Tag Archives: frogs

Seven miniature frog species in the Brazilian Atlantic Rainforest

Caption: One of the species of miniaturized frog found in the Brazilian Atlantic Forest, shows the extent of the miniaturization. Credit: Luiz Fernando Ribeiro, CC BY SA

Caption: One of the species of miniaturized frog found in the Brazilian Atlantic Forest, shows the extent of the miniaturization.
Credit: Luiz Fernando Ribeiro, CC BY SA

Seven new species of frogs, with many of them in the 1cm range as adults, have been found in the Brazilian Atlantic Rainforest. From a June 4, 2015 PeerJ news release on EurekAlert,

Following nearly 5 years of exploration in mountainous areas of the southern Brazilian Atlantic Rainforest, a team of researchers has uncovered seven new species of a highly miniaturized, brightly colored frog genus known as Brachycephalus. Each species is remarkably endemic, being restricted to cloud forests in one or a few adjacent mountaintops, thus making them highly vulnerable to extinction, particularly due to shifts in the distribution of cloud forest due to climate change.

The Atlantic Rainforest of Brazil harbors a highly unique group of frogs that have intrigued naturalists for over a century. Known as Brachycephalus, these frogs are among the smallest terrestrial vertebrates, with adult sizes often not exceeding 1 cm in length, leading to a variety of changes in their body structure, such as reduction in the number of toes and fingers. In addition, many species of Brachycephalus are brightly colored, possibly as a warning to the presence of a highly potent neurotoxin in their skin known as tetrodotoxin.

Most species of Brachycephalus are highly endemic, being found exclusively on one, or a few, adjacent mountaintops. Such high levels of endemism is caused by their adaptation to a specific kind of habitat – the cloud forests – which simultaneously prevents them from migrating across valleys and promotes the formation of new species.

The first species of Brachycephalus was described in 1842 by the famous German naturalist Johann Baptist von Spix, yet most species in the genus have been discovered only in the past decade, particularly due to their highly endemic nature and the difficulty in reaching remote montane sites. Over the course of five years of fieldwork, a team of researchers has provided the largest addition to the known diversity of Brachycephalus, with seven new species.

“Although getting to many of the field sites is exhausting, there was always the feeling of anticipation and curiosity about what new species could look like”, said Marcio Pie, a professor at the Universidade Federal do Paraná, who led the project.

Luiz Ribeiro, a research associate to the Mater Natura Institute for Environmental Studies, is optimistic about the prospects for future studies “This is only the beginning, especially given the fact that we have already found additional species that we are in the process of formally describing.”

A major concern regarding the new species is that the same factors that led to their endemism might also be a ticket to their extinction. Cloud forests are highly sensitive to climatic changes, and the long-term preservation of these species might involve not only the protection of their habitats but also more direct management efforts, such as rearing in captivity.

This is the first time I’ve come across a PeerJ news release, so here’s how they describe themselves in the release (Note: A link has been removed),

PeerJ is an Open Access publisher of peer reviewed articles, which offers researchers a lifetime publication plan, for a single low price, providing them with the ability to openly publish all future articles for free. PeerJ is based in San Francisco, CA and London, UK and can be accessed at https://peerj.com/. PeerJ’s mission is to help the world efficiently publish its knowledge.

All works published in PeerJ are Open Access and published using a Creative Commons license (CC-BY 4.0). Everything is immediately available–to read, download, redistribute, include in databases and otherwise use–without cost to anyone, anywhere, subject only to the condition that the original authors and source are properly attributed.

PeerJ has an Editorial Board of over 1,000 respected academics, including 5 Nobel Laureates. PeerJ was the recipient of the 2013 ALPSP Award for Publishing Innovation.

Here’s a link to and a citation for the paper,

Seven new microendemic species of Brachycephalus (Anura: Brachycephalidae) from southern Brazil by Luiz F. Ribeiro, Marcos R. Bornschein, Ricardo Belmonte-Lopes, Carina R. Firkowski, Sergio A.A. Morato, & Marcio R. Pie. PeerJ 3:e1011 https://dx.doi.org/10.7717/peerj.1011 June 4, 2015

This is an open access paper.

Frogs: monitoring them, finding new species, and research about the golden ones in Panama

I have three frog-oriented items and while they’re not strictly speaking in my usual range of topics, given this blog’s name and the fact I haven’t posted a frog piece in quite a while, it seems this is a good moment to address that lack.

