Category Archives: science

News from Arizona State University’s The Frankenstein Bicentennial Project

I received a September 2016 newsletter (issued occasionally) from The Frankenstein Bicentennial Project at Arizona State University (ASU) which contained these two tidbits:

I, Artist

Bobby Zokaites converted a Roomba, a robotic vacuum, from a room cleaning device to an art-maker by removing the dust collector and vacuuming system and replacing it with a paint reservoir. Artists have been playing with robots to make art since the 1950s. This work is an extension of a genre, repurposing a readily available commercial robot.

With this project, Bobby set out to create a self-portrait of a generation, one that grew up with access to a vast amount of information and constantly bombarded by advertisements. The Roomba paintings prove that a robot can paint a reasonably complex painting, and do it differently every time; thus this version of the Turing test was successful.

As in the story of Frankenstein, this work also interrogates questions of creativity and responsibility. Is this a truly creative work of art, and if so, who is the artist; man or machine?

Both the text description and the video are from:

Frankenstein at 200 Exhibit

From the September 2016 newsletter (Note: Links have been removed),

Just as the creature in Frankenstein [the monster is never named in the book; its creator, however, is Victor Frankenstein] was assembled from an assortment of materials, so too is the cultural understanding of the Frankenstein myth. Now a new, interdisciplinary exhibit at ASU Libraries examines how Mary Shelley’s 200-year-old science fiction story continues to inspire, educate, and frighten 21st century audiences.

Frankenstein at 200 is open now through December 10 on the first floor of ASU’s Hayden Library in Tempe, AZ.

Here’s more from the exhibit’s webpage on the ASU website,

No work of literature has done more to shape the way people imagine science and its moral consequences than “Frankenstein;” or “The Modern Prometheus,” Mary Shelley’s enduring tale of creation and responsibility. The novel’s themes and tropes continue to resonate with contemporary audiences, influencing the way we confront emerging technologies, conceptualize the process of scientific research, and consider the ethical relationships between creators and their creations

Two hundred years after Mary Shelley imagined the story that would become “Frankenstein,” ASU Libraries is exhibiting an interdisciplinary installation that contextualizes the conditions of the original tale while exploring it’s continued importance in our technological age. Featuring work by ASU faculty and students, this exhibition includes a variety of physical and digital artifacts, original art projects and interactive elements that examine “Frankenstein’s” colossal scientific, technological, cultural and social impacts.

About the Frankenstein Bicentennial Project: Launched by Drs. David Guston and Ed Finn in 2013, the Frankenstein Bicentennial Project, is a global celebration of the bicentennial of the writing and publication of Mary Shelley’s Frankenstein, from 2016-2018. The project uses Frankenstein as a lens to examine the complex relationships between science, technology, ethics, and society. To learn more visit and follow @FrankensteinASU on Twitter

There are more informational tidbits at The Frankenstein Bicentennial Project website.

Removing gender-based stereotypes from algorithms

Most people don’t think of algorithms as having biases and stereotypes but Michael Zou in his Sept. 26, 2016 essay for The Conversation (h/t Sept. 26, 2016 news item) says different, Note: Links have been removed,

Machine learning is ubiquitous in our daily lives. Every time we talk to our smartphones, search for images or ask for restaurant recommendations, we are interacting with machine learning algorithms. They take as input large amounts of raw data, like the entire text of an encyclopedia, or the entire archives of a newspaper, and analyze the information to extract patterns that might not be visible to human analysts. But when these large data sets include social bias, the machines learn that too.

A machine learning algorithm is like a newborn baby that has been given millions of books to read without being taught the alphabet or knowing any words or grammar. The power of this type of information processing is impressive, but there is a problem. When it takes in the text data, a computer observes relationships between words based on various factors, including how often they are used together.

We can test how well the word relationships are identified by using analogy puzzles. Suppose I ask the system to complete the analogy “He is to King as She is to X.” If the system comes back with “Queen,” then we would say it is successful, because it returns the same answer a human would.

Our research group trained the system on Google News articles, and then asked it to complete a different analogy: “Man is to Computer Programmer as Woman is to X.” The answer came back: “Homemaker.”

