Tag Archives: BCI

Nano- and neuro- together for nanoneuroscience

This is not the first time I’ve posted about nanotechnology and neuroscience (see this April 2, 2013 piece about then new brain science initiative in the US and Michael Berger’s  Nanowerk Spotlight article/review of an earlier paper covering the topic of nanotechnology and neuroscience).

Interestingly, the European Union (EU) had announced its two  $1B Euro research initiatives, the Human Brain Project and the Graphene Flagship (see my Jan. 28, 2013 posting about it),  months prior to the US brain research push. For those unfamiliar with the nanotechnology effort, graphene is a nanomaterial and there is high interest in its potential use in biomedical technology, thus partially connecting both EU projects.

In any event, Berger is highlighting a nanotechnology and neuroscience connection again in his Oct. 18, 2017 Nanowerk Spotlight article, or overview of, a new paper, which updates our understanding of the potential connections between the two fields (Note: A link has been removed),

Over the past several years, nanoscale analysis tools and in the design and synthesis of nanomaterials have generated optical, electrical, and chemical methods that can readily be adapted for use in neuroscience and brain activity mapping.

A review paper in Advanced Functional Materials (“Nanotechnology for Neuroscience: Promising Approaches for Diagnostics, Therapeutics and Brain Activity Mapping”) summarizes the basic concepts associated with neuroscience and the current journey of nanotechnology towards the study of neuron function by addressing various concerns on the significant role of nanomaterials in neuroscience and by describing the future applications of this emerging technology.

The collaboration between nanotechnology and neuroscience, though still at the early stages, utilizes broad concepts, such as drug delivery, cell protection, cell regeneration and differentiation, imaging and surgery, to give birth to novel clinical methods in neuroscience.

Ultimately, the clinical translation of nanoneuroscience implicates that central nervous system (CNS) diseases, including neurodevelopmental, neurodegenerative and psychiatric diseases, have the potential to be cured, while the industrial translation of nanoneuroscience indicates the need for advancement of brain-computer interface technologies.

Future Developing Arenas in Nanoneuroscience

The Brain Activity Map (BAM) Project aims to map the neural activity of every neuron across all neural circuits with the ultimate aim of curing diseases associated with the nervous system. The announcement of this collaborative, public-private research initiative in 2013 by President Obama has driven the surge in developing methods to elucidate neural circuitry. Three current developing arenas in the context of nanoneuroscience applications that will push such initiative forward are 1) optogenetics, 2) molecular/ion sensing and monitoring and 3) piezoelectric effects.

In their review, the authors discuss these aspects in detail.

Neurotoxicity of Nanomaterials

By engineering particles on the scale of molecular-level entities – proteins, lipid bilayers and nucleic acids – we can stereotactically interface with many of the components of cell systems, and at the cutting edge of this technology, we can begin to devise ways in which we can manipulate these components to our own ends. However, interfering with the internal environment of cells, especially neurons, is by no means simple.

“If we are to continue to make great strides in nanoneuroscience, functional investigations of nanomaterials must be complemented with robust toxicology studies,” the authors point out. “A database on the toxicity of materials that fully incorporates these findings for use in future schema must be developed. These databases should include information and data on 1) the chemical nature of the nanomaterials in complex aqueous environments; 2) the biological interactions of nanomaterials with chemical specificity; 3) the effects of various nanomaterial properties on living systems; and 4) a model for the simulation and computation of possible effects of nanomaterials in living systems across varying time and space. If we can establish such methods, it may be possible to design nanopharmaceuticals for improved research as well as quality of life.”

“However, challenges in nanoneuroscience are present in many forms, such as neurotoxicity; the inability to cross the blood-brain barrier [emphasis mine]; the need for greater specificity, bioavailability and short half-lives; and monitoring of disease treatment,” the authors conclude their review. “The nanoneurotoxicity surrounding these nanomaterials is a barrier that must be overcome for the translation of these applications from bench-to-bedside. While the challenges associated with nanoneuroscience seem unending, they represent opportunities for future work.”

I have a March 26, 2015 posting about Canadian researchers breaching the blood-brain barrier and an April 13, 2016 posting about US researchers at Cornell University also breaching the blood-brain barrier. Perhaps the “inability” mentioned in this Spotlight article means that it can’t be done consistently or that it hasn’t been achieved on humans.