Monitoring frogs and amphibians at Trent University (Ontario, Canada)

From a March 23, 2015 Trent University news release,

With the decline of amphibian populations around the world, a team of researchers led by Trent University’s Dr. Dennis Murray will seek to establish environmental DNA (eDNA) monitoring of amphibian occupancy and aquatic ecosystem risk assessment with the help of a significant grant of over $596,000 from the Natural Sciences and Engineering Research Council of Canada (NSERC).

Awarded to Professor Murray, a Canada research chair in integrative wildlife conservation, bioinformatics, and ecological modelling and professor at Trent University along with colleagues Dr. Craig Brunetti of the Biology department, and Dr. Chris Kyle of the Forensic Science program, and partners at Laurentian University, University of Toronto, McGill University, Ontario Ministry of Natural Resources and Forestry and Environment Canada, the grant will support the development of tools that will promote a cleaner aquatic environment.

The project will use amphibian DNA found in natural breeding habitats to determine the presence and abundance of amphibians as well as their pathogens. This new technology capitalizes on Trent University’s expertise and infrastructure in the areas of wildlife DNA and water quality.

“We’re honoured to have received the grant to help us drive the project forward,” said Prof. Murray. “Our plan is to place Canada, and Trent, in a leadership position with respect to aquatic wildlife monitoring and amphibian conservation.”

Amphibian populations are declining worldwide, yet in Canada, amphibian numbers are not monitored closely, meaning changes in their distribution or abundance may be unnoticeable. Amphibian monitoring in Canada is conducted by citizen scientists who record frog breeding calls when visiting bodies of water during the spring. However, the lack of formalized amphibian surveys leaves Canada in a vulnerable position regarding the status of its diverse amphibian community.

Prof. Murray believes that the protocols developed from this project could revolutionize how amphibian populations are monitored in Canada and in turn lead to new insights regarding the population trends for several amphibian species across the country.

Here’s more about NSERC and Trent University from the news release,

About NSERC

NSERC is a federal agency that helps make Canada a country of discoverers and innovators. The agency supports almost 30,000 post-secondary students and postdoctoral fellows in their advanced studies. NSERC promotes discovery by funding approximately 12,000 professors every year and fosters innovation by encouraging over 2,400 Canadian companies to participate and invest in post-secondary research projects.

The NSERC Strategic Project Grants aim to increase research and training in areas that could strongly influence Canada’s economy, society or environment in the next 10 years in four target areas: environmental science and technologies; information and communications technologies; manufacturing; and natural resources and energy.

About Trent University

One of Canada’s top universities, Trent University was founded on the ideal of interactive learning that’s personal, purposeful and transformative. Consistently recognized nationally for leadership in teaching, research and student satisfaction, Trent attracts excellent students from across the country and around the world. Here, undergraduate and graduate students connect and collaborate with faculty, staff and their peers through diverse communities that span residential colleges, classrooms, disciplines, hands-on research, co-curricular and community-based activities. Across all disciplines, Trent brings critical, integrative thinking to life every day. As the University celebrates its 50th anniversary in 2014/15, Trent’s unique approach to personal development through supportive, collaborative community engagement is in more demand than ever. Students lead the way by co-creating experiences rooted in dialogue, diverse perspectives and collaboration. In a learning environment that builds life-long passion for inclusion, leadership and social change, Trent’s students, alumni, faculty and staff are engaged global citizens who are catalysts in developing sustainable solutions to complex issues. Trent’s Peterborough campus boasts award-winning architecture in a breathtaking natural setting on the banks of the Otonabee River, just 90 minutes from downtown Toronto, while Trent University Durham delivers a distinct mix of programming in the GTA.

Trent University’s expertise in water quality could be traced to its proximity to Canada’s Experimental Lakes Area (ELA), a much beleaguered research environment due to federal political imperatives. You can read more about the area and the politics in this Wikipedia entry. BTW, I am delighted to learn that it still exists under the auspices of the International Institute for Sustainable Development (IISD),

Taking this post into nanotechnology territory while mentioning the ELA, Trent University published a Dec. 8, 2014 news release about research into silver nanoparticles,

For several years, Trent University’s Dr. Chris Metcalfe and Dr. Maggie Xenopoulos have dedicated countless hours to the study of aquatic contaminants and the threat they pose to our environment.

