Tag Archives: Bill & Melinda Gates Foundation

Making rubber more rubbery for better condoms

A May 20, 2016 news item on Nanowerk announces some research on rubber from the University of Manchester (Note: A link has been removed),

In an article published in Carbon (“Graphene and water-based elastomers thin-film composites by dip-moulding”), Dr Aravind Vijayaraghavan and Dr Maria Iliut from Manchester have shown that adding a very small amount of graphene, the world’s thinnest and strongest material, to rubber films can increase both their strength and the elasticity by up to 50%. Thin rubber films are ubiquitous in daily life, used in everything from gloves to condoms.

A May 20, 2016 University of Manchester press release (also on EurekAlert), which originated the news item, provides more detail,

In their experiments, the scientists tested two kinds of rubbery materials – natural rubber, comprised of a material called polyisoprene, and a man-made rubber called polyurethane. To these, they added graphene of different kinds, amounts and size.

In most cases, it they observed that the resulting composite material could be stretched to a greater degree and with greater force before it broke. Indeed, adding just one tenth of one percent of graphene was all it took to make the rubber 50% stronger.

Dr Vijayaraghavan, who leads the Nano-functional Materials Group, explains “A composite is a material which contains two parts, a matrix which is soft and light and a filler which is strong. Taken together, you get something which is both light and strong. This is the principle behind carbon fibre composites used in sports cars, or Kevlar composites used in body armour.

“In this case, we have made a composite of rubber, which is soft and stretchy but fragile, with graphene and the resulting material is both stronger and stretchier.”

Dr Maria Iliut, a research associate in Dr Vijayaraghavan’s group, describes how this material is produced: “We use a form of graphene called graphene oxide, which unlike graphene is stable as a dispersion in water. The rubber materials are also in a form that is stable in water, allowing us to combine them before forming thin films with a process called dip moulding.”

“The important thing here is that because these films are so thin, we need a strengthening filler which is also very thin. Fortunately, graphene is both the thinnest and strongest material we know of.”

The project emerged from a call by the Bill & Melinda Gates Foundation, to develop a more desirable condom. [my Nov. 22, 2013 post features the grant announcement and Dr. Vijayaraghavan’s research plans] According to Dr Vijayaraghavan, this composite material has tremendous implications in daily life.

He adds “Our thinking was that if we could make the rubber used in condoms stronger and stretchier, then you could use that to make even thinner condoms which would feel better without breaking.

“Similar arguments can be made for using this material to make better gloves, sportswear, medical devices and so on. We are seeing considerable industrial interest in this area and we hope more companies will want to get involved in the commercial opportunities this research could create.”

Here’s a link to and a citation for the paper,

Graphene and water-based elastomers thin-film composites by dip-moulding by Maria Iliut, Claudio Silva, Scott Herrick, Mark McGlothlin, Aravind Vijayaraghavan. Carbon doi:10.1016/j.carbon.2016.05.032 Available online 14 May 2016

This paper is open access.

 

Science, politics, and logic

I started the week with a posting where I highlighted a presentation about algae, biofuels, policy making, and politics (my Apr. 8, 2013 posting: Algae factories could produce nanocellulose for biofuels and more) and I’m going to end this week with another politics/policy posting, this time focusing on artemisinin and malaria.

Malaria is a serious, serious problem in many parts of the world as Brendan Borrell notes in his Apr. 4, 2013 article, The WHO vs. the Tea Doctor, about an herbal tea that contains artemisinin, for Slate.com,

Of all the illnesses that have afflicted humanity over millennia, few have left their mark quite like malaria, which infects 200 million people each year and kills at least 655,000, most of whom are children. [emphasis mine] Falciparum malaria—the most common type in sub-Saharan Africa—starts as a debilitating fever, which can progress in severe cases to convulsions, brain damage, and death. In this part of the world, it’s almost impossible to stay completely free of the parasites for long. Adults often display a low level of immunity, which makes each subsequent infection painful and unpleasant but usually not fatal.

