Tag Archives: European Particle Physics Laboratory

Peter Higgs and François Englert to receive 2013 Nobel Prize in Physics and TRIUMF name changes?

After all the foofaraw about finding/confirming the existence of the Higgs Boson or ‘god’ particle (featured in my July 4, 2012 posting amongst many others), the Royal Swedish Academy of Sciences has decided to award the 2013 Nobel prize for Physics to two of the individuals responsible for much of the current thinking about subatomic particles and mass (from the Oct. 8, 2013 news item on ScienceDaily),

The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics for 2013 to François Englert of Université Libre de Bruxelles, Brussels, Belgium, and Peter W. Higgs of the University of Edinburgh, UK, “for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN’s Large Hadron Collider.”

François Englert and Peter W. Higgs are jointly awarded the Nobel Prize in Physics 2013 for the theory of how particles acquire mass. In 1964, they proposed the theory independently of each other (Englert together with his now deceased colleague Robert Brout). In 2012, their ideas were confirmed by the discovery of a so called Higgs particle at the CERN laboratory outside Geneva in Switzerland.

TRIUMF, sometimes known as Canada’s national laboratory for particle and nuclear physics, has issued an Oct. 8, 2013 news release,

HIGGS, ENGLERT SHARE 2013 NOBEL PRIZE IN PHYSICS

Canadians Key Part of Historical Nobel Prize to “Godfathers” of the “God Particle”

(Vancouver, BC) — The Royal Swedish Academy of Sciences today awarded the Nobel Prize in physics to Professor Peter W. Higgs (Univ. of Edinburgh) and Professor François Englert (Univ. Libre de Bruxelles) to recognize their work developing the theory of what is now known as the Higgs field, which gives elementary particles mass.  Canadians have played critical roles in all stages of the breakthrough discovery Higgs boson particle that validates the original theoretical framework.  Throngs across Canada are celebrating.

More than 150 Canadian scientists and students at 10 different institutions are presently involved in the global ATLAS experiment at CERN.  Canada’s national laboratory for particle and nuclear physics, TRIUMF, has been a focal point for much of the Canadian involvement that has ranged from assisting with the construction of the LHC accelerator to building key elements of the ATLAS detector and hosting one of the ten global Tier-1 Data Centres that stores and processes the physics for the team of thousands.

“The observation of a Higgs Boson at about 125 GeV, or 130 times the mass of the proton, by both the ATLAS and CMS groups is a tremendous achievement,” said Rob McPherson, spokesperson of the ATLAS Canada collaboration, a professor of physics at the University of Victoria and Institute of Particle Physics scientist. “Its existence was predicted in 1964 when theorists reconciled how massive particles came into being.  It took almost half a century to confirm the detailed predictions of the theories in a succession of experiments, and finally to discover the Higgs Boson itself using our 2012 data.”

The Brout-Englert-Higgs (BEH) mechanism was first proposed in 1964 in two papers published independently, the first by Belgian physicists Robert Brout and François Englert, and the second by British physicist Peter Higgs. It explains how the force responsible for beta decay is much weaker than electromagnetism, but is better known as the mechanism that endows fundamental particles with mass. A third paper, published by Americans Gerald Guralnik and Carl Hagen with their British colleague Tom Kibble further contributed to the development of the new idea, which now forms an essential part of the Standard Model of particle physics. As was pointed out by Higgs, a key prediction of the idea is the existence of a massive boson of a new type, which was discovered by the ATLAS and CMS experiments at CERN in 2012.

The next step will be to determine the precise nature of the Higgs particle and its significance for our understanding of the universe. Are its properties as expected for the Higgs boson predicted by the Standard Model of particle physics? Or is it something more exotic? The Standard Model describes the fundamental particles from which we, and every visible thing
in the universe, are made, and the forces acting between them. All the matter that we can see, however, appears to be no more than about 4% of the total. A more exotic version of the Higgs particle could be a bridge to understanding the 96% of the universe that remains obscure.

TRIUMF salutes Peter Higgs and François Englert for their groundbreaking work recognized by today’s Nobel Prize and congratulates the international team of tens of thousands of scientists, engineers, students, and many more from around the world who helped make the discovery.

For spokespeople at the major Canadian universities involved in the Higgs discovery, please see the list below:

CANADIAN CONTACTS

U of Alberta: Doug Gingrich, [email protected], 780-492-9501
UBC:  Colin Gay, [email protected], 604-822-2753
Carleton U: Gerald Oakham (& TRIUMF), [email protected], 613-520-7539
McGill U: Brigitte Vachon (also able to interview in French), [email protected], 514-398-6478
U of Montreal: Claude Leroy (also able to interview in French),[email protected], 514-343-6722
Simon Fraser U: Mike Vetterli (& TRIUMF, also able to interview in French), [email protected], 778-782-5488
TRIUMF: Isabel Trigger (also able to interview in French), [email protected], 604-222-7651
U of Toronto: Robert Orr, [email protected], 416-978-6029
U of Victoria: Rob McPherson, [email protected], 604-222-7654
York U: Wendy Taylor, [email protected], 416-736-2100 ext 77758

While I know Canadians have been part of the multi-year, multi-country effort to determine the existence or non-existence of the Higgs Boson and much more in the field of particle physics, I would prefer we were not described as “… Key Part of Historical Nobel Prize … .” The question that springs to mind is: how were Canadian efforts key to this work? The answer is not revealed in the news release, which suggests that the claim may be a little overstated. On the other hand, I do like the bit about ‘saluting Higgs and Englert for their groundbreaking work’.

As for TRIUMF and what appears to be a series of name changes, I’m left somewhat puzzled, This Oct. 8, 2013 news release bears the name (or perhaps it’s a motto or tagline of some sort?): TRIUMF — Accelerating Science for Canada, meanwhile the website still sports this: TRIUMF Canada’s national laboratory for particle and nuclear physics while a July 17, 2013 TRIUMF news release gloried in this name: TRIUMF Accelerators, Inc., (noted in my July 18, 2013 posting). Perhaps TRIUMF is trying to follow in CERN’s footsteps. CERN was once known as the ‘European particle physics laboratory’ but is now known as the European Organization for Nuclear Research and seems to also have the tagline: ‘Accelerating science’.