Zou explains how a machine (algorithm) learns and then notes this,

Not only can the algorithm reflect society’s biases – demonstrating how much those biases are contained in the input data – but the system can potentially amplify gender stereotypes. Suppose I search for “computer programmer” and the search program uses a gender-biased database that associates that term more closely with a man than a woman.

The search results could come back flawed by the bias. Because “John” as a male name is more closely related to “computer programmer” than the female name “Mary” in the biased data set, the search program could evaluate John’s website as more relevant to the search than Mary’s – even if the two websites are identical except for the names and gender pronouns.

It’s true that the biased data set could actually reflect factual reality – perhaps there are more “Johns” who are programmers than there are “Marys” – and the algorithms simply capture these biases. This does not absolve the responsibility of machine learning in combating potentially harmful stereotypes. The biased results would not just repeat but could even boost the statistical bias that most programmers are male, by moving the few female programmers lower in the search results. It’s useful and important to have an alternative that’s not biased.

There is a way according to Zou that stereotypes can be removed,

Our debiasing system uses real people to identify examples of the types of connections that are appropriate (brother/sister, king/queen) and those that should be removed. Then, using these human-generated distinctions, we quantified the degree to which gender was a factor in those word choices – as opposed to, say, family relationships or words relating to royalty.

Next we told our machine-learning algorithm to remove the gender factor from the connections in the embedding. This removes the biased stereotypes without reducing the overall usefulness of the embedding.

When that is done, we found that the machine learning algorithm no longer exhibits blatant gender stereotypes. We are investigating applying related ideas to remove other types of biases in the embedding, such as racial or cultural stereotypes.

If you have time, I encourage you to read the essay in its entirety and this June 14, 2016 posting about research into algorithms and how they make decisions for you about credit, medical diagnoses, job opportunities and more.

There’s also an Oct. 24, 2016 article by Michael Light on on the topic (Note: Links have been removed),

In a recent book that was longlisted for the National Book Award, Cathy O’Neil, a data scientist, blogger and former hedge-fund quant, details a number of flawed algorithms to which we have given incredible power — she calls them “Weapons of Math Destruction.” We have entrusted these WMDs to make important, potentially life-altering decisions, yet in many cases, they embed human race and class biases; in other cases, they don’t function at all.
Among other examples, O’Neil examines a “value-added” model New York City used to decide which teachers to fire, even though, she writes, the algorithm was useless, functioning essentially as a random number generator, arbitrarily ending careers. She looks at models put to use by judges to assign recidivism scores to inmates that ended up having a racist inclination. And she looks at how algorithms are contributing to American partisanship, allowing political operatives to target voters with information that plays to their existing biases and fears.

I recommend reading Light’s article in its entirety.

Uganda and emerging technology

Matsiko Kahunga’s Sept. 26, 2016 piece from The Monitor (Uganda: Are We Hunter-Gatherers or a Nanotechnology Economy?) on provides some intriguing insight,

Our teacher of Agriculture in lower secondary school, (I can only remember his moniker: we called him Boxer) had a very intriguing definition of land, which we may today find instructive as the land question in Uganda rears its ugly head again. From his various definitions of land, what emerges is that land will mean different things to different people. Thus, to an aeropilot, land is a hard, flat surface onto which airports can be built to enable safe take off and landing; while to an equatorial forest hunter-gatherer, land is that lush green environment where fruits, berries and roots are ever in abundance and game animals plentiful. To the sedentary arable farmer, land is that medium in which crops can grow…it is useful if it can support crop life, and it is useless if it cannot support crop life.

The land question is up again. And already tempers are high and rising, building on the earlier intermittent squabbles across the country. Perhaps a simple reflection may send us rethinking our perception of land: does land mean the same thing to all Ugandans? If we are on the path to industrialisation as we ought to, does land in an industrial country carry the same meaning and importance it carries in a subsistence economy?