As I’m about to contrast the information in Borrell’s article with the information in an Apr. 11, 2013 news release from the University of California Berkeley on EurekAlert, about the development of a synthetic artemisinin, I’m going to highlight their ‘agreement’ as the seriousness of the malaria problem,

… a lifesaver for the hundreds of millions of people in developing countries who each year contract malaria and more than 650,000, most of them children, who die of the disease. [emphasis mine]

Borrell sets the discussion for his take on the artemisinin situation with a little history (Note: Links have been removed),

The story of artemisinin demonstrates that even the best malaria drugs are worthless if they are not getting to the people who need them. In the late 1990s, African malaria parasites had become resistant to standard treatments such as chloroquine, and malaria deaths in Uganda doubled in a decade. By the early 2000s, there was a proven alternative: artemisinin combination therapies [ACTs]. Nevertheless, the Global Fund for AIDS, Tuberculosis, and Malaria repeatedly rejected countries’ requests for money for ACTs, funding failing treatments over ACTs at a rate of 10-to-1. In 2004, a group of fed-up scientists writing in the Lancet called these decisions “medical malpractice.” Today, although ACTs are heavily subsidized by the international aid community, local clinics frequently run out of stock, and Africans often end up with substandard, ineffective, and sometimes counterfeit medications.

Borrell goes on to recount the story of a  Chinese plant, sweet wormwood ((Artemisia annua), which is the source for both a class of anti-malarial drugs and a tea (Note: A link has been removed),

It [sweet wormwood] can also be grown in wetter parts of Africa, and a year’s supply costs no more than a few dollars. Although the tea itself has traditionally been used in treatment, not prevention, in China, a randomized controlled trial on this farm showed that workers who drank it regularly reduced their risk of suffering from multiple episodes of malaria by one-third. For a group of people who were once waylaid by this mosquito-borne disease four or more times per year, the tea is a godsend.

According to the article, WHO (World Health Organization) and most malaria researchers are opposed to the tea’s use. Reasons given include the claim that herbal concoctions are more dangerous and less effective than pharmaceuticals and that use of the tea could lead to the malaria parasite developing resistance to the drugs.

There are two issues I have with the first claim about herbal concoctions. Having perused the Compendium of Pharmaceuticals (CPS), I can tell you the last I looked it was huge and listed thousands and thousands of drugs and their side effects (did you know that death is considered a side effect?). Fabrication in a laboratory does not equal safety any more that chopping something off a plant and brewing it as a tea equals safety. Personally, I don’t understand why they aren’t testing the tea, which is derived from sweet wormwood and successfully passed one randomized clinical trial, to see if the result can be repeated and also to test it against the drugs in human clinical trials.

As for the second claim that use of the tea could lead to the malaria parasite developing resistance to the drugs, isn’t that what happened to anti-malarial drugs in the late 1990s? Using chloroquine led to resistance against chloroquine. Following this claim to its logical end, we should never use any drug or herbal concoction as either might lead to resistance.

As for the tea’s successful clinical trial, the researcher experienced difficulty getting his study published (from the article; Note: A link has been removed),

While the workers are effusive about the tea, malaria experts have taken less kindly to it. When Ogwang [Patrick Ogwang of the Ugandan Ministry of Health] tried to publish the results in Malaria Journal, a reviewer largely praised the quality of the science but nixed publication out of concern that use of the tea could render ACTs ineffective. It’s a remarkably patronizing recommendation: that a scientific journal should keep the latest evidence out of the hands of Africans, lest they begin treating themselves. Marcel Hommel, editor in chief of the journal, defends the decision, saying, “It is the responsibility of an editor to avoid publishing papers that promote interventions which could potentially put patients at risk.” Ogwang eventually published his results in a less prestigious journal.

Borrell expresses reservations about herbal medicines/concoctions and he supports having the drugs for special cases but he also notes a study which suggests that a tea made from the plant might be more effective for adults and for less severe cases. From the article (Note: Links have been removed),

In the case of malaria, Anamed and others also argue that it makes sense to preserve stocks of conventional drugs for children and severe cases. One reason ACTs have been so expensive is the cost of isolating artemisinin, but there have long been indications that using a cruder, cheaper whole-plant extract could potentially be more effective and cheaper. In a study conducted in rats last year, University of Massachusetts researchers compared a single dose of pure artemisinin to dried whole leaves, and found that the whole plant was better at killing malaria parasites. And while millions have been spent bioengineering bacteria to crank out pure artemisinin on a budget, you still have to get it to the people who need it.