Accelerator-on-a-chip at Stanford University’s SLAC National Accelerator Laboratory

For anyone who’s ever seen a picture of the accelerators at CERN’s (European Particle Physics Laboratory) Large Hadron Collider, the notion of an accelerator-on-a-chip seems unbelievable. Scientists at Stanford’s SLAC National Accelerator Laboratory thought otherwise according to a Sept. 27, 2013 SLAC news release (also on EurekAlert),

In an advance that could dramatically shrink particle accelerators for science and medicine, researchers used a laser to accelerate electrons at a rate 10 times higher than conventional technology in a nanostructured glass chip smaller than a grain of rice.

“We still have a number of challenges before this technology becomes practical for real-world use, but eventually it would substantially reduce the size and cost of future high-energy particle colliders for exploring the world of fundamental particles and forces,” said Joel England, the SLAC physicist who led the experiments. “It could also help enable compact accelerators and X-ray devices for security scanning, medical therapy and imaging, and research in biology and materials science.”

Because it employs commercial lasers and low-cost, mass-production techniques, the researchers believe it will set the stage for new generations of “tabletop” accelerators.

At its full potential, the new “accelerator on a chip” could match the accelerating power of SLAC’s 2-mile-long linear accelerator in just 100 feet, and deliver a million more electron pulses per second. [emphasis mine]

The news release goes on to describe how the researchers have achieved a more efficient acceleration,

Particles are generally accelerated in two stages. First they are boosted to nearly the speed of light. Then any additional acceleration increases their energy, but not their speed; this is the challenging part.

In the accelerator-on-a-chip experiments, electrons are first accelerated to near light-speed in a conventional accelerator. Then they are focused into a tiny, half-micron-high channel within a fused silica glass chip just half a millimeter long. The channel had been patterned with precisely spaced nanoscale ridges. Infrared laser light shining on the pattern generates electrical fields that interact with the electrons in the channel to boost their energy.

The researchers’ have produced an animation which illustrates their work,

Caption: This animation explains how the accelerator on a chip uses infrared laser light to accelerate electrons to increasingly higher energies. Credit:  (Greg Stewart/SLAC)

Here’s a citation for and a link to the  research paper (‘near final version as of Sept. 30, 2013),

Demonstration of electron acceleration in a laser-driven dielectric microstructure by E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, & R. L. Byer. Nature (2013) doi:10.1038/nature12664  Published online 27 September 2013

It is behind a paywall although you can get reading access via ReadCube.

Finally, here’s what the chip looks like,

Nanofabricated chips of fused silica just 3 millimeters long were used to accelerate electrons at a rate 10 times higher than conventional particle accelerator technology. (Brad Plummer/SLAC)

Nanofabricated chips of fused silica just 3 millimeters long were used to accelerate electrons at a rate 10 times higher than conventional particle accelerator technology. (Brad Plummer/SLAC)

TRIUMF looks for new Director as Nigel S. Lockyer exits for the Fermilab (US)

The circumstances around Nigel S. Lockyer’s departure as Director of Canada’s National Laboratory for Particle and Nuclear Physics, TRIUMF,  are very interesting. Just weeks ago, TRIUMF announced a major innovation for producing medical isotopes (my June 9, 2013 posting), which should have an enormous impact on cities around the world and their access to medical isotopes. (Briefly, cities with cyclotrons could produce, using the technology developed by TRIUMF,  their own medical isotopes without using material from nuclear reactors.)

Also in the recent past, Canada’s much storied McGill University joined the TRIUMF consortium (I’m surprized it took this long), from the May 10, 2013 news release,

At its recent Board of Management meeting, TRIUMF approved McGill University as an associate member of the consortium of universities that owns and operates Canada’s national laboratory for particle and nuclear physics. McGill joins 17 other Canadian universities in leading TRIUMF.

Paul Young, Chair of the Board and Vice President for Research at the University of Toronto, said, “The addition of McGill to the TRIUMF family is a great step forward. McGill brings world-class scientists and students to TRIUMF and TRIUMF brings world-leading research tools and partnerships to McGill.”

The university’s closer association with TRIUMF will allow it to participate in discussions about setting the direction of the laboratory as well provide enhanced partnerships for new research infrastructure that strengthens efforts on McGill’s campuses. Dr. Rose Goldstein, McGill Vice-Principal (Research and International Relations), said, “We are delighted to formalize our long-standing involvement in TRIUMF. It is an important bridge to international research opportunities at CERN and elsewhere. Associate membership in TRIUMF will also help McGill advance its Strategic Research Plan, especially in the priority area of exploring the natural environment, space, and the universe.”

McGill University has been involved in TRIUMF-led activities for several decades, most notably as part of the Higgs-hunting efforts at CERN. TRIUMF constructed parts of the Large Hadron Collider that ultimately produced Higgs bosons. The co-discovery was made by the ATLAS experiment for which TRIUMF led Canadian construction of several major components, and McGill played a key role in the development of the experiment’s trigger system. McGill and TRIUMF have also worked together on particle-physics projects in Japan and the U.S.

Professor Charles Gale, chair of the Department of Physics, played a key role in formalizing the relationship between TRIUMF and McGill. He said, “Our department is one of the top in North America in research, teaching, and service. Undoubtedly our work with TRIUMF has helped contribute to that and I expect both institutions to blossom even further.” Professor of physics and Canadian Research Chair in Particle Physics Brigitte Vachon added, “TRIUMF provides key resources to my students and me that make our research at CERN possible; the discovery of the Higgs boson is a perfect example of what such collaboration can achieve.”

Nigel S. Lockyer, director of TRIUMF, commented, “The addition of McGill to the TRIUMF team is welcome and long overdue. We have been working together for decades in subatomic physics and this acknowledgment of the partnership enhances both institutions and builds stronger ties in areas such as materials science and nuclear medicine.”

A scant month after McGill joins the consortium and weeks after a major announcement about medical isotopes, Lockyer announces his departure for the Fermilabs in the US, from the May 20, 2013 TRIUMF news release,

In his capacity as Chairman of the Board of Directors of Fermi Research Alliance, LLC, University of Chicago President Robert J. Zimmer today announced that TRIUMF’s director Nigel S. Lockyer has been selected to become the next director of the U.S. Department of Energy’s Fermi National Accelerator Laboratory, located outside Chicago.  Lockyer is expected to complete his work at TRIUMF this summer and begin at Fermilab in the autumn.

