Tag Archives: US Defense Advanced Research Projects Agency

New book ‘Wonder of Nanotechnology’ explores optical and electronic systems

Nature is nano.

Nature starts with the atom, the building block of all matter, and works hand-in-hand with her partner the photon, the piece of light that communicates energy from one atom to another.When nature binds atoms together or creates physical structures in the micro- and nano-range, the combinations interact differently with light, providing nature with a rich palette of colors to decorate the world around us,while also giving rise to the functional complexity of nature.The wings of a butterfly, the feather of a peacock, the sheen of a pearl—all of these are examples of nature’s photonic crystals: nanostructured arrangements of atoms that capture and recast the colors of the rainbow with iridescent beauty. These diverse combinations of microstructures and atoms in molecules, crystals, proteins, and cells on the nanoscale eventually give rise to ourselves, sentient beings, who, in turn, strive to explain the natural world that we see around us.. (from the Preface for the Wonder of Nanotechnology)

The Nov. 21, 2013 SPIE, the international society for optics and photonics news release touting the book is a little more restrained than the dramatic ‘Nature is nano’,,

BELLINGHAM, Washington, USA – Nanotechnology research has progressed into quantum-level systems where electrons, photonics, and even thermal properties can be engineered, enabling new structures and materials with which to create ever-shrinking, ever-faster electronics. The Wonder of Nanotechnology: Quantum Optoelectronic Devices and Applications, edited by Manijeh Razeghi and Nobel Laureates Leo Esaki and Klaus von Klitzing, focuses on the application of nanotechnology to modern semiconductor optoelectronic devices The book is published by SPIE, the international society of optics and photonics.

The volume is a compilation of research papers from the International Conference on Infrared Optoelectronics at Northwestern University’s Center for Quantum Devices in September 2012, developed into chapters representing state-of-the-art research in infrared materials and devices.

“Advances in material science at the nanometer scale are opening new doors in the area of optics and electronics. The ability to manipulate atoms and photons, and fabricate new material structures offers opportunities to realize new emitters, detectors, optics, ever-shrinking electronics, and integration of optics and electronics,” writes Nibir Dhar, program manager with Defense Advanced Research Project Agency (DARPA), in an essay in the book. “Imaging technology has the opportunity to leverage these developments to produce new products for military, industrial, medical, security, and other consumer applications.”

The editors of Wonder of Nanotechnology are:

  • Manijeh Razeghi, director of the Center for Quantum Devices at Northwestern University and one of the leading scientists in the field of semiconductor science and technology. Razeghi pioneered nanometer-scale architectures in semiconductor technology, and her research in quantum materials has culminated in various technologies such as type-II strained-layer superlattice infrared detectors, lasers, and terahertz technology. Her current interest is in nanoscale optoelectronic quantum devices.
  • Leo Esaki, who shared the 1973 Nobel Prize in Physics for his discovery of the phenomenon of electron tunneling while working at Tokyo Tsushin Kogyo (now known as Sony). He is known for his invention of the Esaki diode, which exploited that phenomenon. He also pioneered the development of the semiconductor superlattice while at IBM, and is president of the Yokohama College of Pharmacy in Japan.
  • Klaus von Klitzing, director of the Max Planck Institute for Solid State Research in Germany. Von Klitzing was awarded the 1985 Nobel Prize in Physics for his discovery of the integer quantum Hall effect. His current research focuses on the properties of low-dimensional electronic systems, typically in low temperatures and in high magnetic fields.

“The chapters in this book bear witness to how far we have come since the invention of manmade semiconductor superlattices in 1969,” Esaki writes in the book’s foreword. “I look back with wonder at all of the exciting developments of the last 44 years and can only imagine where the future will take this technology and what exciting discoveries await.”

The book’s editors also address the inspiration of nature in studying nanoscale structures, and how the human ability to control material composition on the nanometer scale is what allows us to achieve technological goals transcending the properties of naturally occurring materials.

“The wings of a butterfly, the feather of a peacock, the sheen of a pearl — all of these are examples of nature’s photonic crystals: nanostructured arrangements of atoms that capture and recast the colors of the rainbow with iridescent beauty,” von Klitzing writes in the book’s preface. “As our tools to manipulate matter reach ever smaller length scales, we, too, are able to join in the game of discovery in the nano-world — a game that nature has long since mastered.”