The resistance that the experts fear has been proved true, according to Borrell’s article, in areas where artemisinin drugs have been distributed and used with abandon.

Coincidentally or not, the University of California Berekeley announced a the development of semi-synthetic artemisinin in the Apr. 11, 2013 news release mentioned earlier,

Twelve years after a breakthrough discovery in his University of California, Berkeley, laboratory, professor of chemical engineering Jay Keasling is seeing his dream come true.

On April 11 [2013], the pharmaceutical company Sanofi will launch the large-scale production of a partially synthetic version of artemisinin, a chemical critical to making today’s front-line antimalaria drug, based on Keasling’s discovery.

The drug is the first triumph of the nascent field of synthetic biology and will be, Keasling hopes, a lifesaver ….

Keasling and colleagues at Amyris, a company he cofounded in 2003 to bring the lab-bench discovery to the marketplace, will publish in the April 25 issue of Nature the sequence of genes they introduced into yeast that allowed Sanofi to make the chemical precursor of artemisinin. The paper will be available online April 10.

“It is incredible,” said Keasling, who also serves as associate director for biosciences at Lawrence Berkeley National Laboratory and as CEO of the Joint Bioenergy Institute in Emeryville, Calif. “The time scale hasn’t been that long, it just seems like a long time. There were many places along the way where it could have failed.”

The yeast strain developed by Amyris based on Keasling’s initial research and now used by Sanofi produces a chemical precursor of artemisinin, a compound that until now has been extracted from the sweet wormwood plant, Artemsia annua. Artemisinin from either sweet wormwood or the engineered yeast is then turned into the active antimalarial drug , and typically mixed with another antimalarial drug in what is called arteminsinin combination therapy, or ACT.

Global demand for artemisinin has increased since 2005, when the World Health Organization identified ACTs as the most effective malaria treatment available. Sanofi said that it is committed to producing semisynthetic artemisinin using a no-profit, no-loss production model, which will help to maintain a low price for developing countries. Though the price of ACTs will vary from product to product, the new source for its key ingredient, in addition to the plant-derived supply, should lead to a stable cost and steady supply, Keasling said.

Unfortunately, no details about Sanofi’s no-profit, no-loss production model are offered. Perhaps a reader could ease my ignorance? I am interpreting this model to mean that while Sanofi won’t make money from the project, it does expect to recoup its costs (no-loss). (I most recently mentioned Sanofi, a French multinational, in an Apr. 9, 2013 posting about the winners of its 2013 competition for Canadian students.)

The backers of the research do provide some reasoning for this synthetic biology artemisinin project (from the news release),

“The production of semisynthetic artemisinin will help secure part of the world’s supply and maintain the cost of this raw material at acceptable levels for public health authorities around the world and ultimately benefit patients,” said Dr. Robert Sebbag, vice-president of Access to Medicines at Sanofi. “This is a pivotal milestone in the fight against malaria.” [emphasis mine]

I wonder what constitutes an ‘acceptable’ level of costs to public health authorities and, for that matter, to Sanofi. After all, I was under the impression after reading Borrell’s article that all one needed to do was to cultivate the plant and harvest it for materials to make tea.  There was no mention of difficulties cultivating the plant in countries outside of China where it originated nor was there any mention that it was expensive to cultivate.

There are some fairly big names, in addition to Sanofi, involved in this synthetic biology project,

The success is due in large part to two grants totaling $53.3 million from the Bill & Melinda Gates Foundation to OneWorld Health, the drug development program for PATH, an international nonprofit organization aiming to transform global health through innovation. [emphasis mine] OneWorld Health shepherded the drug’s development out of Keasling’s UC Berkeley lab to Amyris for scale-up and then to pharmaceutical firm Sanofi, based in France, for production.

I am pointing out some interesting relationships with the intention of providing a view of a complex situation with many well-intentioned players, where lines of opposition have been drawn and the people most at risk seemingly forgotten. If the tea hasn’t caused resistance in over 1,500 years of use in China while the drugs have already done so on the Thai-Cambodian border as per Borrell’s article, why isn’t it being accepted and used? While some might point at corporate profit requirements (and I’m not discounting that motive regardless of what Sanofi’s company executives say), there are also issues of institutionalized opposition to any developments made outside of the medical establishment, and the fetishization of the laboratory environment where drugs are made pure in a pure environment while herbs come from the ‘dirty’ earth.