Paul Young, Chair of TRIUMF’s Board of Management and Vice President of Research and Innovation at the University of Toronto said, “Nigel was selected from a truly outstanding set of international candidates for this challenging and important position.  Although it will be a short-term loss, this development is a clear recognition of Nigel’s vision and passion for science and the international leadership taken by TRIUMF and Canada in subatomic physics.  On behalf of the entire TRIUMF Board, we wish Nigel, TRIUMF, and Fermilab every success in the future.”

Lockyer set TRIUMF upon a new course when he arrived six years ago, focusing the team on “Advancing isotopes for science and medicine.”  Based on TRIUMF’s existing infrastructure and talent, this initiative ranged from expanding the nuclear-medicine program so that it is now playing a leading role in resolving the medical-isotope crisis to the formulation and funding of a new flagship facility called ARIEL that will double TRIUMF’s capabilities for producing exotic isotopes used in science and for developing tomorrow’s medical isotopes.  At the heart of ARIEL is a next-generation electron accelerator using modern superconducting radio-frequency technology.

Commenting on Nigel’s leadership of TRIUMF, Paul Young added, “One look at TRIUMF’s current trajectory and you can see that this is a man of great ambition and talent.  Working with the Board and a great team at the lab, he propelled TRIUMF to new heights.  We have all been fortunate at TRIUMF to have Nigel as a colleague and leader.”

Reflecting on his time at TRIUMF and the upcoming transition to Fermilab, Nigel Lockyer said, “Knowing that TRIUMF is in good hands with a superb leadership team and seeing its growing string of accomplishments has helped make this decision a tiny bit easier.  The laboratory’s future is secure and TRIUMF knows exactly what it is doing.  I am proud to have contributed to TRIUMF’s successes and it is my hope to ignite the same energy and enthusiasm in the U.S. by heading the team at Fermilab.”  He added, “I also expect to foster a new level of partnership between the U.S. and Canada in these key areas of science and technology.”

“Nigel has had a profound impact on TRIUMF,” said David B. MacFarlane, chair of the National Research Council’s Advisory Committee on TRIUMF and Associate Laboratory Director at the U.S. SLAC National Accelerator Laboratory.  “He articulated an ambitious new vision for the laboratory and energetically set it upon a path toward an exciting world-class program in rare-isotope beams and subatomic-physics research.  When ARIEL comes online, the lab will be fulfilling the vision that Nigel and his team boldly initiated.”  David MacFarlane added, “The TRIUMF community will certainly miss his warmth, his insatiable scientific curiosity, his creativity, and his faith in the laboratory and its entire staff.  However, I fully expect these same characteristics will serve Nigel well in his new leadership role as Fermilab director.”

As per standard practice, the TRIUMF Board of Management will announce plans and timelines for the international search process and interim leadership within the next few weeks.

Before speculating on the search process and interim leadership appointment, I have a comment of sorts about the Fermilab, which was last mentioned here in my Feb. 1, 2012 posting where I excerpted this interesting comment from a news release,

From the Feb. 1, 2012 news release on EurekAlert,

In this month’s Physics World, reviews and careers editor, Margaret Harris, visits the Fermi National Accelerator Laboratory (Fermilab) to explore what future projects are in the pipeline now that the Tevatron particle accelerator has closed for good.

After 28 years of ground-breaking discoveries, the Tevatron accelerator has finally surrendered to the mighty Large Hadron Collider (LHC) at CERN [European Laboratory for Particle Physics], placing Fermilab, in some people’s mind, on the brink of disappearing into obscurity. [emphasis mine]

It seems the Fermilab is in eclipse and Lockyer is going there to engineer a turnaround. It makes one wonder what the conditions were when he arrived at TRIUMF six years ago (2006?). Leading on from that thought, the forthcoming decisions as to whom will be the interim Director and/or the next Director should be intriguing.

Usually an interim position is filled by a current staff member, which can lead to some fraught moments amongst internal competitors.  That action, however fascinating, does not tend to become fodder for public consumption.

Frankly, I’m more interested in the board’s perspective. What happens if they pick an internal candidate while they prepare for the next stage when they’re conducting their international search? Based on absolutely no inside information whatsoever, I’m guessing that Tim Meyer, Head, Strategic Planning & Communications for TRIUMF, would be a viable internal candidate for interim director.

From a purely speculative position, let’s assume he makes a successful play to become the interim Director. At this point, the board will have to consider what direction is the right one for TRIUMF while weighing up the various candidates for the permanent position.  Assuming the interim Director is ambitious and wants to become the permanent Director, the dynamics could get very interesting indeed.

From the board’s perspective, you want the best candidate and you want to keep your staff. In Canada, there’s one TRIUMF; there are no other comparable institutions in the country.  Should an internal candidate such as Meyer get the interim position but not the permanent one (assuming he’d want to be the permanent Director) he would have very few options in Canada.

Based on this speculation, I can safety predict some very interesting times ahead for TRIUMF and its board. In the meantime, I wish Lockyer all the best as he moves back to the US to lead the Fermilab.

Is a philosophy of the Higgs and other physics particles a good idea?

Michael  Krämer of the RWTH Aachen University (Germany) muses about philosophy, the Higgs Boson, and more in a Mar. 24, 2013 posting on Jon Butterworth’s Life and Physics blog (Guardian science blogs; Note: A link has been removed),

Many of the great physicists of the 20th century have appreciated the importance of philosophy for science. Einstein, for example, wrote in a letter in 1944:

    I fully agree with you about the significance and educational value of methodology as well as history and philosophy of science. So many people today—and even professional scientists—seem to me like somebody who has seen thousands of trees but has never seen a forest.

At the same time, physics has always played a vital role in shaping ideas in modern philosophy. It appears, however, that we are now faced with the ruins of this beautiful marriage between physics and philosophy. Stephen Hawking has claimed recently that philosophy is “dead” because philosophers have not kept up with science …

Krämer is part of an interdisciplinary (physics and philosophy) project at the LHC (Large Hadron Collider at CERN [European Particle Physics Laboratory]), The Epistemology of the Large Hadron Collider. From the project home page (Note: A link has been removed),

This research collaboration works at the crossroads of physics, philosophy of science, and contemporary history of science. It aims at an epistemological analysis of the recently launched new accelerator experiment at CERN, the Large Hadron Collider (LHC). Central themes are (i) the mechanisms of generating the masses of the particles of the standard model, especially the Higgs-mechanism and the Higgs-particle the LHC has set out to detect; (ii) the ongoing research process with special emphasis on the interaction between a large experiment and a community of theoreticians; and (iii) the implications of an experiment that is characterized by its enormous complexity and the need to be highly selective in data gathering. With the heading “Epistemology of the LHC” the research group intends both a philosophical analysis of the theoretical structures and of the conditions of knowledge production, among them the criteria of acceptance, and a real-time monitoring of the ongoing physical development from the perspective of the history of science. Theresearch group has emerged from a collaboration between a High Energy Working group and the Interdisciplinary Centre for Science and Technology Studies and is based in Wuppertal but also involves external members and collaborators.