Now, through the efforts of the International Institute for Sustainable Development (IISD), their research is reaching a wider audience thanks to a new video (Note: A link has been removed).

The video is one of a five-part series being released by the IISD that looks into environmental issues in Canada. The video entitled “Distilling Science at the Experimental Lakes Area: Nanosilver” and featuring Professors Metcalfe and Xenopoulos profiles their research around nanomaterials at the Experimental Lakes Area.

Prof. Xenopolous’ involvement in the project falls in line with other environmental issues she has tackled. In the past, her research has examined how human activities – including climate change, eutrophication and land use – affect ecosystem structure and function in lakes and rivers. She has also taken an interest in how land use affects the material exported and processed in aquatic ecosystems.

Prof. Metcalfe’s ongoing research on the fate and distribution of pharmaceutical and personal care products in the environment has generated considerable attention both nationally and internationally.

Together, their research into nanomaterials is getting some attention. Nanomaterials are submicroscopic particles whose physical and chemical properties make them useful for a variety of everyday applications. They can be found in certain pieces of clothing, home appliances, paint, and kitchenware. Initial laboratory research conducted at Trent University showed that nanosilver could strongly affect aquatic organisms at the bottom of the food chain, such as bacteria, algae and zooplankton.

To further examine these effects in a real ecosystem, a team of researchers from Trent University, Fisheries and Oceans Canada and Environment Canada has been conducting studies at undisclosed lakes in northwestern Ontario. The Lake Ecosystem Nanosilver (LENS) project has been monitoring changes in the lakes’ ecosystem that occur after the addition of nanosilver.

“In our particular case, we will be able to study and understand the effects of only nanosilver because that is the only variable that is going to change,” says Prof. Xenopoulos. “It’s really the only place in the world where we can do that.”

The knowledge gained from the study will help policy-makers make decisions about whether nanomaterials can be a threat to aquatic ecosystems and whether regulatory action is required to control their release into the environment.

You can find the 13 mins. video here: https://www.youtube.com/watch?v=_nJai_B4YH0#action=share

Shapeshifting frogs, a new species in Ecuador

Caption: This image shows skin texture variation in one individual frog (Pristimantis mutabilis) from Reserva Las Gralarias. Note how skin texture shifts from highly tubercular to almost smooth; also note the relative size of the tubercles on the eyelid, lower lip, dorsum and limbs. Credit: Zoological Journal of the Linnean Society

Caption: This image shows skin texture variation in one individual frog (Pristimantis mutabilis) from Reserva Las Gralarias. Note how skin texture shifts from highly tubercular to almost smooth; also note the relative size of the tubercles on the eyelid, lower lip, dorsum and limbs.
Credit: Zoological Journal of the Linnean Society

Here’s more about the shapeshifting and how the scientists figured out what the frogs were doing (from a March 23, 2015 Case Western Research University news release on EurekAlert; Note: A link has been removed),

A frog in Ecuador’s western Andean cloud forest changes skin texture in minutes, appearing to mimic the texture it sits on.

Originally discovered by a Case Western Reserve University PhD student and her husband, a projects manager at Cleveland Metroparks’ Natural Resources Division, the amphibian is believed to be the first known to have this shape-shifting capability.

But the new species, called Pristimantis mutabilis, or mutable rainfrog, has company. Colleagues working with the couple recently found that a known relative of the frog shares the same texture-changing quality–but it was never reported before.

The frogs are found at Reserva Las Gralarias, a nature reserve originally created to protect endangered birds in the Parish of Mindo, in north-central Ecuador.

The researchers, Katherine and Tim Krynak, and colleagues from Universidad Indoamérica and Tropical Herping (Ecuador) co-authored a manuscript describing the new animal and skin texture plasticity in the Zoological Journal of the Linnean Society this week. They believe their findings have broad implications for how species are and have been identified. The process may now require photographs and longer observations in the field to ensure the one species is not mistakenly perceived as two because at least two species of rain frogs can change their appearance.

Katherine Krynak believes the ability to change skin texture to reflect its surroundings may enable P. mutabilis to help camouflage itself from birds and other predators.

The Krynaks originally spotted the small, spiny frog, nearly the width of a marble, sitting on a moss-covered leaf about a yard off the ground on a misty July night in 2009. The Krynaks had never seen this animal before, though Tim had surveyed animals on annual trips to Las Gralarias since 2001, and Katherine since 2005.