Kahunga then recounts this story,

A friend who recently returned from a tour of duty with a UN agency in an Asian Tiger, tells me that he lived on the 17th floor of an 81-storey skyscraper, which is basically a self-contained town: besides residential flats, the entire height of the building is punctuated by public arenas, kindergartens, shopping malls, clinics, temples, office blocks, police stations, municipal council and related services.

He then contrasts it with Seoul,

Another instructive case is Seoul, the South Korean capital. The Seoul National Capital Area houses 25 million people (as of 2012).

This is over half the population of South Korea, living on 0.6 per cent of the country’s land area, and generating 21 per cent of the country’s GDP (Leahy, 2012). Twenty five million is 73 per cent of Uganda’s population (2012 figures) or Burundi and Rwanda combined.

I am struck by the similarities between the current heated discussions about land use and density in Vancouver (Canada) and our national climate change issues and Kahunga’s depiction of Uganda’s issues,

The tokenism of ‘carbon-fund’, ‘green development’ ‘mainstreaming’…, typical of conferences will not save us. Uganda is best placed to pioneer green industrial development with not only minimal impact on the climate, but also a reversal of the current catastrophe: plastic-choked soils, drying marshlands and river beds, changing season patterns and melting Rwenzori glaciers.

And no one is safe from this pending catastrophe: rich or poor, investor or squatter, powerful or powerless . …

Thought-provoking, eh?

The Nine Dots Prize competition for creative thinking on social issues

A new prize is being inaugurated, the $US100,000 Nine Dots Prize for creative thinking and it’s open to anyone anywhere in the world. Here’s more from an Oct. 21, 2016 article by Jane Tinkler for the Guardian (Note: Links have been removed),

In the debate over this year’s surprise award to Bob Dylan, it is easy to lose sight of the long history of prizes being used to recognise great writing (in whatever form), great research and other outstanding achievements.

The use of prizes dates back furthest in the sciences. In 1714, the British government famously offered an award of £20,000 (about £2.5 million at today’s value) to the person who could find a way of determining a ship’s longitude. British clockmaker John Harrison won the Longitude Prize and, by doing so, improved the safety of long-distance sea travel.

Prizes are now proliferating. Since 2000, more than sixty prizes of more than $100,000 (US dollars) have been created, and the field of philanthropic prize-giving is estimated to exceed £1 billion each year. Prizes are seen as ways to reward excellence, build networks, support collaboration and direct efforts towards practical and social goals. Those awarding them include philanthropists, governments and companies.

Today [Oct. 21, 2016] sees the launch of the newest kid on the prize-giving block. Drawing its name from a puzzle that can be solved only by lateral thinking, the Nine Dots prize wants to encourage creative thinking and writing that can help to tackle social problems. It is sponsored by the Kadas Prize Foundation, with the support of the Centre for Research in the Arts, Social Sciences and Humanities (CRASSH) at the University of Cambridge, and Cambridge University Press.

The Nine Dots prize is a hybrid of [three types of prizes]. There is a recognition [emphasis mine] aspect, but it doesn’t require an extensive back catalogue. The prize will be judged by a board of twelve renowned scholars, thinkers and writers. They will assess applications on an anonymised basis, so whoever wins will have done so not because of past work, but because of the strength of their ideas, and ability to communicate them effectively.

It is an incentive [emphasis mine] prize in that we ask applicants to respond to a defined question. The inaugural question is: “Are digital technologies making politics impossible?” [emphasis mine]. This is not proscriptive: applicants are encouraged to define what the question means to them, and to respond to that. We expect the submissions to be wildly varied. A new question will be set every two years, always with a focus on pressing issues that affect society. The prize’s disciplinary heartland lies in the social sciences, but responses from all fields, sectors and life experiences are welcome.

Finally, it is a resource [emphasis mine] prize in that it does not expect all the answers at the point of application. Applicants need to provide a 3,000-word summary of how they would approach the question. Board members will assess these, and the winner will then be invited to write their ideas up into a short, accessible book, that will be published by Cambridge University Press. A prize award of $100,000 (£82,000) will support the winner to take time out to think and write over a nine month period. The winner will also have the option of a term’s visiting fellowship at the University of Cambridge, to help with the writing process.