Alberta’s diagnostic tool on a chip (aka point-of-care diagnostics)

2012 seems to be continuing a trend that 2011 enjoyed, the race to develop diagnostics-on-a-chip (aka handheld diagnostics or point-of-care diagnostics). The latest story is from Tannara Yelland for Canadian University Press in a Jan. 3, 2012 article titled, Where nanotechnology and medicine meet; University of Alberta researcher shrinks medical tests, makes them more affordable,

Researchers have made great strides in diagnostic tools for detecting the genetic abnormalities that lead to or signal cancers, but many of these remain solely the province of experimental labs because of practical impediments like the cost of equipment.

Aiming specifically to make clinical medicine easier and less expensive to conduct, Pilarski [Linda Pilarski, a University of Alberta oncology professor and Canada Research Chair in Biomedical Nanotechnology] and her team have created a microfluidic chip about the size of a thumbnail that can test for up to 80 different genetic markers of cancer.

“Most of the things we were doing were much too complicated to do in a clinical lab,” Pilarski said. “Their technology has to be far more regulated than what we’re doing in the lab. It may be feasible [to use current experimental tests] in a big research hospital, but not in Stony Plains [Alberta], in our little health care centre, for example.

“And with tests that are feasible, they’re feasible only because they study many samples at once.”

… They have reversed the normal procedure, studying several samples for one disease, in the hopes of making tests easier to do in more remote locations.

There are about 80 small posts attached to a glass chip, and each post carries out a different test for a different mutation. Unlike the currently used larger equipment, Pilarski says these chips should allow clinicians to perform the tests within an hour, and rather than make patients wait a nerve-wracking few days for their results, they can find out before they leave the lab.

While Pilarski’s work has focused on cancer, the chip she has developed could be used to test for any number of illnesses, which is precisely what medical equipment company Aquila Diagnostics plans to do with Pilarski’s technology.

“Some of the first things to come out might not be for cancer but for infectious diseases,” Pilarski said.

My most recent posting on handheld diagnostic tools, Dec. 22, 2011, noted the Grand Challenges grants (from the Bill & Melinda Gates Foundation and from the Canadian not-for-profit agency called Grand Challenges) awarded to researchers working on the problem of diagnosing infectious diseases in the developing world. From the posting,

The grants announced today are part of the Point-of-Care Diagnostics (POC Dx) Initiative [of the Bill & Melinda Gates Foundation], a research and development program with the goal of creating new diagnostic platforms that enable high-quality, low-cost diagnosis of disease, and also facilitate sustainable markets for diagnostic products, a key challenge in the developing world. This first phase of the POC Dx Initiative is focused on developing new technologies and identifying implementation issues to address the key barriers for clinical diagnostics in the developing world.

Getting back to  Pilarski and the Alberta initiative, the company mentioned in the article, Aquila Diagnostics is based in Edmonton, Alberta and is associated with the University of Alberta. From the company website home page,

Aquila is a medical device company focused on point-of-care diagnosis testing for blood borne infectious diseases and cancer. The Company is developing a portable diagnostic system that delivers rapid, low-cost, multiparameter tests without the need for highly-skilled operators. Aquila’s gel post PCR technology is protected and under licence from the University of Alberta.

I look forward to hearing more about these initiatives as they get closer to market.

Grand Challenges, point-of-care diagnostics, and a note on proliferating bureaucracies

Last week, the Bill & Melinda Gates Foundation announced a $21.1 M grant over three years for research into point-of-care diagnostic tools for developing nations. A Canadian nongovermental organization (NGO) will be supplementing this amount with $10.8 M for a total of $31.9 M. (source: Dec. 16, 2011 AFP news item [Agence France-Presse] on MedicalXpress.com)

At this point, things get a little confusing. The Bill & Melinda Gates Foundation has a specific program called Grand Challenges in Global Health and this grant is part of that program. Plus, the Canadian NGO is called Grand Challenges Canada (couldn’t they have found a more distinctive name?), which is funded by a federal Canadian government initiative known as the Development Innovation Fund (DIF). Here’s a little more from the Who We Are page,

In the 2008 Federal Budget the Government of Canada announced the creation of the Development Innovation Fund (DIF) to “support the best minds in the world as they search for breakthroughs in global health and other areas that have the potential to bring about enduring changes in the lives of the millions of people in poor countries.” The Government of Canada is committing $225 million over five years to the Development Innovation Fund.