Notable chapters include:

  • “Advances in High-Power Quantum Cascade Lasers and Applications” by Arkadiy Lyakh, Richard Maulini, Alexei Tsekoun, and Boris Tadjikov (Pranalytica, Inc.), and CO2-laser inventor Kumar Patel (Pranalytica, Inc., and University of California Los Angeles)
  • “Type-II Superlattices: Status and Trends” by Elena Plis and Sanjay Krishna (Center for High-Technology Materials, University of New Mexico)
  • “Quantum Dots for Infrared Focal Plane Arrays Grown by MOCVD” by Manijeh Razeghi and Stanley Tsao (Center for Quantum Devices, Northwestern University)
  • “Quantum-Dot Biosensors using Fluorescence Resonance Energy Transfer (FRET)” by James Garland and Dinakar Ramadurai (Episensors, Inc., and Sivananthan Laboratories, Inc.) and Siva Sivananthan (Sivananthan Laboratories, Inc., and University of Illinois)
  • “Nanostructured Electrode Interfaces for Energy Applications” by Palash Gangopadhyay, Kaushik Balakrishnan, and Nasser Peyghambarian (College of Optical Sciences, University of Arizona)

You can go here to purchase the book.

DARPA (US Defense Advanced Research Projects Agency) wants to crowdsource cheap brain-computer interfaces

The US Defense Advanced Research Projects Agency wants the DIY (or Maker community) to develop inexpensive brain-computer interfaces according to a Sept. 27, 2013 news item by John Hewitt on phys.org,

This past Saturday [Sept. 21, 2013], at the Maker Faire in New York, a new low-cost EEG recording front end was debuted at DARPA’s booth. Known as OpenBCI, the device can process eight channels of high quality EEG data, and interface it to popular platforms like Arduino. …

DARPA program manager William Casebeer said that his goal was to return next year to the Maker meeting with a device that costs under $30.

Adrianne Jeffries’ Sept. 22, 2013 article for The Verge provides more information (Note: Links have been removed),

A working prototype of a low-cost electroencephalography device funded by the US Defense Advanced Research Projects Agency (DARPA) made its debut in New York this weekend [Sept. 21 – 22, 2013], the first step in the agency’s effort to jumpstart a do-it-yourself revolution in neuroscience.
There are some products like those in the Neurosky lineup, which range from $99 to $130. But most neural monitoring tools are relatively expensive and proprietary, the OpenBCI [OpenBCI, an open source device built to capture signals from eight electrodes at a time] team explained, which makes it tough for the casual scientist, hacker, or artist to play with EEG. If neural monitoring were cheap and open, we’d start to see more science experiments, art projects, mind-controlled video games, and even serious research using brainwaves. You could use an at-home EEG to create a brain-powered keyboard, for example, Dr. Allen [Lindsey Allen, engineer for Creare;  OpenBCI was built by Creare and biofeedback scientist Joel Murphy, and the prototype was finished only two weeks ago] said, and learn how to type with your mind.

I have written about various brain-computer interfaces previously, the most recent being a Dec. 5, 2012 posting about Muse, a $199 brainwave computer controller.

DARPA (US Defense Advanced Research Projects Agency), nanoparticles, and your traumatized brain

According to the May 10, 2013 news item on Nanowerk,

DARPA, the U.S. Defense Advanced Research Projects Agency, has awarded $6 million to a team of researchers to develop nanotechnology therapies for the treatment of traumatic brain injury and associated infections.

Led by Professor Michael J. Sailor, Ph.D., from the University of California San Diego [UC San Diego], the award brings together a multi-disciplinary team of renowned experts in laboratory research, translational investigation and clinical medicine, including Erkki Ruoslahti, M.D., Ph.D. of Sanford-Burnham Medical Research Institute, Sangeeta N. Bhatia, M.D., Ph.D. of Massachusetts Institute of Technology and Clark C. Chen, M.D., Ph.D. of UC San Diego School of Medicine.

Ballistics injuries that penetrate the skull have amounted to 18 percent of battlefield wounds sustained by men and women who served in the campaigns in Iraq and Afghanistan, according to the most recent estimate from the Joint Theater Trauma Registry, a compilation of data collected during Operation Iraqi Freedom and Operation Enduring Freedom.

“A major contributor to the mortality associated with a penetrating brain injury is the elevated risk of intracranial infection,” said Chen, a neurosurgeon with UC San Diego Health System, noting that projectiles drive contaminated foreign materials into neural tissue.