With this mix of elements, we hope the Nine Dots prize will encourage creative thinking about some of today’s most pressing issues. The winner’s book will be made freely accessible online; we hope it will capture the public’s imagination and spark a real debate.

The submission deadline is Jan. 31, 2017 and the winner announcement is May 2017. The winner’s book is to be published May 2018.

Good Luck! You can find out more about the prize and the contest rules on The Nine Dots Prize website.

The State of Science and Technology (S&T) and Industrial Research and Development (IR&D) in Canada

Earlier this year I featured (in a July 1, 2016 posting) the announcement of a third assessment of science and technology in Canada by the Council of Canadian Academies. At the time I speculated as to the size of the ‘expert panel’ making the assessment as they had rolled a second assessment (Industrial Research and Development) into this one on the state of science and technology. I now have my answer thanks to an Oct. 17, 2016 Council of Canadian Academies news release announcing the chairperson (received via email; Note: Links have been removed and emphases added for greater readability),

The Council of Canadian Academies (CCA) is pleased to announce Dr. Max Blouw, President and Vice-Chancellor of Wilfrid Laurier University, as Chair of the newly appointed Expert Panel on the State of Science and Technology (S&T) and Industrial Research and Development (IR&D) in Canada.

“Dr. Blouw is a widely respected leader with a strong background in research and academia,” said Eric M. Meslin, PhD, FCAHS, President and CEO of the CCA. “I am delighted he has agreed to serve as Chair for an assessment that will contribute to the current policy discussion in Canada.”

As Chair of the Expert Panel, Dr. Blouw will work with the multidisciplinary, multi-sectoral Expert Panel to address the following assessment question, referred to the CCA by Innovation, Science and Economic Development Canada (ISED):

What is the current state of science and technology and industrial research and development in Canada?

Dr. Blouw will lead the CCA Expert Panel to assess the available evidence and deliver its final report by late 2017. Members of the panel include experts from different fields of academic research, R&D, innovation, and research administration. The depth of the Panel’s experience and expertise, paired with the CCA’s rigorous assessment methodology, will ensure the most authoritative, credible, and independent response to the question.

“I am very pleased to accept the position of Chair for this assessment and I consider myself privileged to be working with such an eminent group of experts,” said Dr. Blouw. “The CCA’s previous reports on S&T and IR&D provided crucial insights into Canada’s strengths and weaknesses in these areas. I look forward to contributing to this important set of reports with new evidence and trends.”

Dr. Blouw was Vice-President Research, Associate Vice-President Research, and Professor of Biology, at the University of Northern British Columbia, before joining Wilfrid Laurier as President. Dr. Blouw served two terms as the chair of the university advisory group to Industry Canada and was a member of the adjudication panel for the Ontario Premier’s Discovery Awards, which recognize the province’s finest senior researchers. He recently chaired the International Review Committee of the NSERC Discovery Grants Program.

For a complete list of Expert Panel members, their biographies, and details on the assessment, please visit the assessment page. The CCA’s Member Academies – the Royal Society of Canada, the Canadian Academy of Engineering, and the Canadian Academy of Health Sciences – are a key source of membership for expert panels. Many experts are also Fellows of the Academies.

The Expert Panel on the State of S&T and IR&D
Max Blouw, (Chair) President and Vice-Chancellor of Wilfrid Laurier University
Luis Barreto, President, Dr. Luis Barreto & Associates and Special Advisor, NEOMED-LABS
Catherine Beaudry, Professor, Department of Mathematical and Industrial Engineering, Polytechnique Montréal
Donald Brooks, FCAHS, Professor, Pathology and Laboratory Medicine, and Chemistry, University of British Columbia
Madeleine Jean, General Manager, Prompt
Philip Jessop, FRSC, Professor, Inorganic Chemistry and Canada Research Chair in Green Chemistry, Department of Chemistry, Queen’s University; Technical Director, GreenCentre Canada
Claude Lajeunesse, FCAE, Corporate Director and Interim Chair of the Board of Directors, Atomic Energy of Canada Ltd.
Steve Liang, Associate Professor, Geomatics Engineering, University of Calgary; Director, GeoSensorWeb Laboratory; CEO, SensorUp Inc.
Robert Luke, Vice-President, Research and Innovation, OCAD University
Douglas Peers, Professor, Dean of Arts, Department of History, University of Waterloo
John M. Thompson, O.C., FCAE, Retired Executive Vice-Chairman, IBM Corporation
Anne Whitelaw, Associate Dean Research, Faculty of Fine Arts and Associate Professor, Department of Art History, Concordia University
David A. Wolfe, Professor, Political Science and Co-Director, Innovation Policy Lab, Munk School of Global Affairs, University of Toronto

