning to provide transparency reports, but work on the computational foundations for these reports has been limited,” he continued. “Our goal was to develop measures of the degree of influence of each factor considered by a system, which could be used to generate transparency reports.”

These reports might be generated in response to a particular incident — why an individual’s loan application was rejected, or why police targeted an individual for scrutiny, or what prompted a particular medical diagnosis or treatment. Or they might be used proactively by an organization to see if an artificial intelligence system is working as desired, or by a regulatory agency to see whether a decision-making system inappropriately discriminated between groups of people.

Datta, along with Shayak Sen, a Ph.D. student in computer science, and Yair Zick, a post-doctoral researcher in the Computer Science Department, will present their report on QII at the IEEE Symposium on Security and Privacy, May 23–25 [2016], in San Jose, Calif.

Generating these QII measures requires access to the system, but doesn’t necessitate analyzing the code or other inner workings of the system, Datta said. It also requires some knowledge of the input dataset that was initially used to train the machine-learning system.

A distinctive feature of QII measures is that they can explain decisions of a large class of existing machine-learning systems. A significant body of prior work takes a complementary approach, redesigning machine-learning systems to make their decisions more interpretable and sometimes losing prediction accuracy in the process.

QII measures carefully account for correlated inputs while measuring influence. For example, consider a system that assists in hiring decisions for a moving company. Two inputs, gender and the ability to lift heavy weights, are positively correlated with each other and with hiring decisions. Yet transparency into whether the system uses weight-lifting ability or gender in making its decisions has substantive implications for determining if it is engaging in discrimination.

“That’s why we incorporate ideas for causal measurement in defining QII,” Sen said. “Roughly, to measure the influence of gender for a specific individual in the example above, we keep the weight-lifting ability fixed, vary gender and check whether there is a difference in the decision.”

Observing that single inputs may not always have high influence, the QII measures also quantify the joint influence of a set of inputs, such as age and income, on outcomes and the marginal influence of each input within the set. Since a single input may be part of multiple influential sets, the average marginal influence of the input is computed using principled game-theoretic aggregation measures previously applied to measure influence in revenue division and voting.

“To get a sense of these influence measures, consider the U.S. presidential election,” Zick said. “California and Texas have influence because they have many voters, whereas Pennsylvania and Ohio have power because they are often swing states. The influence aggregation measures we employ account for both kinds of power.”

The researchers tested their approach against some standard machine-learning algorithms that they used to train decision-making systems on real data sets. They found that the QII provided better explanations than standard associative measures for a host of scenarios they considered, including sample applications for predictive policing and income prediction.

Now, they are seeking collaboration with industrial partners so that they can employ QII at scale on operational machine-learning systems.

Here’s a link to and a citation for a PDF of the paper presented at the May 2016 conference,

Algorithmic Transparency via Quantitative Input Influence: Theory and Experiments with Learning Systems by Anupam Datta, Shayak Sen, Yair Zick. Presented at the at the IEEE Symposium on Security and Privacy, May 23–25, in San Jose, Calif.

I’ve also embedded the paper here,

CarnegieMellon_AlgorithmicTransparency

AI (artificial intelligence) and logical dialogue in Japanese

Hitachi Corporation has been exciting some interest with its announcement of the latest iteration of its artificial intelligence programme’s and its new ability to speak Japanese (from a June 5, 2016 news item on Nanotechnology Now),

Today, the social landscape changes rapidly and customer needs are becoming increasingly diversified. Companies are expected to continuously create new services and values. Further, driven by recent advancements in information & telecommunication and analytics technologies, interest is growing in technology that can extract valuable insight from big data which is generated on a daily basis.

Hitachi has been developing a basic AI technology that analyzes huge volumes of English text data and presents opinions in English to help enterprises make business decisions. The original technology required rules of grammar specific to the English language to be programmed, to extract sentences representing reasons and grounds for opinions. This process represented a hurdle in applying system to Japanese or any other language as it required dedicated programs correlated to the linguistic rules of the target language.

By applying deep learning, this issue was eliminated thus enabling the new technology to recognize sentences that have high probability of being reasons and grounds without relying on linguistic rules. More specifically, the AI system is presented with sentences which represent reasons and grounds extracted from thousands of articles. Learning from the rules and patterns, the system becomes discriminating of sentences which represent reasons and grounds in new articles. Hitachi added an attention mechanism” which support deep learning to estimate which words and phrases are worthy of attention in texts like news articles and research reports. The “attention mechanism” helps the system to grasp the points that require attention, including words and phrases related to topics and values. This method enables the system to distinguish sentences which have a high probability of being reasons and grounds from text data in any language.

They have plans for this technology,

The technology developed will be core technology in achieving a multi-lingual AI system capable of offering opinion. Hitachi will pursue further research to realize AI systems supporting business decision making by enterprises worldwide.

The June 2, 2016 Hitachi news release which originated the news item can be found here.