They captured the little frog and tucked it into a cup with a lid before resuming their nightly search for wildlife. They nicknamed it “punk rocker” because of the thorn-like spines covering its body.

The next day, Katherine Krynak pulled the frog from the cup and set it on a smooth white sheet of plastic for Tim to photograph. It wasn’t “punk “–it was smooth-skinned. They assumed that, much to her dismay, she must have picked up the wrong frog.

“I then put the frog back in the cup and added some moss,” she said. “The spines came back… we simply couldn’t believe our eyes, our frog changed skin texture!

“I put the frog back on the smooth white background. Its skin became smooth.”

“The spines and coloration help them blend into mossy habitats, making it hard for us to see them,” she said. “But whether the texture really helps them elude predators still needs to be tested.”

During the next three years, a team of fellow biologists studied the frogs. They found the animals shift skin texture in a little more than three minutes.

Juan M. Guayasamin, from Universidad Tecnológica Indoamérica, Ecuador, the manuscript’s first author, performed morphological and genetic analyses showing that P. mutabilis was a unique and undescribed species. Carl R. Hutter, from the University of Kansas, studied the frog’s calls, finding three songs the species uses, which differentiate them from relatives. The fifth author of the paper, Jamie Culebras, assisted with fieldwork and was able to locate a second population of the species. Culebras is a member of Tropical Herping, an organization committed to discovering, and studying reptiles and amphibians.

Guayasamin and Hutter discovered that Prismantis sobetes, a relative with similar markings but about twice the size of P. mutabilis, has the same trait when they placed a spiny specimen on a sheet and watched its skin turn smooth. P. sobetes is the only relative that has been tested so far.

Because the appearance of animals has long been one of the keys to identifying them as a certain species, the researchers believe their find challenges the system, particularly for species identified by one or just a few preserved specimens. With those, there was and is no way to know if the appearance is changeable.

The Krynaks, who helped form Las Gralarias Foundation to support the conservation efforts of the reserve, plan to return to continue surveying for mutable rain frogs and to work with fellow researchers to further document their behaviors, lifecycle and texture shifting, and estimate their population, all in effort to improve our knowledge and subsequent ability to conserve this paradigm shifting species.

Further, they hope to discern whether more relatives have the ability to shift skin texture and if that trait comes from a common ancestor. If P. mutabilis and P. sobetes are the only species within this branch of Pristimantis frogs to have this capability, they hope to learn whether they retained it from an ancestor while relatives did not, or whether the trait evolved independently in each species.

Golden frog of Panama and its skin microbiome

Caption: Researchers studied microbial communities on the skin of Panamanian golden frogs to learn more about amphibian disease resistance. Panamanian golden frogs live only in captivity. Continued studies may help restore them back to the wild. Credit: B. Gratwicke/Smithsonian Conservation Biology Institute

Caption: Researchers studied microbial communities on the skin of Panamanian golden frogs to learn more about amphibian disease resistance. Panamanian golden frogs live only in captivity. Continued studies may help restore them back to the wild.
Credit: B. Gratwicke/Smithsonian Conservation Biology Institute

Among many of the pressures on frog populations, there’s a lethal fungus which has affected some 200 species of frogs. A March 23, 2015 news item on ScienceDaily describes some recent research into the bacterial communities present on frog skin,

A team of scientists including Virginia Tech researchers is one step closer to understanding how bacteria on a frog’s skin affects its likelihood of contracting disease.

A frog-killing fungus known as Batrachochytrium dendrobatidis, or Bd, has already led to the decline of more than 200 amphibian species including the now extinct-in-the-wild Panamanian golden frog.

In a recent study, the research team attempted to apply beneficial bacteria found on the skin of various Bd-resistant wild Panamanian frog species to Panamanian golden frogs in captivity, to see if this would stimulate a defense against the disease.

A March 23, 2015 Virginia Tech University news release on EurekAlert, which originated the news item, provides a twist and a turn in the story (Note: Links have been removed),

They found that while the treatment with beneficial bacteria was not successful due to its inability to stick to the skin, there were some frogs that survived exposure to the fungus.

These survivors actually had unique bacterial communities on their skin before the experiments started.

The next step is to explore these new bacterial communities.