You can find more information about the expert panel here and about this assessment and its predecesors here.

A few observations, given the size of the task this panel is lean. As well, there are three women in a group of 13 (less than 25% representation) in 2016? It’s Ontario and Québec-dominant; only BC and Alberta rate a representative on the panel. I hope they will find ways to better balance this panel and communicate that ‘balanced story’ to the rest of us. On the plus side, the panel has representatives from the humanities, arts, and industry in addition to the expected representatives from the sciences.

American Association for the Advancement of Science 2016 Mass Media Fellows program is open for submissions

Before getting to the latest information for applying, Matt Miller has written an exuberant and enticing  description of his experiences as a 2016 American Association for the Advancement of Science (AAAS) Mass Media Fellow for in his Oct. 17, 2016 article for them (Note: Links have been removed),

If you’ve ever wanted to write for Slate (or other major media organizations), now is your chance—provided you’re a graduate student or postdoc in science, math, engineering, or medicine [enrolled in a university and with a US citizenship or visa that allows you to receive paymet for work].* The American Association for the Advancement of Science will soon be opening applications for its 2017 Mass Media Fellowship. Along with Slate, publications like Wired, Scientific American, NPR [National Public Radio], and the Los Angeles Times will be hosting fellows who will work as science writers for 10 weeks starting in June of next year.


While many of my classmates were drawing blood and administering vaccines [Miller is a student in a School of Veterinary Medicine], I flew up to New York and started learning how to be a journalist. In Slate’s Brooklyn office, I read the abstracts of newly released journal articles and pitched countless story ideas. I drank lots of coffee, sat in on editorial meetings, and interviewed scientists from almost every field imaginable (entomologists are the best). Perhaps the highlight of the whole summer was being among the first to cover the rising cost of EpiPens, a scandal that has recently led to a congressional hearing.

A large part of what I did this summer involved explaining the scientific fundamentals behind the research and making the findings more accessible and exciting to a general audience. Science writing involves a great deal of translation; scientists often get so tied up in the particulars of their research—exactly how an enzyme cleaves this protein, or whether a newly discovered bird is technically a new species—that they forget to talk about the wider societal implications their research might have on culture and civilization. But science writing also matters for the same reason all journalism matters. Science journalism can play the important role of watchdog, holding the powerful accountable and airing out things that don’t quite seem right.

You can find the application here. Don’t forget to read the eligibility rules (no students enrolled in English, journalism, science journalism, or other non-technical fields need apply).

Good luck!

*ETA Oct. 18, 2016 9:52 am PDT: The deadline for applications is midnight EST Jan. 15, 2017.

Café Scientifique (Vancouver, Canada) October 18, 2016 talk: At the intersection of Space and Genetics

Vancouver’s (Canada) Café Scientifique seems to have settled in at Yagger’s Downtown (433 W. Pender), which is hosting (for the third time in four months) an upcoming 2016 Café Scientifique talk. From the October 17, 2016 notice received via email,

We are pleased to announce that this month’s event will be a collaboration with the American Society of Human Genetics (ASHG).  The café will be held tomorrow (Tuesday October 18th) at 7:30pm in the back room at Yagger’s Downtown, 433 W Pender.  Please note that this date is one week earlier than usual to coincide with the ASHG Annual Meeting.  Our speaker for the evening will be Dr. Ting Wu, from the Department of Genetics at Harvard Medical School. The title of her talk is:

At the intersection of Space and Genetics

Ting (C.-ting) Wu, Ph.D., is a Professor of Genetics at Harvard Medical School. She is also the Director of the Consortium for Space Genetics, the Director of the Personal Genetics Education ( Project, and a recipient of an NIH Director’s Pioneer Award. Her laboratory investigates how chromosome organization influences genome function, inventing and applying technologies for imaging the genome as well as studying how a very puzzling set of sequences, called ultraconserved elements (UCEs), have managed to resist change for a stunning 300 million years. These studies have led her group to consider the potential of their findings for protecting astronauts from the extreme conditions of long-term travel in space. The Wu laboratory also houses the Personal Genetics Education Project, which works to raise public awareness and discourse regarding personal genetics, aiming to make that awareness equal across all communities, regardless of socioeconomic, ethnic, educational, and religious influences.

Have a lovely time!

Phenomen: a future and emerging information technology project

A Sept. 19, 2016 news item on Nanowerk describes a new research project incorporating photonics, phononics, and radio frequency signal processing,

HENOMEN is a ground breaking project designed to harness the potential of combined phononics, photonics and radio-frequency (RF) electronic signals to lay the foundations of a new information technology. This new Project, funded though the highly competitive H2020 [the European Union’s Horizon 2020 science funding programme] FET [Future and Emerging Technologies]-Open call, joins the efforts of three leading research institutes, three internationally recognised universities and a high-tech SME. The Consortium members kick-offed the project with a meeting on Friday September 16, 2016, at the Catalan Institute of Nanoscience and Nanotechnology (ICN2), coordinated by ICREA Research Prof Dr Clivia M. Sotomayor-Torres, of the ICN2’ Phononic and Photonic Nanostructures (P2N) Group.

A Sept. 16, 2016 ICN2 press release, which originated the news item, provides more detail,

Most information is currently transported by electrical charge (electrons) and by light (photons). Phonons are the quanta of lattice vibrations with frequencies covering a wide range up to tens of THz and provide coupling to the surrounding environment. In PHENOMEN the core of the research will be focused on phonon-based signal processing to enable on-chip synchronisation and transfer information carried between optical channels by phonons.

This ambitious prospect could serve as a future scalable platform for, e.g., hybrid information processing with phonons. To achieve it, PHENOMEN proposes to build the first practical optically-driven phonon sources and detectors including the engineering of phonon lasers to deliver coherent phonons to the rest of the chip pumped by a continuous wave optical source. It brings together interdisciplinary scientific and technology oriented partners in an early-stage research towards the development of a radically new technology.

The experimental implementation of phonons as information carriers in a chip is completely novel and of a clear foundational character. It deals with interaction and manipulation of fundamental particles and their intrinsic dual wave-particle character. Thus, it can only be possible with the participation of an interdisciplinary consortium which will create knowledge in a synergetic fashion and add value in the form of new theoretical tools,  develop novel methods to manipulate coherent phonons with light and build all-optical phononic circuits enabled by optomechanics.

The H2020 FET-Open call “Novel ideas for radically new technologies” aims to support the early stages of joint science and technology research for radically new future technological possibilities. The call is entirely non-prescriptive with regards to the nature or purpose of the technologies that are envisaged and thus targets mainly the unexpected. PHENOMEN is one of the 13 funded Research & Innovation Actions and went through a selection process with a success rate (1.4%) ten times smaller than that for an ERC grant. The retained proposals are expected to foster international collaboration in a multitude of disciplines such as robotics, nanotechnology, neuroscience, information science, biology, artificial intelligence or chemistry.