Deep learning for cosmetics

Deep learning seems to be a synonym for artificial intelligence if a May 24, 2016 Insilico Medicine news release on EurekAlert about its use in the fields of cosmetics and as an alternative to testing animals is to be believed (Note: Links have been removed),

In addition to heading Insilico Medicine, Inc, a big data analytics company focused on applying advanced signaling pathway activation analysis and deep learning methods to biomarker and drug discovery in cancer and age-related diseases, Alex Zhavoronkov, PhD is the co-founder and principal scientist of Youth Laboratories, a company focusing on applying machine learning methods to evaluating the condition of human skin and general health status using multimodal inputs. The company developed an app called RYNKL, a mobile app for evaluating the effectiveness of various anti-aging interventions by analyzing “wrinkleness” and other parameters. The app was developed using funds from a Kickstarter crowdfunding campaign and is now being extensively tested and improved. The company also developed a platform for running online beauty competitions, where humans are evaluated by a panel of robot judges. Teams of programmers also compete on the development of most innovative algorithms to evaluate humans.

“One of my goals in life is to minimize unnecessary animal testing in areas, where computer simulations can be even more relevant to humans. Serendipitously, some of our approaches find surprising new applications in the beauty industry, which has moved away from human testing and is moving towards personalizing cosmetics and beauty products. We are happy to present our research results to a very relevant audience at this major industry event”, said Alex Zhavoronkov, CEO of Insilico Medicine, Inc.

Artificial intelligence is entering every aspect of our daily life. Deep learning systems are already outperforming humans in image and text recognition and we would like to bring some of the most innovative players like Insilico Medicine, who dare to work with gene expression, imaging and drug data to find novel ways to keep us healthy, young and beautiful”, said Irina Kremlin, director of INNOCOS.

Here’s a link to and a citation for the paper,

Deep biomarkers of human aging: Application of deep neural networks to biomarker development by Evgeny Putin, Polina Mamoshina, Alexander Aliper, Mikhail Korzinkin, Alexey Moskalev, Alexey Kolosov, Alexander Ostrovskiy, Charles Cantor, Jan Vijg, and Alex Zhavoronkov. Aging May 2016 vol. 8, no. 5

This is an open access paper.

You can find out more about In Silico Medicine here and RINKL here. I was not able to find a website for Youth Laboratories.

The origins of gold and other precious metals

The link between this research and my side project on gold nanoparticles is a bit tenuous but this work on the origins for gold and other precious metals being found in the stars is so fascinating and I’m determined to find a connection.

An artist's impression of two neutron stars colliding. (Credit: Dana Berry / Skyworks Digital, Inc.) Courtesy: Kavli Foundation

An artist’s impression of two neutron stars colliding. (Credit: Dana Berry / Skyworks Digital, Inc.) Courtesy: Kavli Foundation

From a May 19, 2016 news item on phys.org,

The origin of many of the most precious elements on the periodic table, such as gold, silver and platinum, has perplexed scientists for more than six decades. Now a recent study has an answer, evocatively conveyed in the faint starlight from a distant dwarf galaxy.

In a roundtable discussion, published today [May 19, 2016?], The Kavli Foundation spoke to two of the researchers behind the discovery about why the source of these heavy elements, collectively called “r-process” elements, has been so hard to crack.

From the Spring 2016 Kavli Foundation webpage hosting the  “Galactic ‘Gold Mine’ Explains the Origin of Nature’s Heaviest Elements” Roundtable ,

RESEARCHERS HAVE SOLVED a 60-year-old mystery regarding the origin of the heaviest elements in nature, conveyed in the faint starlight from a distant dwarf galaxy.

Most of the chemical elements, composing everything from planets to paramecia, are forged by the nuclear furnaces in stars like the Sun. But the cosmic wellspring for a certain set of heavy, often valuable elements like gold, silver, lead and uranium, has long evaded scientists.

Astronomers studying a galaxy called Reticulum II have just discovered that its stars contain whopping amounts of these metals—collectively known as “r-process” elements (See “What is the R-Process?”). Of the 10 dwarf galaxies that have been similarly studied so far, only Reticulum II bears such strong chemical signatures. The finding suggests some unusual event took place billions of years ago that created ample amounts of heavy elements and then strew them throughout the galaxy’s reservoir of gas and dust. This r-process-enriched material then went on to form Reticulum II’s standout stars.

Based on the new study, from a team of researchers at the Kavli Institute at the Massachusetts Institute of Technology, the unusual event in Reticulum II was likely the collision of two, ultra-dense objects called neutron stars. Scientists have hypothesized for decades that these collisions could serve as a primary source for r-process elements, yet the idea had lacked solid observational evidence. Now armed with this information, scientists can further hope to retrace the histories of galaxies based on the contents of their stars, in effect conducting “stellar archeology.”