“We were disappointed that the treatment didn’t work, but glad to have discovered new information about the relationship between these symbiotic microbial communities and amphibian disease resistance,” said Lisa Belden, an associate professor of biological sciences in the College of Science, a Fralin Life Science Institute affiliate, and a faculty member with the new Global Change Center at Virginia Tech. “Every bit of information gets us closer to getting these frogs back into nature.”

Studying the microbial communities of Panamanian golden frogs was the dissertation focus of Belden’s former graduate student Matthew Becker, who graduated with a Ph.D. in biological sciences from Virginia Tech in 2014 and is now a fellow at the Smithsonian Conservation Biology Institute.

“Anything that can help us predict resistance to this disease is very useful because the ultimate goal of this research is to establish healthy populations of golden frogs in their native habitat,” Becker told Smithsonian Science News. “I think identifying alternative probiotic treatment methods that optimize dosages and exposure times will be key for moving forward with the use of probiotics to mitigate chytridiomycosis.”

Here’s a link to and a citation for the paper,

Composition of symbiotic bacteria predicts survival in Panamanian golden frogs infected with a lethal fungus by Matthew H. Becker , Jenifer B. Walke , Shawna Cikanek , Anna E. Savage , Nichole Mattheus , Celina N. Santiago , Kevin P. C. Minbiole , Reid N. Harris , Lisa K. Belden , Brian Gratwicke. April 2015 Volume: 282 Issue: 1805 DOI: 10.1098/rspb.2014.2881 Published 18 March 2015

This is an open access paper.

For anyone curious about the article in the Smithsonian mentioned in the news release, you can find it here.

 

Saving the frogs (and other amphibians)

Given this blog’s name, I couldn’t pass up this May 1, 2014 news release from Simon Fraser University (located in Vancouver, Canada),

An ecological strategy developed by four researchers, including two from Simon Fraser University, aims to abate the grim future that the combination of two factors could inflict on many amphibians, including frogs and salamanders.

A warming climate and the introduction of non-native fish in the American West’s mountainous areas are combining to threaten the habitat that this ecologically critical group of species needs to thrive.

Previous studies predict the combined effect of climate change and non-native fish could cause amphibian populations to decline and even become locally extinct.

In their newly published study in the journal Frontiers in Ecology and the Environment, researchers examine this challenge and propose several new climate adaptation tools to reduce threats to amphibians.

The researchers say the novel suite of tools could help prioritize the restoration of amphibian habitats in Western North America’s mountainous regions.

Wendy Palen, an SFU ecologist, Maureen Ryan, a postdoctoral fellow at SFU and the University of Washington (UW), Michael Adams, a research ecologist at the U.S. Geological Survey and Regina Rochefort, a science advisor at Washington State’s North Cascades National Park, co-authored the paper.

Many amphibians in the American West’s mountainous areas need predator-free wetlands and lakes during their aquatic life stages. “Amphibians predominantly use mountainous areas’ small, shallow ponds to breed and feed,” explains Ryan, the study’s lead author.

“These kinds of wetlands are at the highest risk of drying up under climate change due to reduced snowpack and longer summer droughts. Non-native fish, such as brook and rainbow trout, were introduced for recreational fishing almost a century ago. They remove amphibians from the biggest and most stable lakes in the environment. Fish eat most amphibians and even at low densities can devour a lake’s whole amphibian population.”

Mindful of an opportunity to help amphibians, the researchers collaborated with UW colleagues to develop new maps and hydrological models of climate impacts specific to mountainous regions.

They are using these tools along with biological survey data to identify regions where native species are most threatened by the combined effects of climate change and fish. They then hope to work with area managers who would implement fish removals.

“Our work suggests that removing fish from strategic sites may restore resilience to landscapes where inaction might lead to tipping points of species loss,” says Palen.

The SFU Earth to Ocean Research Group member has been collaborating with Adams since 1999 to evaluate threats to amphibians in mountainous regions.

“We hope newly developed wetland modeling tools can improve climate adaptation action plans so that intact ecosystems persist in the face of a changing climate,” says Palen.

Hydrologists and remote sensors helped the researchers develop models that project a substantial loss of wetlands in America’s western mountains over the next 40 to 80 years.

They note the combined threat of climate change and fish to amphibian survival also exists in B.C. but records of where fish have been introduced are scarce.