The Consortium

The PHENOMEN Consortium is made up by:

  • 3 leading research institutes:
  • 3 universities with an internationally recognised track-record in their respective areas of expertise:
  • 1 industrial partner:

Largest database of elemental crystal surfaces and shapes in the world

A Sept. 13, 2016 news item on Nanowerk describes the database,

Nanoengineers at the University of California San Diego [UCSD], in collaboration with the Materials Project at Lawrence Berkeley National Laboratory (Berkeley Lab), have created the world’s largest database of elemental crystal surfaces and shapes to date. Dubbed Crystalium, this new open-source database can help researchers design new materials for technologies in which surfaces and interfaces play an important role, such as fuel cells, catalytic converters in cars, computer microchips, nanomaterials and solid-state batteries.

rystalium is a new open-source database with the largest collection of elemental crystal surfaces and shapes to date. Image courtesy of the Materials Virtual Lab at UC San Diego

Crystalium is a new open-source database with the largest collection of elemental crystal surfaces and shapes to date. Image courtesy of the Materials Virtual Lab at UC San Diego

A Sept. 13, 2016 UCSD news release reveals more about the goals for the database and the database itself (Note: Links have been removed),

“This work is an important starting point for studying the material surfaces and interfaces, where many novel properties can be found. We’ve developed a new resource that can be used to better understand surface science and find better materials for surface-driven technologies,” said Shyue Ping Ong, a nanoengineering professor at UC San Diego and senior author of the study.

For example, fuel cell performance is partly influenced by the reaction of molecules such as hydrogen and oxygen on the surfaces of metal catalysts. Also, interfaces between the electrodes and electrolyte in a rechargeable lithium-ion battery host a variety of chemical reactions that can limit the battery’s performance. The work in this study is useful for these applications, said Ong, who is also part of a larger effort by the UC San Diego Sustainable Power and Energy Center to design better battery materials.

“Researchers can use this database to figure out which elements or materials are more likely to be viable catalysts for processes like ammonia production or making hydrogen gas from water,” said Richard Tran, a nanoengineering PhD student in Ong’s Materials Virtual Lab and the study’s first author. Tran did this work while he was an undergraduate at UC San Diego.

The work, published Sept. 13 [2016] in the journal Scientific Data, provides the surface energies and equilibrium crystal shapes of more than 100 polymorphs of 72 elements in the periodic table. Surface energy describes the stability of a surface; it is a measure of the excess energy of atoms on the surface relative to those in the bulk material. Knowing surface energies is useful for designing materials that perform their functions primarily on their surfaces, like catalysts and nanoparticles.

The surface energies of some elements in their crystal form have been measured experimentally, but this is not a trivial task. It involves melting the crystal, measuring the resulting liquid’s surface tension at the melting temperature, then extrapolating that value back to room temperature. This process also requires that the sample have a clean surface, which is challenging because other atoms and molecules (like oxygen and water) can easily adsorb to the surface and modify the surface energy.

Surface energies obtained by this method are averaged values that lack the facet-specific resolution that is necessary for design, Ong said. “This is one of the areas where the ’virtual laboratory’ can create the most value—by allowing us to precisely control the models and conditions in a way that is extremely difficult to do in experiments.”

Also, the surface energy is not just a single number for each crystal because it depends on the crystal’s orientation. “A crystal is a regular arrangement of atoms. When you cut a crystal in different places and at different angles, you expose different facets with unique arrangements of atoms,” explained Ong, who teaches the course NANO106 – Crystallography of Materials at UC San Diego.

To carry out this ambitious project, Ong and his team developed highly sophisticated automated workflows to calculate surface energies from first principles. These workflows are built on the popular open-source Python Materials Genomics library and FireWorks workflow codes of the Materials Project, which were co-authored by Ong.

“The techniques for calculating surface energies have been known for decades. The major accomplishment is the codification of how to generate surface models and run these complex calculations in a robust and efficient manner,” Tran said. The surface model generation software code developed by the team has already been extended by others to study substrates and interfaces. Powerful supercomputers at the San Diego Supercomputer Center and the National Energy Research Scientific Computing Center at the Lawrence Berkeley National Lab were used for the calculations.

Ong’s team worked with researchers from the Berkeley Lab’s Materials Project to develop and construct Crystalium’s website. Co-founded and directed by Berkeley Lab scientist Kristin Persson, the Materials Project is a Google-like database of material properties calculated by supercomputers.