The Development Innovation Fund will be delivered by Grand Challenges Canada working with the International Development Research Centre (IDRC) and the Canadian Institutes of Health Research (CIHR). As the Government of Canada’s lead on the Development Innovation Fund, the International Development Research Centre will draw on decades of experience managing research projects and ensure that developing country researchers and concerns are front and centre in this exciting new initiative. The initial activities of the Development Innovation Fund will be in global health.

Grand Challenges Canada is a unique and independent not-for-profit organization dedicated to improving the health and well-being of people in developing countries by integrating scientific, technological, business and social innovation both in Canada and in the developing world. Grand Challenges Canada works with the International Development Research Centre, Canadian Institutes of Health Research, and other global health foundations and organizations committed to discovering sustainable solutions to the world’s most pressing health challenges. Grand Challenges Canada is hosted by the McLaughlin-Rotman Centre for Global Health, University Health Network and University of Toronto.

So if I understand this rightly, the Canadian federal government created a new fund and then created a new NGO to administer that fund. I wonder how much money is required administratively for this NGO which exists solely to distribute DIF. I’m glad to see that someone is getting some money for research out of this but it does seem labyrinthine at best.

On a happier, more productive now, here’s the type of research this money will be used for (from the MedicalXpress.com news item),

“Imagine a hand-held, battery-powered device that can take a drop of blood and, within minutes, tell a healthcare worker in a remote village whether a feverish child has malaria, dengue or a bacterial infection,” said Peter Singer, head of Grand Challenges Canada which is partnering with the Microsoft founder Bill Gates’s charitable organization on the project.

In this last year I have posted a few times about similar projects for handheld diagnostic devices, in my Aug. 4, 2011 posting ‘Diagnostics on a credit card‘ and in my Feb. 15, 2011 posting ‘Argento, nano, and PROOF‘. There’s a lot of interest in these devices whether they’re intended for use in developing countries or not.

I have tracked down the Dec. 15, 2011 news release from the Bill & Melinda Gates Foundation to get more details about this specific project,

The grants announced today are part of the Point-of-Care Diagnostics (POC Dx) Initiative, a research and development program with the goal of creating new diagnostic platforms that enable high-quality, low-cost diagnosis of disease, and also facilitate sustainable markets for diagnostic products, a key challenge in the developing world. This first phase of the POC Dx Initiative is focused on developing new technologies and identifying implementation issues to address the key barriers for clinical diagnostics in the developing world.

They also give some examples of projects that will be receiving funding from this grant,

Examples of projects receiving funding:

  • Seventh Sense Biosystems, a company located in Cambridge MA, is developing TAP—a painless, low-cost blood collection device which aims to allow easy, push-button sampling of blood. This simple collection process would reduce training requirements and enable diagnostics closer to the point of need.
  • David Beebe and researchers at the University of Wisconsin are developing a sample purification system that seeks to better filter and concentrate biomarkers from patient samples. This system will be designed for use in impoverished settings.
  • Axel Scherer of the California Institute of Technology, along with collaborators at Dartmouth College, will develop a prototype quantitative PCR (qPCR) amplification/detection component module—a low cost, easy-to-use technology that can rapidly detect a wide range of diseases.

There’s additional detail about grantees in the Grand Challenges Canada Dec. 16, 2011 news release,

One grantee, Bigtec Labs in Bangalore, India, has already developed a handheld analyser called a mini-PCR (Polymerase Chain Reaction) machine capable of identifying malaria from a DNA fingerprint.

―A colleague here one day was ill with what he thought was food poisoning,” said

B. Chandrasekhar Nair, Director of Bigtec Labs. “We ran a blood sample through our mini-PCR and it turned out to be malaria.‖ Immediately treated, the colleague returned to health within a week.