Krämer shares some of his ideas and the type of thinking generated when physicists and philosophers collide (I plead guilty to the word play; from Butterworth’s Guardian science blog),

… The relationship between experiment and theory (what impact does theoretical prejudice have on empirical findings?) or the role of models (how can we assess the uncertainty of a simplified representation of reality?) are scientific issues, but also issues from the foundation of philosophy of science. In that sense they are equally important for both fields, and philosophy may add a wider and critical perspective to the scientific discussion. And while not every particle physicist may be concerned with the ontological question of whether particles or fields are the more fundamental objects, our research practice is shaped by philosophical concepts. We do, for example, demand that a physical theory can be tested experimentally and thereby falsified, a criterion that has been emphasized by the philosopher Karl Popper already in 1934. The Higgs mechanism can be falsified, because it predicts how Higgs particles are produced and how they can be detected at the Large Hadron Collider.

On the other hand, some philosophers tell us that falsification is strictly speaking not possible: What if a Higgs property does not agree with the standard theory of particle physics? How do we know it is not influenced by some unknown and thus unaccounted factor, like a mysterious blonde walking past the LHC experiments and triggering the Higgs to decay? (This was an actual argument given in the meeting!)

The meeting Krämer is referring to is this one (from the meeting/conference website),

The first international conference and kick-off meeting of the German Society for Philosophy of Science/Gesellschaft für Wissenschaftsphilosophie (GWP) will take place from 11-14 March 2013 at the University of Hannover under the title:

How Much Philosophy in the Philosophy of Science?

Krämer then highlights some of the discussion that most interested in him (Note: A link has been removed),

… It is very hard for a philosopher to keep up with scientific progress, and how could one integrate various fields without having fully appreciated the essential features of the individual sciences? As Margaret Morrison from the University of Toronto pointed out in her talk, if philosophy steps back too far from the individual sciences, the account becomes too general and isolated from scientific practice. On the other hand, if philosophy is too close to an individual science, it may not be philosophy any longer.

I think philosophy of science should not consider itself primarily as a service to science, but rather identify and answer questions within its own domain. I certainly would not be concerned if my own research went unnoticed by biologists, chemists, or philosophers, as long as it advances particle physics. On the other hand, as Morrison pointed out, science does generate its own philosophical problems, and philosophy may provide some kind of broader perspective for understanding those problems.

It’s well worth reading Krämer’s full post for anyone who’s interested in how physicists (or Krämer) think about the role that philosophy could play (or not) in the field of physics.

The reference to Margaret Morrison from the University of Toronto (U of T) reminded me of the Bubble Chamber blog which is written by U of T historians and philosophers of science. Here’s a July 10, 2012 posting by Mike Thicke about the Higgs Boson and his response to philosopher Wayne Myrvold’s (University of Western Ontario) explanation of the statistics claims being made about the particle at that time,

We can all agree that reasoning and decision making in science is complicated. Scientists reason in many different contexts: in the lab, in their published papers, as career-minded professionals, as interested consumers of science, and as people going about their lives. It’s plausible to think that they reason in different ways in all of these contexts. When we’re discussing their reasoning as scientists, I believe distinguishing between the first three contexts is especially important. While Wayne’s explanation of the statistics behind the Higgs Boson discovery is very interesting, informative, and as far as I can tell correct, I think there are some confusions arising from his failure to make these distinctions.

Thicke does advise reading Myrvold’s July 4, 2012 posting before tackling his riposte.

Google Science Fair (encouraging the new generation of scientists) opened Jan. 30, 2013

Here’s a little information about the recently opened 2013 Google Science Fair for students around the world, aged 13 – 18, from the Jan. 30, 2013 posting on the official Google blog,

At age 16, Louis Braille invented an alphabet for the blind. When she was 13, Ada Lovelace became fascinated with math and went on to write the first computer program. And at 18, Alexander Graham Bell started experimenting with sound and went on to invent the telephone. Throughout history many great scientists developed their curiosity for science at an early age and went on to make groundbreaking discoveries that changed the way we live.

Today, we’re launching the third annual Google Science Fair in partnership with CERN, the LEGO Group, National Geographic and Scientific American to find the next generation of scientists and engineers. We’re inviting students ages 13-18 to participate in the largest online science competition and submit their ideas to change the world.

For the past two years, thousands of students from more than 90 countries have submitted research projects that address some of the most challenging problems we face today. Previous winners tackled issues such as the early diagnosis of breast cancer, improving the experience of listening to music for people with hearing loss and cataloguing the ecosystem found in water. This year we hope to once again inspire scientific exploration among young people and receive even more entries for our third competition.

Here’s some key information for this year’s Science Fair:

  • Students can enter the Science Fair in 13 languages.
  • The deadline for submissions is April 30, 2013 at 11:59 pm PDT.
  • In June, we’ll recognize 90 regional finalists (30 from the Americas, 30 from Asia Pacific and 30 from Europe/Middle East/Africa).
  • Judges will then select the top 15 finalists, who will be flown to Google headquarters in Mountain View, Calif. for our live, final event on September 23, 2013.
  • At the finals, a panel of distinguished international judges consisting of renowned scientists and tech innovators will select top winners in each age category (13-14, 15-16, 17-18). One will be selected as the Grand Prize winner.

Nick Summers in a Jan. 30, 2013 posting for TheNextWeb describes the prizes,

The grand prize also includes a Google scholarship worth $50,000, which can be used to further the students’ education in any way they like, digital access to Scientific American and a grant worth $10,000 for the students’ school, a hands-on experience at either CERN, LEGO or Google, as well as a Mindstorms LEGO set signed by CEO Jørgen Vig Knudstorp himself.