“The Materials Project was designed to be an open and accessible tool for scientists and engineers to accelerate materials innovation,” Persson said. “In five years, it has attracted more than 20,000 users working on everything from batteries to photovoltaics to thermoelectrics, and it’s extremely gratifying to see scientists like Ong providing lots of high quality computed data of high interest and making it freely available and easily accessible to the public.”

The researchers pointed out that their database is the most extensive collection of calculated surface energies for elemental crystalline solids to date. Compared to previous compilations, Crystalium contains surface energies for far more elements, including both metals and non-metals, and for more facets in each crystal. The elements that have been excluded from their calculations are gases and radioactive elements. Notably, Ong and his team have validated their calculated surface energies with those from experiments, and the values are in excellent agreement.

Moving forward, the team will work on expanding the scope of the database beyond single elements to multi-element compounds like alloys, which are made of two or more different metals, and binary oxides, which are made of oxygen and one other element. Efforts are also underway to study the effect of common adsorbates, such as hydrogen, on surface energies, which is key to understanding the stability of surfaces in aqueous media.

“As we continue to build this database, we hope that the research community will see it as a useful resource for the rational design of target surface or interfacial properties,” said Ong,

Here’s a link to and a citation for the paper,

Surface energies of elemental crystals by Richard Tran, Zihan Xu, Balachandran Radhakrishnan, Donald Winston, Wenhao Sun, Kristin A. Persson, & Shyue Ping Ong.  Scientific Data 3, Article number: 160080 (2016)  doi:10.1038/sdata.2016.80 Published online: 13 September 2016

This paper is open access.

Here, too, is a link to Crystalium.

Move objects by playing a melody

At this point, moving objects by playing a melody is a laboratory experiment but who knows, perhaps one day you’ll be able to sing your front door open. A Sept. 9, 2016 news item on ScienceDaily announces the research on acoustic waves,

Researchers of Aalto University have made a breakthrough in controlling the motion of multiple objects on a vibrating plate with a single acoustic source. By playing carefully constructed melodies, the scientists can simultaneously and independently move multiple objects on the plate towards desired targets. This has enabled scientists, for instance, writing words consisting of separate letters with loose metal pieces on the plate by playing a melody.

A Sept. 9, 2016 Aalto University press release (also on EurekAlert), which originated the news item, describes the research in more detail,

Already in 1878, the first studies of sand moving on a vibrating plate were done by Ernst Chladni, known as the father of acoustics. Chladni discovered that when a plate is vibrating at a frequency, objects move towards a few positions, called the nodal lines, specific to that frequency. Since then, the prevailing view has been that the particle motion is random on the plate before they reached the nodal line. “We have shown that the motion is also predictable away from the nodal lines. Now that the object does not have to be at a nodal line, we have much more freedom in controlling its motion and have achieved independent control of up to six objects simultaneously using just one single actuator. We are very excited about the results, because this probably is a new world record of how many independent motions can be controlled by a single acoustic actuator,” says Professor Quan Zhou.

The objects to be controlled have been placed on top of a manipulation plate, and imaged by a tracking camera. Based on the detected positions, the computer goes through a list of music notes to find a note that is most likely to move the objects towards the desired directions. After playing the note, the new positions of the objects are detected, and the control cycle is restarted. This cycle is repeated until the objects have reached their desired target locations. The notes played during the control cycles form a sequence, a bit like music.

The new method has been applied to manipulate a wide range of miniature objects including electronic components, water droplets, plant seeds, candy balls and metal parts. “Some of the practical applications we foresee include conveying and sorting microelectronic chips, delivering drug-loaded particles for pharmaceutical applications or handling small liquid volumes for lab on chips,” says Zhou. “Also, the basic idea should be transferrable to other kinds of systems with vibration phenomena. For example, it should be possible to use waves and ripples to control floating objects in a pond using our technique.”

Here’s a link to and a citation for the paper,

Controlling the motion of multiple objects on a Chladni plate by Quan Zhou, Veikko Sariola, Kourosh Latifi, Ville Liimatainen. Nature Communications 7, Article number: 12764 doi:10.1038/ncomms12764 Published 09 September 2016

This article is open access.