With its CAD $1.3 million grant, Bigtec will use nano-materials to develop a sophisticated filter to concentrate pathogen DNA from samples of blood, sputum, urine, or nasal and throat swabs. Once concentrated, the DNA can be processed and illnesses identified in the mini-PCR.

The innovative projects receiving funding include:

 Dr. Dhananjaya Dendukuri from Achira Labs in Bangalore India, and Dr. Nandini Dendukuri from McGill University in Montreal are developing a piece of silk that can be used as a cost-effective and simple diagnostic for blood and urine samples. Called Fabchips (Fabric Chips) the woven diagnostic has the added benefit of providing jobs to local artisans and being environmentally friendly.

 Dr. David Goldfarb, a Canadian working in Botswana, is testing a simple, rapid, easy-to-use swab for the detection of diarrheal disease in the developing world.

 Dr. Wendy Stevens from the University of Witwatersrand in South Africa is testing new point-of-care technologies for the integrated management of HIV and TB treatment to encourage equity, affordability and accessibility to treatment.

 Dr. Patricia Garcia at the Universidad Peruana Cayetano Heredia in Peru will look at ways to overcome social and commercial barriers to delivering point-of-care diagnostic tests aimed at improving maternal and child health – two of the UN‘s Millennium Development goals for 2015.

There’s a full list of all the grantees (Grand Challenges Canada and the Bill & Melinda Gates Foundation) and links to videos here.

Here’s a sample video of Dr. Dhananjaya Dendukuri to get you started,

Congratulations to the researchers!

Micro needle patches project gets Grand Challenges Explorations grant

The project being funded with a Grand Challenges Explorations grant (from the Bill & Melinda Gates Foundation) reminds me a lot of the nanopatch that Mark Kendall and his team have been developing in Australia (a project last mentioned in my Aug. 3, 2011 posting). This new initiative comes from the Georgia Institute of Technology and is aimed at the eradication of polio. From the Nov. 7, 2011 news item on Nanowerk,

The Georgia Institute of Technology will receive funding through Grand Challenges Explorations, an initiative created by the Bill & Melinda Gates Foundation that enables researchers worldwide to test unorthodox ideas that address persistent health and development challenges. Mark Prausnitz, Regents’ professor in Georgia Tech’s School of Chemical and Biomolecular Engineering, will pursue an innovative global health research project focused on using microneedle patches for the low-cost administration of polio vaccine through the skin in collaboration with researchers Steve Oberste and Mark Pallansch of the US Centers for Disease Control and Prevention (CDC).

The goal of the Georgia Tech/CDC project is to demonstrate the scientific and economic feasibility for using microneedle patches in vaccination programs aimed at eradicating the polio virus. Current vaccination programs use an oral polio vaccine that contains a modified live virus. This vaccine is inexpensive and can be administered in door-to-door immunization campaigns, but in rare cases the vaccine can cause polio. There is an alternative injected vaccine that uses killed virus, which carries no risk of polio transmission, but is considerably more expensive than the oral vaccine, requires refrigeration for storage and must be administered by trained personnel. To eradicate polio from the world, health officials will have to discontinue use of the oral vaccine with its live virus, replacing it with the more expensive and logistically-complicated injected vaccine.

Prausnitz and his CDC collaborators believe the use of microneedle patches could reduce the cost and simplify administration of the injected vaccine.

Iwonder if this team working at the microscale rather than the nanoscale, as Kendall’s team does, is finding some of the same benefits, from my August 3, 2011 posting,

Early stage testing in animals so far has shown a Nanopatch-delivered flu vaccine is effective with only 1/150th of the dose compared to a syringe and the adjuvants currently required to boost the immunogenicity of vaccines may not be needed. [emphases mine]

I find the notion that only 1/150th of a standard syringe dosage can be effective quite extraordinary. I wonder if this will hold true in human clinical trials.

If they get similar efficiencies at the microscale as they do at the nanoscale, the expense associated with vaccines using killed viruses should plummet dramatically. I do have one thought, do we have to eradicate the polio virus in a ‘search and destroy mission’? Couldn’t we learn to live with them peacefully while discouraging their noxious effects on our own biology?