The researchers remind us that 95 per cent of the American West’s lakes are currently stocked with non-native fish, so removing them from a few sites doesn’t threaten recreational fishing opportunities.

Let’s save some frogs

Smallest frog in Asia/Africa/Europe (Old World)

Despite the name for this blog, I’m not the greatest frog lover and I don’t tend to collect ‘froggy’ things. Stil, every once in a while a frog story catches my attention. In this case, it was the picture that did .

A new species of miniature frog was discovered in Borneo. Microhyla nepenthicola, shown here on the tip of a pencil, is about the size of a pea. (Credit: © Prof. Indraneil Das/Institute of Biodiversity and Environmental Conservation)

It took me a few seconds to realize that really is the tip of a pencil. According to the news item on Science Daily,

The smallest frog in the Old World (Asia, Africa and Europe) and one of the world’s tiniest was discovered inside and around pitcher plants in the heath forests of the Southeast Asian island of Borneo. The pea-sized amphibian is a species of microhylid, which, as the name suggests, is composed of miniature frogs under 15 millimeters.

“I saw some specimens in museum collections that are over 100 years old. Scientists presumably thought they were juveniles of other species, but it turns out they are adults of this newly-discovered micro species,” said Dr. Das [Dr. Indraneil Das of the Institute of Biodiversity and Environmental Conservation at the Universiti Malaysia Sarawak].

Adult males of the new species range between 10.6 and 12.8 mm — about the size of a pea. Because they are so tiny, finding them proved to be a challenge. The frogs were tracked by their call, and then made to jump onto a piece of white cloth to be examined closer. The singing normally starts at dusk, with males gathering within and around the pitcher plants. They call in a series of harsh rasping notes that last for a few minutes with brief intervals of silence. This “amphibian symphony” goes on from sundown until peaking in the early hours of the evening.

You can read more about the discovery at Science Daily.

Science policy, innovation and more on the Canadian 2010 federal budget; free access in the true north; no nano for Van Gogh’s The Bedroom; frogs, foam and biofuels

There are more comments about Canada’s 2010 federal budget on the Canadian Science Policy Centre website along with listings of relevant news articles which they update regularly. There’s also a federal budget topic in the forums section but it doesn’t seem have attracted much commentary yet.

The folks at The Black Hole blog offer some pointed commentary with regard to the budget’s treatment of post doctorate graduates. If I understand the comments correctly, the budget has clarified the matter of taxation, i. e., post doctoral grants are taxable income, which means that people who were getting a break on taxes are now losing part of their income. The government has also created a new class of $70,000 post doctoral grants but this will account for only 140 fellowships. With some 6000 post doctoral fellows this means only 2% of the current pool of applicants will receive these awards. Do read The Black Hole post as they clarify what this means in very practical terms.

There’s been another discussion outcome from the 2010 budget, a renewed interest in innovation. I’m kicking off my ‘innovation curation efforts’ with this from an editorial piece by Carol Goar in the Toronto Star,

Five Canadian finance ministers have tried to crack the productivity puzzle. All failed. Now Jim Flaherty is taking a stab at it.

Here is the conundrum: We don’t use our brainpower to create new wealth. We have a highly educated population, generous tax incentives for research and development and lower corporate tax rates than any leading economic power. Yet our businesses remain reluctant to invest in new products and technologies (with a few honourable exceptions such as Research in Motion, Bombardier and Magna). They don’t even capitalize on the exciting discoveries made in our universities and government laboratories.

Economists are starting to ask what’s wrong. Canada ranked 14th in business spending on research and development – behind all the world’s leading industrial powers and even smaller nations such as Belgium and Ireland – in the latest statistical roundup by the Organization for Economic Cooperation and Development.

I believe she’s referring to the 2009 OECD scorecard in that last bit (you can find the Canada highlights here).

There are many parts to this puzzle about why Canadians and their companies are not innovative.  Getting back to Goar’s piece,

Kevin Lynch, who served as Stephen Harper’s top adviser from 2006 to 2009 [and is now the vice-chair of the Bank of Montreal Financial Group], has just written an article in Policy Options, an influential magazine, laying the blame squarely on corporate Canada. He argues that, unless business leaders do their part, it makes little sense to go on spending billions of dollars on research and development. “In an era of fiscal constraint, there has to be a compelling narrative to justify new public investments when other areas are being constrained,” he says.