It’s an incredible prize, although there will also be a handful of age category winners, who will receive a slightly smaller, but no less impressive reward that includes a $25,000 Google scholarship, as well as the aforementioned custom LEGO set, hands-on experience and digital access to Scientific American for their school.

There is also a second prize from the journal, Scientific American, from the Jan. 30, 2013 press release on Nature,

Today marks the launch of the second annual $50,000 Scientific American Science in Action award, powered by the Google Science Fair. The Scientific American Science in Action award honors a project that can make a practical difference by addressing an environmental, health or resources challenge. …

“Kids are born scientists and have wonderful ideas about how to make the world a better place,” said Scientific American editor in chief Mariette DiChristina. “We are thrilled to once again sponsor the Scientific American Science in Action award as part of the Google Science Fair to recognize their great projects.”

The finalists and winner of the Scientific American Science in Action award will be drawn from the entry pool of the Google Science Fair by a committee of esteemed judges. In addition to the $50,000 cash prize, the winner will receive one year of mentoring to help realize the goal of her or his project and will be recognized at the 2013 Google Science Fair finalist event in September. More information is available at www.ScientificAmerican.com/science-in-action and www.google.com/sciencefair.

The winning project in 2012 was a Unique Simplified Hydroponic Method, developed by two 14-year-old boys, Sakhiwe Shongwe and Bonkhe Mahlalela, both from Swaziland. Shongwe and Mahlalela were also finalists in the 13-to-14-year-old age category at the overall Google Science Fair.

The deadline for entries is April 30, 2012 at 11:59 pm PDT. Good luck!

Inside story on doping; build it and they will collide; and physicist, feminist, and philosopher superstar Evelyn Fox Keller visits

Here are a few events being held in Vancouver (Canada) over the next weeks and months. This is not an exhaustive list (three events) but it certainly offers a wide range of topics.

Inside story on doping

First, Café Scientifique will be holding a meeting on the subject of doping and athletic pursuits at The Railway Club on the 2nd floor of 579 Dunsmuir St. (at Seymour St.) next Tuesday,

Our next café will happen on Tuesday January 29th, 7:30pm at The Railway Club. Our speaker for the evening will be Dr. Jim Rupert.[School of Kinesiology, University of British Columbia]

The title and abstract for his café is:

The use of genetics in doping and in doping control

Sports performance is an outcome of the complex interactions between an athlete’s genes and the environment(s) in which he or she develops and competes.  As more is learned about the contribution of genetics to athletic ability, concerns have been raised that unscrupulous athletes will attempt manipulate their DNA in an attempt to get an ‘edge‘ over the competition. The World Anti-doping Agency (WADA) has invested research funds to evaluate this possibility and to support studies into methods to detect so-called “gene doping”.  Superimposed on these concerns is the realisation that, in addition to contributing to performance, an athlete’s genes may influence the results of current doping-control tests. Natural genetic variation is an issue that anti-doping authorities must address as more is learned about the interaction between genotype and the responses to prohibited practices. To help differentiate between naturally occurring deviations in blood and urine ‘markers’ and those potentially caused by doping, the ‘biological-passport’ program uses intra-individual variability rather than population values to establish an athlete’s parameters.  The next step in ‘personalised’ doping-control may be the inclusion of genetic data; however, while this may benefit ‘clean’ athletes, it will do so at the expense of risks to privacy.  In my talk, I will describe some examples of the intersection of genetics and doping-control, and discuss how genetic technology might be used to both enhance physical performance as well as to detect athletes attempting to do so.

This is a timely topic  given hugely lauded Lance Armstrong’s recent confession that he was doping when he won his multiple cycling awards. From the Lance Armstrong essay on Wikipedia (Note: Footnotes and links have been removed),

Lance Edward Armstrong (born Lance Edward Gunderson, September 18, 1971) is an American former professional road racing cyclist. Armstrong was awarded victory in the Tour de France a record seven consecutive times between 1999 and 2005, but in 2012 he was disqualified from all his results since August 1998 for using and distributing performance-enhancing drugs, and he was banned from professional cycling for life. Armstrong did not appeal the decision to the Court of Arbitration for Sport. Armstrong confessed to doping in a television interview in January 2013, two-and-a-half months after the Union Cycliste Internationale (UCI), the sport’s governing body, announced its decision to accept USADA’s findings regarding him, and after he had consistently denied it throughout his career.

Build it and they will collide

Next, both TRIUMF (Canada’s national laboratory for particle and nuclear physics) and ARPICO (Society of Italian Researchers and Professionals in Western Canada) have sent Jan. 23, 2013 news releases concerning Dr. Lyn Evans and his talk about building the Large Hadron Collider (LHC) at CERN (European Particle Physics Laboratory) which led to the discovery of the Higgs Boson. The talk will be held at 6:30 pm on Feb. 20, 2013 at Telus World of Science, 1455 Quebec Street, Vancouver,

Fundamental Physics Prize winner to deliver public lecture Wed. Feb. 20 at Science World

Back to the Big Bang – From the LHC to the Higgs, and Beyond
Unveiling the Universe Lecture Series
Wednesday, 20 February 2013 at 6:30 PM (PST)
Vancouver, British Columbia

(Vancouver, B.C.)  The Large Hadron Collider (LHC) is history’s most powerful atom smasher, capable of recreating the conditions that existed less than a billionth of a second after the Big Bang. The construction of the LHC was a massive engineering challenge that spanned almost 15 years, yielding the most technologically sophisticated instrument mankind ever has created.

Join Science World and TRIUMF in welcoming Dr. Lyn Evans, project leader for the LHC construction, in his Milner Foundation Special Fundamental Physics Prize lecture. In this free event, Dr Evans will detail some of the design features and technical challenges that make the LHC such an awe-inspiring scientific instrument. He will also discuss recent results from the LHC and touch on what’s next in the world of high-energy physics. The lecture will be followed by an audience question and answer session.

Dr Evans, born in Wales in 1945, has spent his whole career in the field of high energy physics and particle accelerators. In 2012, he was awarded the Special Fundamental Physics Prize for his contribution to the discovery of the Higgs-like boson. See http://www.fundamentalphysicsprize.org

Tickets are free, but registration is required.

See  http://fpplecture.eventbrite.ca

Physicist, feminist, philosopher superstar Evelyn Fox Keller

Here’s the information available from the Situating Science Cluster Winter 2013 newsletter,

The UBC [University of British Columbia] Node and partners are pleased to welcome Dr. Evelyn Fox Keller as Cluster Visiting Scholar Th. April 4th. The Node and partners continue to support the UBC STS [University of British Columbia Science and Technology Studies] colloquium.