The May 9, 2013 UC San Diego news release by Susan Brown, which originated the news item, describes the reasons why DARPA wants to use nanoparticles in therapies for people suffering from traumatic brain injury,

Under normal conditions, the brain is protected from infection by a physiological system called the blood-brain barrier. “Unfortunately, those same natural defense mechanisms make it difficult to get antibiotics to the brain once an infection has taken hold,” said Chen, associate professor and vice-chair of research in the Division of Neurosurgery at UC San Diego School of Medicine.

DARPA hopes to meet these challenges with nanotechnology. The agency awarded this grant under its In Vivo Nanoplatforms for Therapeutics program to construct nanoparticles that can find and treat infections and other damage associated with traumatic brain injuries.

“Our approach is focused on porous nanoparticles that contain highly effective therapeutics on the inside and targeting molecules on the outside,” said Sailor, the UC San Diego materials chemist who leads the team. “When injected into the blood stream, we have found that these silicon-based particles can target certain tissues very effectively.”

Several types of nanoparticles have already been approved for clinical use in patients, but none for treatment of trauma or diseases in the brain. This is due in part to the inability of nanoparticle formulations to cross the blood-brain barrier and reach their intended targets.

“Poor penetration into tissues limits the application of nanoparticles to the treatment of many types of diseases,” said Ruoslahti, distinguished professor at Sanford-Burnham and partner in the research. “We are trying to overcome this limitation using targeting molecules that activate tissue-specific transport pathways to deliver nanoparticles.”

There is another major hurdle for treating brain injuries (from the news release),

Treating brain infections is becoming more difficult as drug-resistant strains of viruses and bacteria have emerged. Because drug-resistant strains mutate and evolve rapidly, researchers must constantly adjust their approach to treatment.

In an attempt to hit this moving target, the team is making their systems modular, so they can be reconfigured “on-the-fly” with the latest therapeutic advances.

Nanocomplexes that contain genetic material known as short interfering RNA, or siRNA, developed by Bhatia’s research group at MIT, will be key to this aspect of the team’s approach.

“The function of this type of RNA is that it specifically intereferes with processes in a diseased cell. The advantage of RNA therapies are that they can be quickly and easily modified when a new disease target emerges,” said Bhatia, a bioengineering professor at MIT and partner in the research.

But effective delivery of siRNA-based therapeutics in the body has proven to be a challenge because the negative charge and chemical structure of naked siRNA makes it very unstable in the body and it has difficulty crossing into diseased cells. To solve these problems, Bhatia has developed nanoparticles that form a protective coating around siRNA.

“The nanocomplexes we are developing shield the negative charge of RNA and protect it from nucleases that would normally destroy it. Adding Erkki’s tissue homing and cell-penetrating peptides allows the nanocomplex to transport deep into tissue and enter the diseased cells,” she said.

Bhatia has previously used the cell-penetrating nanocomplex to deliver siRNA to a tumor cell and shut down its protein production machinery. Although her group’s effort has focused on cancer, the team is now going after two other hard-to-treat cell types: drug-resistant bacteria and inflammatory cells in the brain.

“The work proposed by this multi-disciplinary team should provide new tools to mitigate the debilitating effects of penetrating brain injuries and offer our warfighters the best chance of meaningful recovery,” Chen said. [emphasis mine]

BTW, the term ‘warfighters’ is new to me; are we replacing the word ‘soldier’?

Returning to the matter at hand, I found DARPA’s In Vivo Nanoplatforms for Therapeutics program which is described this way on its home page,

Disease limits soldier readiness and creates healthcare costs and logistics burdens. Diagnosing and treating disease faster can help limit its impact. [emphasis mine] Current technologies and products for diagnosing disease are principally relegated to in vitro (in the lab) medical devices, which are often expensive, bulky and fragile.

DARPA’s In Vivo Nanoplatforms (IVN) program seeks to develop new classes of adaptable nanoparticles for persistent, distributed, unobtrusive physiologic and environmental sensing as well as the treatment of physiologic abnormalities, illness and infectious disease.

The IVN Diagnostics (IVN:Dx) program effort aims to develop a generalized in vivo platform that provides continuous physiological monitoring for the warfighter. [emphasis mine] Specifically, IVN:Dx will investigate technologies that may provide:

  • Implantable nanoplatforms using bio-compatible and nontoxic materials
  • In vivo sensing of small and large molecules of biological interest
  • Multiplexed detection of analytes at clinically relevant concentrations
  • External interrogation of the nanoplatform free from any implanted communications electronics
  • Complete system demonstration in a large animal

The IVN Therapeutics (IVN:Tx) program effort will seek unobtrusive nanoplatforms for rapidly treating disease in warfighters.