Here’s a possible puzzle piece, in yesterday’s (March 15, 2010) posting I noted a study by academic, Mary J. Benner, where she pointed out that securities analysts do not reward/encourage established US companies such as Polaroid (now defunct) and Kodak to adopt new technologies. I would imagine that the same situation exists here in Canada.

For another puzzle piece: I’ve made mention of the mentality that a lot of entrepreneurs (especially in Canadian high tech) have and see confirmation  in a Globe and Mail article by Simon Avery about the continuing impact of the 2000 dot com meltdown where he investigates some of the issues with venture capital and investment as well as this,

“It’s a little bit about getting into the culture of winning, like the Olympics we just had,” says Ungad Chadda, senior vice-president of the Toronto Stock Exchange. “I don’t think the technology entrepreneurs around here are encouraged and supported to think beyond the $250-million cheque that a U.S. company can give them.”

One last comment from  Kevin Lynch (mentioned in the second of the Goar excerpts) about innovation and Canada from his recent opinion piece in the Globe and Mail,

A broader public dialogue is essential. We need to make the question “What would it take for Canada to be an innovative economy for the 21st century?” part of our public narrative – partly because our innovation deficit is a threat to our competitiveness and living standards, and partly because we can be a world leader in innovation. We should aspire to be a nation of innovators. We should rebrand Canada as technologically savvy, entrepreneurial and creative.

Yes, Mr. Lynch a broader dialogue would be delightful but there does seem to be an extraordinary indifference to the notion from many quarters. Do I seem jaundiced? Well, maybe that’s because I’ve been trying to get some interest in having a Canadian science policy debate and not getting very far with it. In principle, people call for more dialogue but that requires some effort to organize and a willingness to actually participate.

(As for “rebranding”, is anyone else tired of hearing that word or its cousin branding?)

On a completely other note, the University of Ottawa has announced that it is supporting open access to its faculty’s papers with institutional funding. From the news release,

According to Leslie Weir, U of Ottawa’s chief librarian, the program encompasses several elements, including a new Open Access (or OA) repository for peer-reviewed papers and other “learning objects”; an “author fund” for U of Ottawa researchers to help them cover open-access fees charged by journal publishers; a $50,000-a-year budget to digitize course materials and make them available to anyone through the repository; and support for the University of Ottawa Press’s OA journals.

But the university stopped short of requiring faculty members to deposit their papers with the new repository. “We all agreed that incentives and encouragement was the best way to go,” said Ms. Weir, who worked on the program with an internal group of backers, including Michael Geist, professor of intellectual property law, and Claire Kendall, a professor in the faculty of medicine who has been active in OA medical journals.

There is some criticism of the decision to make the programme voluntary. Having noticed the lack of success that voluntary reporting of nanomaterials has had, I’m inclined to agree with the critics. (Thanks to Pasco Phronesis for pointing me to the item.)

If you’ve ever been interested in art restoration (how do they clean and return the colours of an old painting to its original hues?, then the Van Gogh blog is for you. A member of the restoration team is blogging each step of The Bedroom’s (a famous Van Gogh painting) restoration. I was a little surprised that they don’t seem to be using any of the new nano-enabled techniques for examining the painting or doing the restoration work.

Given the name for this website, I have to mention the work done with frogs in pursuit of developing new biofuels by scientists at the University of Cincinnati. From the news item on Nanotechnology Now,

In natural photosynthesis, plants take in solar energy and carbon dioxide and then convert it to oxygen and sugars. The oxygen is released to the air and the sugars are dispersed throughout the plant — like that sweet corn we look for in the summer. Unfortunately, the allocation of light energy into products we use is not as efficient as we would like. Now engineering researchers at the University of Cincinnati are doing something about that.

The researchers are finding ways to take energy from the sun and carbon from the air to create new forms of biofuels, thanks to a semi-tropical frog species [Tungara frog].

Their work focused on making a new artificial photosynthetic material which uses plant, bacterial, frog and fungal enzymes, trapped within a foam housing, to produce sugars from sunlight and carbon dioxide.

Here’s an illustration of the frog by Megan Gundrum, 5th year DAAP student (I tried find out what DAAP stands for but was unsuccessful, ETA: Mar.31.10, it is the Design, art, and architecture program at the University of Cincinnati),

illustration by Megan Gundrum, 5th year DAAP student

Thank you to the University of Cincinnati for making the image available.