There is more information Fox Keller and the first talk she gave to kick off this Canadawide tour in an Oct. 29, 2012 posting. She will be visiting the University of Alberta and the University of Calgary (Alberta) just prior to the April 4, 2013 visit to Vancouver. There are no further details about Fox Keller’s upcoming visit either on the Situating Science website or on the UBC website.

Physicists at CERN film Decay—their first zombie movie?

Decay, the movie, seems to have been released in late November 2012.  It is, according to the Nov. 1, 2012 preview article written by Rebecca Pahle for The Mary Sue website, a project developed by physics students working at CERN’s (European Particle Physics Laboratory) Large Hadron Collider facility.

There are a lot of zombie movies out there. But Decay is the only one filmed in CERN, a.k.a. the home of the Large Hadron Collider. The film is the brainchild (mmmm… brains) of Luke Thompson and Clara Nellist, both Ph.D. students in physics, who despite having no filmmaking experience decided that, dammit, they were going to make a film about exposure to the Higgs Boson particle turning people into zombies. (If that sounds critical, it’s unintentional—jumping in and just doing it is a time-honored method for indie film.)

Though Thompson and Nellist got permission to shoot their film in CERN, the just-released trailer makes it very clear that officials there in no way endorse it. (Which—of course they wouldn’t. But they let them shoot there! How cool is that?)

Here’s the movie trailer,


J. Bryan Lowder’s Dec. 12, 2012 article for Slate describes some of Lowder’s experiences as a science writing intern dealing with myths about science and the filmmaking team’s motivations (laughing at science horror myths),

Back when I was a science writing intern at a major U.S. lab, there was a short list of words we were cautioned never to use in our public articles. Radiation was at the top of that list, not because the lab produced it in dangerous amounts (actually, it produced less than exists normally in nature), but because when people read the word, they freak out. The public’s fear—and by extension, this lab’s fear of talking about—radiation is understandable, but it’s also unreasonable and reveals a disappointing ignorance of science. …

Burton DeWilde, a physics Ph.D. and Decay’s director of photography/editor (and a friend of mine), explained the genesis of the project in an email:

The idea of filming a zombie movie at CERN was originally conceived by Luke Thompson (writer-director) and Hugo Day (props master) while exploring the lab’s creepy labyrinth of underground maintenance tunnels. It was agreed that they would make an excellent setting for a horror film. From there, the story evolved into a cheeky riff on the black hole hysteria: “The LHC didn’t produce earth-devouring black holes after all—but have you considered brain-devouring zombies?” Concerns about the Higgs in particular and clichés of mad scientists were also mixed in. We took all these worries to a totally ridiculous place.

And Decay is totally ridiculous, in the best sense of the word. The 75-min, $3,500 movie is remarkably well-made, given the creative team’s lack of experience. It’s studded with all the gratuitous gore, cheap shocks, and absurd plot twists that zombie fans crave. Science nerds and those who love them will bask in its shameless use of sci-fi clichés like “the results are inconclusive at best,” and “my research is too important!”

You can view the whole movie by clicking the link to Lowder’s article where it is embedded, visiting this Dec. 11, 2012 posting on The Mary Sue website, or going to the Decay website.

Zombies are a very hot topic in popular culture these days as per this Nov. 12, 2012 posting on this website which mentions my presentation ‘Zombies, brains, collapsing boundaries, and entanglements’ at the S.NET 2012 (Society for the Study of Nanoscience and Emerging Technologies) conference in Enschede, Holland.

BTW, Mary Sue is a term used to describe a female character who is perfect. From the Urban Dictionary definition,

  1. A female character who is so perfect that she is annoying. The name originated in a very short Star Trek story that mocked the sort of female characters who showed up in fanfiction. It usually refers to original female characters put into fanfiction, but can refer to any character. …
  2. An original character (fem.) in fanfic or an original story, usually on the internet, who is far superior to all other characters. She is typically beautiful, intelligent, kind, and in all other ways “perfect”. She usually serves as an important part in a pivotal plot element (ie: a prophecy) and becomes romantically involved with the author’s favourite character in the story. The internet fiction world runs rampant with these characters. …

Do go to the Urban Dictionary to reed the examples of ‘Mary Sue’ characters as they are very funny. The male equivalent may be called Marty Stu, Gary Stu, or Marty Sam.

Science and Technology Week in Canada starts today (Oct. 12, 2012)

I see the coordinators of Canada’s 2012 National Science and Technology Week (Oct. 12 – 21) have organized what they hope will be a record-breaking “Largest Practical Science Lesson,” from the event page,

This October join the Science.gc.ca team, its partners, and thousands of Canadians in establishing a new Guinness World Record for the Largest Practical Science Lesson at multiple locations.

The record-breaking event will take place on Friday, October 12, 2012 at exactly the same time across Canada,  …

For those of us on the West Coast, the time will be 10 am, today. What a shame this wasn’t on the website when I checked for National Science and Technology Week events for my Sept. 11, 2012 posting. Happily, the event list for BC has grown and it’s not too late to participate,

British Columbia

Shaw Ocean Discovery Centre

ShawTitle of Event: Floating Ideas Lecture Series; Playing with Giants: Enrichment of Giant Pacific Octopus in Captivity

Location: Shaw Ocean Discovery Centre

Date: October 18, 7:00pm (doors open at 6:30)

Description: Learn how the Aquarist Team at the SODC is putting the giant Pacific octopus to the test and researching how to enrich the time they spend within the Centre.

Kootenay Association for Science & Technology

KASTTitle of Event: RoboGames

Location: Nelson, BC

Date: Training Sessions – October 18th, 25th; November 1st, 8th Competition – November 10th

Description: Robotics circuit training (4 sessions) and team-based competition. Open to kids aged 11 – 18, in the West Kootenay region.