Here’s a link to and a citation for the paper,

Nanotechnology for Neuroscience: Promising Approaches for Diagnostics, Therapeutics and Brain Activity Mapping by Anil Kumar, Aaron Tan, Joanna Wong, Jonathan Clayton Spagnoli, James Lam, Brianna Diane Blevins, Natasha G, Lewis Thorne, Keyoumars Ashkan, Jin Xie, and Hong Liu. Advanced Functional Materials Volume 27, Issue 39, October 19, 2017 DOI: 10.1002/adfm.201700489 Version of Record online: 14 AUG 2017

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

I took a look at the authors’ information and found that most of these researchers are based in  China and in the UK, with a sole researcher based in the US.

DARPA (US Defense Advanced Research Projects Agency) wants to crowdsource cheap brain-computer interfaces

The US Defense Advanced Research Projects Agency wants the DIY (or Maker community) to develop inexpensive brain-computer interfaces according to a Sept. 27, 2013 news item by John Hewitt on phys.org,

This past Saturday [Sept. 21, 2013], at the Maker Faire in New York, a new low-cost EEG recording front end was debuted at DARPA’s booth. Known as OpenBCI, the device can process eight channels of high quality EEG data, and interface it to popular platforms like Arduino. …

DARPA program manager William Casebeer said that his goal was to return next year to the Maker meeting with a device that costs under $30.

Adrianne Jeffries’ Sept. 22, 2013 article for The Verge provides more information (Note: Links have been removed),

A working prototype of a low-cost electroencephalography device funded by the US Defense Advanced Research Projects Agency (DARPA) made its debut in New York this weekend [Sept. 21 – 22, 2013], the first step in the agency’s effort to jumpstart a do-it-yourself revolution in neuroscience.
There are some products like those in the Neurosky lineup, which range from $99 to $130. But most neural monitoring tools are relatively expensive and proprietary, the OpenBCI [OpenBCI, an open source device built to capture signals from eight electrodes at a time] team explained, which makes it tough for the casual scientist, hacker, or artist to play with EEG. If neural monitoring were cheap and open, we’d start to see more science experiments, art projects, mind-controlled video games, and even serious research using brainwaves. You could use an at-home EEG to create a brain-powered keyboard, for example, Dr. Allen [Lindsey Allen, engineer for Creare;  OpenBCI was built by Creare and biofeedback scientist Joel Murphy, and the prototype was finished only two weeks ago] said, and learn how to type with your mind.

I have written about various brain-computer interfaces previously, the most recent being a Dec. 5, 2012 posting about Muse, a $199 brainwave computer controller.

A brainwave computer controller named Muse

Toronto-based (Canada) company, InteraXon has just presented a portable brainwave controller at the ParisLeWeb 2012 meeting according to a Dec. 5, 2012 article by Nancy Owano for phys.org,

A Canadian company is talking about having a window, aka computer screen, into your mind. Another of the many ways to put it—they believe your computer can be so into you. And vice-versa. InteraXon, a Canadian company, is focused on making a business out of mind-control technology via a headband device, and they are planning to launch this as a $199 brainwave computer controller called Muse. The company is running an Indiegogo campaign to obtain needed funds. Muse is a Bluetooth-connected headset with four electroencephalography sensors, communicating with the person’s computer via the Bluetooth connection.

Here’s more about the technology from InteraXon’s How It Works webpage,

Your brain generates electrical patterns that resonate outside your head, which accumulate into brainwaves detectable by an Electroencephalograph (EEG). The EEG can’t read your thoughts, just your brain’s overall pattern of activity, like how relaxed or alert you are. With practice you can learn to manipulate your brainwave pattern, like flexing a muscle you’ve never used before.

InteraXon’s interface works by turning brainwaves into binary (ones and zeros). We’re like interpreters fluent in the language of the mind: our system analyses the frequency of your brainwaves and then translates them into a control signal for the computer to understand.

Just like a button or switch can activate whatever it’s connected to, your translated brainwaves can now control anything electric. InteraXon designers and engineers make the experience so seamless, the connected technology seems like an extension of your own body.

It would be nice to have found a little more technical detail.

InteraXon is currently featuring its work at the 2010 Olympics in Vancouver (Canada) as an example of past work,

When visitors arrive at Bright Ideas, InteraXon’s thought-controlled computing experience custom designed and built for the 2010 Olympics, they are lead to their own pod. In front of each pod is a large projection screen as well as a small training screen. Once seated, a trained host hands them a headset that will measure their brain’s electrical signals.

With help from the host, the participants learn to deliberately alter their brainwaves. By focusing or relaxing their mind, they learn to change the display on their training screen; music and seat vibrations provide immediate feedback to speed the learning process to five minutes or less. Now they are ready for the main event.