The Kavli Foundation recently spoke with three astrophysicists about how this discovery can unlock clues about galactic evolution as well as the abundances of certain elements on Earth we use for everything from jewelry-making to nuclear power generation. The participants were:

  • Alexander Ji – is a graduate student in physics at the Massachusetts Institute of Technology (MIT) and a member of the MIT Kavli Institute for Astrophysics and Space Research (MKI). He is lead author of a paper in Nature describing this discovery.
  • Anna Frebel – is the Silverman Family Career Development Assistant Professor in the Department of Physics at MIT and also a member of MKI. Frebel is Ji’s advisor and coauthored the Nature paper. Her work delves into the chemical and physical conditions of the early universe as conveyed by the oldest stars.
  • Enrico Ramirez-Ruiz – is a Professor of Astronomy and Astrophysics at the University of California, Santa Cruz. His research explores violent events in the universe, including the mergers of neutron stars and their role in generating r-process elements.

Here’s a link to and citation for Ji’s and Frebel’s paper about r-process elements in the stars,

R-process enrichment from a single event in an ancient dwarf galaxy by Alexander P. Ji, Anna Frebel, Anirudh Chiti, & Joshua D. Simon. Nature 531, 610–613 (31 March 2016) doi:10.1038/nature17425 Published online 21 March 2016

This paper is behind a paywall but you can read an edited transcript of the roundtable discussion on the Galactic ‘Gold Mine’ Explains the Origin of Nature’s Heaviest Elements webpage (keep scrolling past the introductory text).

As for my side project, Steep (2) on gold nanoparticles, that’s still in the planning stages but if there’s a way to include this information, I’ll do it.

Two May 31, 2016 talks (Why nuclear power is necessary and DNA is not destiny) in Vancouver, Canada

Both the upcoming science talks in Vancouver are scheduled for May 31, 2016. Isn’t that always the way?

Why nuclear power is necessary

This talk is being held by ARPICO (Society of Italian Researchers & Professionals in Western Canada). From the ARPICO event page,

Why Nuclear Power is Necessary

Presenter

Patrick Walden graduated with a B.Sc. in Physics from UBC and a Ph.D in Particle Physics from Caltech. His Post Doctoral research was done at the Stanford University Linear Accelerator (SLAC), and since 1974 he has been at TRIUMF here in Vancouver. Patrick has been active in the fields of pion photo-production, meson spectroscopy, the dynamics of pion production from nuclei, and nuclear astrophysics.

Abstract

Nuclear power is the second largest source of greenhouse gas emissions-free energy in the world. It supplies approximately 5% of the world’s total energy demand. Presently, human activity is on the brink of initiating a global greenhouse climate catastrophe unless we can limit our greenhouse gas emissions.

In this talk, Dr. Patrick Walden will examine the concerns about nuclear power and the reasons why, contrary to public perception, nuclear power is one of the safest, most economical, plentiful, and greenest sources of energy available.

Logistics

  • May 31, 2016 – 7:00pm
  • Roundhouse Community Centre – Room B – (181 Roundhouse Mews, Vancouver BC V6Z2W3)
  • Underground pay parking is available, access off Drake St. south of Pacific Blvd.
    Admission by donation. Q&A and complimentary refreshments follow. Registration is highly recommended as seating is limited. RSVP at info@arpico.ca or at EventBrite by May 28th, 2016.

A map for the location can be found here.

There is a Skytrain station nearbyYaletown-Roundhouse Canada Line Station

DNA is not destiny

This month’s Café Scientifique talk is being held in downtown Vancouver at Yaggers (433 W. Pender St.). Details of the talk are (from the May 13, 2016 email announcement,

… Our speaker for the evening will be Dr. Steven Heine, a Professor in the Department of Psychology at UBC [University of British Columbia]. The title of his talk is:

DNA is Not Destiny: How Essences Distort how we Think about Genes

People the world over are essentialist thinkers – they are attracted to the idea that hidden essences make things as they are. And because genetic concepts remind people of essences, they tend to think of genes in ways similar to essences. That is, people tend to think about genetic causes as immutable, deterministic, homogenous, discrete, and natural.  Dr. Heine will discuss how our essentialist biases lead people to think differently about sex, race, crime, eugenics, and disease whenever these are described in genetic terms. Moreover, Dr. Heine will discuss how our essentialistic biases make people vulnerable to the sensationalist hype that has emerged with the genomic revolution and access to direct-to-consumer genotyping services.

Logistics

Tuesday May 31st, 7:30pm at Yagger’s Downtown (433 W Pender).

I have found a little more information about Dr. Steven Heine and his work (from his University of British Columbia webpage),

Our lab is currently working on three distinct research programs, which we refer to as Cultural Psychology, Meaning Maintenance, and Genetic Essentialism.

Our third research program on genetic esssentialism considers how people understand essences and genetic foundations for human behavior. We propose that encounters with genetic explanations for human outcomes prompts people to think of those outcomes in essentiialized ways, by viewing those outcomes as more deterministic, immutable, and fatalistic. For example, we find that women are more vulnerable to stereotype threat when they hear of genetic reasons for why men outperform women in math than when they hear of environmental reasons for this difference. We also find that men are more tolerant of sex crimes when they learn of genetic basis for sexual motivations than when they hear of social-constructivist accounts. We are conducting several studies to explore the ways that people respond to genetic accounts for human conditions.

Have fun whichever one you choose to attend.