Telus World of Science

Telus World of ScienceTitle of Event: Grade 8-10 Practical Science for the Classroom

Location: Telus World of Science – Vancouver

Date: October 19th, 2012, 8:30am – 3:15pm

Description: A full day of Professional Development for Grade 8 – 10 Science Teachers. http://www.bcscta.ca/

Title of Event: SWEET presents On The Edge, an inside look at Parkour

Location: Telus World of Science – Vancouver

Date: October 12, 6:30 to 10pm

Description: Cost is $10 + HST, to purchase your tickets in advance please go to http://www.scienceworld.ca/teen(Tickets will also be available at the door)

Title of Event: Westport Innovations Connection weekend

Location: Telus World of Science – Vancouver

Date: Oct 20 & 21, 10am to 6pm

Description: Included with your general admission to Science World. Please go to http://www.scienceworld.ca/aroundthedomefor updated information.

Title of Event: TEDx Kids BC

Location: Telus World of Science – Vancouver

Date: Oct 20, 9am to 5pm

Description: An awesome mix of British Columbia’s finest youth speakers. Please go to http://www.tedxkidsbc.com/ for more information. Attendance for this event is fully booked.

Title of Event: Café Scientifique: Changing Landscapes, Science in Canada’s North

Location: Telus World of Science – Vancouver

Date: Oct 20, 6:30 to 9pm

Description: This is a free event with limited space. Please go to http://www.scienceworld.ca/specialprograms#cafeto RSVP

Title of Event: Opening the Door

Location: Telus World of Science – Vancouver

Date: Oct 12 2012, 3:30 p.m. – 5:30 p.m.

Description: A science career networking event for student’s grade 10 – 12. This is a free event but you must preregister.

Title of Event: Community Science Celebration – NSTW Western Canadian Launch

Location: Telus World of Science – Vancouver

Date: Oct 13 & 14, 10 a.m. – 6:00 p.m.

Description: This is the first event of its kind at TELUS World of Science, and we want you to be there. Let’s celebrate the science all around us at the Vancouver Community Science Celebration! Included with your general admission to Science World. http://www.scienceworld.ca/aroundthedome

BIG Little Science Centre

BLSCTitle of Event: Fun Hands on Science at the BIG Little Science Centre

Location: The BIG Little Science Centre. 985 Holt Street, Kamloops BC.

Date: We are open year round Tuesday to Saturday. Closed Sundays, Mondays and Holidays.10 a.m. – 4 p.m.

Description: Everyone is invited to visit the BIG Little Science Centre for interactive FUN science! Vistit our website www.blscs.org for more information.

Title of Event: Fantastic Kite Day

Location: BIG Little Science Centre

Date: Saturday October 13, 2012, 10am to 4pm

Description: BIG Little Science Centre’s FANTASTIC KITE DAY! Fly your old kite, build a new one, experiment with Bernoulli’s principles of lift and learn about the physics of kite flying. Hands on colour and excitement on the ground and in the air.

Perimeter Institute [emphasis mine]

Perimeter InstituteTitle of Event: 2012 CBC Massey Lectures – What Banged?

Location: Vancouver, British Columbia

Date: October 16, 2012, 8:00 p.m.

Description: Neil Turok, Director of Canada’s Perimeter Institute, delivers the 2012 CBC Massey Lectures in five locations across Canada. Turok explores how the human mind can unlock the universe and transform the future. Please order Massey Lecture tickets directly from each lecture venue. Find a list of venues here.

Gairdner Foundation

Title of Event: Gairdner Foundation High School Outreach Program Lecture at the University of British Columbia

Location: University of British Columbia

Date: 22-Oct-12

Description: Science can be intimidating for teenage students. This is why the Gairdner Foundation’s laureates travel throughout Canada, sharing their personal stories about pursuing a career in research with students from over 120 schools. Today, the University of British Columbia will host a group of high school students for a lecture by Dr. William Kaelin Jr. and Dr. Jeffrey V. Ravetch.

Simon Fraser University

Title of Event: Saturday Morning Lecture Series

Location: SFU Surrey

Date: Saturday October 13, 2012, 10:00 a.m.

Description: TRIUMF, UBC, and SFU are proud to present the 2012-2013 Saturday Morning Lecture series. The lectures will be at a level appropriate for high school students and the general public. Event is free, however please register for tickets so that we can make sure we accomodate everyone. Everyone welcome.

The Exploration Place

Title of Event: National Science and Technology Demonstrations at The Exploration Place!

Location: The Exploration Place, Prince George, BC

Date: October 17th, 18th, 19th

Description: Have some fun with us as we celebrate National Science and Technology Week. Enjoy exciting hands-on activities, interactive daily demos, visit with our critters and tour the galleries.

Let’s Talk Science

Title of Event: Brighouse Science Bash

Location: Richmond, British Columbia

Date: October 19, 11 am to 3 pm

Description: In partnership with Genome BC and Richmond Public Library the 6th annual Science Bash takes place from 11am to 3 pm and will include interactive displays, fun experiments and other hands-on activities.

I’d like to note that the Perimeter Institute/CBC Massey Lectures is running a contest for  tickets to the various talks, books, and a grand prize of a trip to the Perimeter Institute and the Large Hadron Collider at CERN (European Particle Physics Laboratory). Here’s more about the contest and about the book by Neil Turok which forms the basis for this Massey Lectures series, the CBC Massey Lectures page,

ENTER TO WIN tickets to the Massey Lectures, books and a grand prize trip to the Perimeter Institute in Ontario, Canada and the Large Hadron Collider at CERN in Geneva, Switzerland!

Every technology we rely on today was created by the human mind, seeking to understand the universe around us. Scientific knowledge is our most precious possession, and our future will be shaped by the breakthroughs to come.

In this personal, visionary, and fascinating work, Neil Turok, Director of the Perimeter Institute for Theoretical Physics, explores the transformative scientific discoveries of the past three centuries – from classical mechanics, to the nature of light, to the bizarre world of the quantum and the evolution of the cosmos. Each new discovery has, over time, yielded new technologies causing paradigm shifts in the organization of society. Now, he argues, we are on the cusp of another major transformation: the coming quantum revolution that will supplant our current digital age. Facing this brave new world, Turok calls for creatively re-inventing the way advanced knowledge is developed and shared, and opening access to the vast, untapped pools of intellectual talent in the developing world.

Elegantly written, deeply provocative and highly inspirational, The Universe Within is, above all, about the future -  of science, society and ourselves.

The Universe Within: From Quantum  to Cosmos will air on Ideas November 12 – 16.

Good luck with the contest and enjoy this wealth of  science events.