Thoughts are turned into light patterns instantaneously as their brain’s digital signal is beamed over the Rocky Mountains, across vast prairies all the way to three major Ontario icons – a distance of 3000 km.

This project – a first at this grand scale – allows each participant to experience a very personal connection with these massive Ontario landmarks, and with every Canadian watching the lightshow, whether online, or in-person.

As for Muse, InteraXon’s latest project, the company has a campaign on Indiegogo to raise money. Here’s the video on the campaign website,

They seem very excited about it all, don’t they? The question that arises is whether or not you actually need a device to let you know when you’re concentrating or when your thoughts are wandering.  Apparently, the answer is yes. The campaign has raised over $240,000 (they asked for $150,000) and it’s open until Dec. 7, 2012.  If you go today, you will find that in addition to the other pledge inducements there’s a special ParisLeWeb $149 pledge for one day only (Dec. 5, 2012). Here’s where you go.

The Canadian Broadcasting Corporation’s Spark radio programme featured an interview (either in Nov. or Dec. 2012) with Ariel Garten, Chief Executive Office of InteraXon discussing her company’s work. You can find podcast no. 197 here (it is approximately 55 mins. and there are other interviews bundled with Garten’s). Thanks to Richard Boyer for the tip about the Spark interview.

I have mentioned brain-computer interfaces previously. There’s the Brain-controlled robotic arm means drinking coffee by yourself for the first time in 15 years May 17, 2012 posting and the Advertising for the 21st Century: B-Reel, ‘storytelling’, and mind control Oct. 6, 2011 posting amongst others.

Less confused about Europe’s FET (Future and Emerging Technologies programme)

I’ve had problems trying figure out the European Union’s Future and Emerging Technologies programme and so I’m glad to say that the Feb. 10, 2012 news item on Nanowerk offers to clear up a few matters for me (and presumably a few other people too).

From the news item,

Go forth and explore the frontiers of science and technology! This is the unspoken motto of the Future and Emerging Technologies programme (FET), which has for more than 20 years been funding and inspiring researchers across Europe to lay new foundations for information and communication technology (ICT). [emphasis mine]

The vanguard researchers of frontier ICT research don’t always come from IT backgrounds or follow the traditional academic career path. The European Commission’s FET programme encourages unconventional match-ups like chemistry and IT, physics and optics, biology and data engineering. Researchers funded by FET are driven by ideas and a sense of purpose which push the boundaries of science and technology.

They have three funding programmes (from the news item),

To address these challenges, the FET scheme supports long-term ICT programmes under three banners:

  • FET-Open, which has simple and fast mechanisms in place to receive new ideas for projects without pre-conceived boundaries or deadlines;
  • FET-Proactive, which spearheads ‘transformative’ research and supports community-building around a number of fundamental long-term ICT challenges; and
  • FET Flagships, which cut across national and European programmes to unite top research teams pursuing ambitious, large-scale, science-driven research with a visionary goal.

The news item goes on to describe a number of projects including the GRAPHENE-CA flagship pilot currently under consideration, along with five other flagship projects, for one of two 1 Billion Euro prizes. I have commented before (my Feb. 6, 2012 posting) on the communication strategies being employed by at least some of the members of this particular flagship project. Amazingly, they’ve done it again; theirs is the only flagship pilot project mentioned.

You can see the original article on the European Union website here where they have described other projects including this one, PRESENCCIA,

‘Light switches, TV remote controls and even house keys could become a thing of the past thanks to brain-computer interface (BCI) technology being developed in Europe that lets users perform everyday tasks with thoughts alone.’ So begins a story on ICT Results about a pioneering EU-funded FET project called Presenccia*.

Primary applications of BCI are in gaming/virtual reality (VR), home entertainment and domestic care, but the project partners also see their work helping the medical profession. ‘A virtual environment could be used to train a disabled person to control an electric wheelchair through a BCI,’ explained Mel Slater, the project coordinator. ‘It is much safer for them to learn in VR than in the real world, where mistakes could have physical consequences.’

So, PRESENCCIA is a project whereby people will be trained to use a BCI in virtual reality before attempting it in real life. I wish there was a bit more information about this BCI technology that is being developed in Europe as I am deeply fascinated and horrified by this notion of thought waves that ‘turn light switches on and off’ or possibly allow you to make a phone call as Professor Mark Welland at Cambridge University was speculating in 2010 (mentioned in my April 30, 2010 posting [scroll 1/2 way down]). Welland did mention that you would need some sort of brain implant to achieve a phone call with your thought waves, which is the aspect that makes me most uncomfortable.