Digital artist at CERN (European Particle Physics Laboratory): apply by Sept. 26, 2012

CERN, the European Particle Physics Laboratory, is accepting applications from digital artists for a residency. I mentioned the first competition in my Sept. 21, 2011 posting and briefly profiled the chosen artist, Julius Von Bismarck, and his CERN project in a Mar. 20, 2012 posting.  Here’s some information about this second competition which closes in two days, from the Arts@CERN website,

The 2012 open call for artists working in the digital domain to win the Prix Ars Electronica Collide@CERN award has just opened. It closes September 26th 2012. For further details and to make your online submissions please go to www.aec.at/collide.

We are  looking for digital artists who will be truly inspired by CERN, showing their wish to engage with the ideas and/or technology of particle physics or with CERN as a place of scientific collaboration, using them as springboards of the imagination which dare to go beyond the paradigm. You might be a choreographer, performer, visual artist, film maker or a composer – what you all have in common is that you use the digital as the means of making your work and/or the way of presenting it.

The award includes prize money, a production grant and a funded residency in two parts – with an initial 2 months at CERN with a CERN scientist as mentor to inspire your work. The second part is a month with the Futurelab team and mentor at Ars Electronica Linz with whom the winner will develop and make new work inspired by the CERN residency.

I have found more information about the 2012 digital artist  residency competition on Prix Ars Electronica Collide@CERN,

The aim of the Prix Ars Electronica Collide@CERN prize is to take digital creativity to new dimensions by colliding the minds of scientists with the imaginations of artists. In this way, we seek to accelerate innovation across culture in the 21st century – creating new dimensions in digital arts, inspired by the ideas, engineering and science generated at CERN, and produced by the winning artist in collaboration with the transdisciplinary expertise of the FutureLab team at Ars Electronica.

The residency is in two parts – with an initial two months at CERN, where the winning artist will have a specially dedicated science mentor from the world famous science lab to inspire him/her and his/her work. The second part will be a month with the Futurelab team and mentor at Ars Electronica Linz with whom the winner will develop and make new work inspired by the CERN residency. From the first meeting between the artists, their CERN and Futurelab mentors, they will all participate in a dialogue which will be a public blog of their creative process until the final work is produced and maybe beyond. In this way, the public will be able to join in the conversation.

This final work will be showcased both at the Globe of Science and Innovation at CERN, in Geneva and at the Ars Electronica Festival in Linz. It will also be presented in the Prix Ars Electronica’s “CyberArts” catalogue.

The winning artist will receive

10,000 Euros prize money

Rent, subsistence and travel are funded from a designated limited fund that is in addition to the prize money. The awarding of this prize is thanks to the generosity of Ars Electronica and the funding of the creative residencies made possible by the generosity of anonymous donors. All artists insurances for the residencies are funded by the Exclusive Sponsor of all artists insurances for the Collide@CERN programme, UNIQA Assurances SA Switzerland.

….

Each submission has to be online and include the following parts:

Checklist for Submissions:

  • A personal testimony video which introduces the artist who describes why and how this residency will inspire new work (Up to 5 min.)
  • An outline of a possible concept/idea which the artist wishes to pursue at CERN and Futurelab
  • A draft production plan with costings and timeline
  • A selected portfolio of work which showcases work the artist is proud of

….

[email protected]

Tel. +43.732.7272-58

Prix Ars Electronica

Ars Electronica Linz GmbH
Ars-Electronica-Straße 1
4040 Linz, Austria

Please do check the 2012 digital artist  residency competition webpage for full details.

 

Pulling the trigger on the Higgs—Vancouver’s (Canada) Sept. 25, 2012 Café Scientifique

Dr. Isabel Trigger, from TRIUMF (Canada’s national laboratory for particle and nuclear physics laboratory), will be presenting at Vancouver’s next Café Scientifique event on Tuesday, Sept. 25, 2012 at 7:30 pm in the Railway Club, 579 Dunsmuir St. (at Seymour St.) in downtown Vancouver.

From the Sept, 18, 2012 event announcement,

The title and abstract for her [Isabel Trigger] café is:

Higgs for the Masses : a peek under the hood of the universe

This summer experiments at the world’s largest particle accelerator at the CERN laboratory in Geneva announced discovery of a subatomic particle “consistent” with the one  believed to give matter its mass.  The Higgs Boson sparked extraordinary levels of public attention and media interest, in part due to the particle’s nickname (“god particle”), but also since its  discovery is the result of  a 40-year quest involving tens of thousands of scientists.   But what, exactly, is a Higgs Boson? Why is it important? Who found it, and how?  And what do we do with it now that we think we’ve found it? This talk will explore the Higgs Boson and what it means for our understanding of the universe at its most basic level.

I think it helps to know a little more about Trigger (from her biography page on the TRIUMF website),

Isabel Trigger graduated with a B.Sc. from McGill in 1994 and went on to complete an M.Sc. and a Ph.D. at the Université de Montréal between 1994 and 1999. Her M.Sc. thesis, “Evolution du spectre de dépôts énergétiques dans les détecteurs au silicium irradiés en protons,” studied the ultimate performance of silicon-based precise tracking detectors in the presence of radiation for the LHC. Her Ph.D., “Mesure des couplages trilinéaires anomaux des bosons de jauge avec le détecteur OPAL au LEP,” included definitive measurements of the self-coupling of standard model gauge bosons and is considered one of most challenging experimental analyses performed at the Large Electron Positron (LEP) Collider.

Dr. Trigger was awarded the competitive CERN Research Fellowship in 1999, leading to the exceptionally rare offer of a CERN research staff position in 2001. She personally performed the most general and comprehensive search for the “chargino” particles predicted by supersymmetric theories.

Isabel was also a leader in the CERN [European Particle Physics Laboratory] team designing and testing the alignment system that monitors the relative positions of the 22 m diameter ATLAS endcap muon chambers with 50 μm [micrometre] accuracy. In 2005, TRIUMF recruited Dr. Trigger to lead the establishment of an ATLAS physics analysis group. She is currently the ATLAS-Canada physics coordinator.

From what I understand they are now declaring the Higgs boson exists when I last reported (my July 4, 2012 posting) on this topic, scientists at CERN were pretty sure it existed. I’m sure Trigger will have the latest information.

On a completely other note, I think café  is a bit of a misnomer for the Vancouver events held at the Railway Club, since this is a beer drinking establishment. So, be prepared to drink beer in a back room on Tuesday night (Sept. 25) while you listen to talk about the underpinnings of the universe.