(I see DARPA is using both soldier and warfighter’.)

This team is not the only one wishing to deliver drug therapies in a targeted fashion to the brain. My Feb. 19, 2013 posting mentioned Chad Mirkin (Northwestern University) and his team’s efforts with spherical nucleic acids (SNAs), from the posting,

Potential applications include using SNAs to carry nucleic acid-based therapeutics to the brain for the treatment of glioblastoma, the most aggressive form of brain cancer, as well as other neurological disorders such as Alzheimer’s and Parkinson’s diseases. Mirkin is aggressively pursuing treatments for such diseases with Alexander H. Stegh, an assistant professor of neurology at Northwestern’s Feinberg School of Medicine. (originally excerpted from this the Feb. 15, 2013 news release on EurekAlert)

Coincidentally, Mirkin has just been named ‘Chemistry World Entrepreneur of the Year’ by the UK’s Royal Society of Chemistry, from the May 10, 2013 news item on Nanowerk,

Northwestern University scientist Chad A. Mirkin, a world-renowned leader in nanotechnology research and its application, has been named 2013 Chemistry World Entrepreneur of the Year by the Royal Society of Chemistry (RSC). The award recognizes an individual’s contribution to the commercialization of research.

The RSC is honoring Mirkin for his invention of spherical nucleic acids (SNAs), new globular forms of DNA and RNA. These structures form the basis for more than 300 products commercialized by licensees of the technology.

I’m never quite sure what to make of researchers who receive public funding then patent and license the results of that research.

Getting back to soldiers/warfighters, I’m glad to see this research being pursued. Years ago, a physician mentioned to me that soldiers in Iraq were surviving injuries that would have killed them in previous conflicts. The problem is that the same protective gear which insulates soldiers against many injuries makes them vulnerable to abusive head trauma (same principle as ‘shaken baby syndrome’). For example, imagine having a high velocity bullet hit your helmet. You’re protected from the bullet but the impact shakes your head so violently, your brain is injured.

DARPA’s Living Foundries and advanced nanotechnology via synthetic biology

This is not a comfortable topic for a lot of people, but James Lewis in a May 26, 2012 posting on the Foresight Institute blog, comments on some developments in the DARPA (US Defense Advanced Research Projeect Agency) Living Foundries program (Note: I have removed a link),

Synthetic biology promises near-term breakthroughs in medicine, materials, and energy, and is also one promising development pathway leading to advanced nanotechnology and a general capability for programmable, atomically-precise manufacturing. Darpa (US Defense Advanced Research Projects Agency) has launched a new program [Living Foundries] that could greatly accelerate progress in synthetic biology by creating a library of standardized, modular biological units that could be used to build new devices and circuits.

If Darpa’s Living Foundries program achieves its ambitious goals, it should create a methodology, toolbox, and a large group of practitioners ready to pursue a synthetic biology pathway to building complex molecular machine systems, and eventually, atomically precise manufacturing systems.

DARPA opened solicitations for this program Sept. 2, 2011 and made a series of award notices starting May 17, 2012 stretching to May 31,2012. Here’s a description of the program from the DARPA Living Foundries project webpage,

The Living Foundries Program seeks to create the engineering framework for biology, speeding the biological design-build-test cycle and expanding the complexity of systems that can be engineered. The Program aims to develop new tools, technologies and methodologies to decouple biological design from fabrication, yield design rules and tools, and manage biological complexity through abstraction and standardization.  These foundational tools would enable the rapid development of previously unattainable technologies and products, leveraging biology to solve challenges associated with production of new materials, novel capabilities, fuel and medicines. For example, one motivating, widespread and currently intractable problem is that of corrosion/materials degradation. The DoD must operate in all environments, including some of the most corrosively aggressive on Earth, and do so with increasingly complex heterogeneous materials systems. This multifaceted and ubiquitous problem costs the DoD approximately $23 Billion per year. The ability to truly program and engineer biology, would enable the capability to design and engineer systems to rapidly and dynamically prevent, seek out, identify and repair corrosion/materials degradation.

Accomplishing this vision requires an approach that is more than multidisciplinary – it requires a new engineering discipline built upon the integration of new ideas, approaches and tools from fields spanning computer science and electrical engineering to chemistry and the biological sciences.  The best innovations will introduce new architectures and tools into an open technology platform to rapidly move new designs from conception to execution.

Performers must ensure and demonstrate throughout the program that all methods and demonstrations of capability comply with national guidance for manipulation of genes and organisms and follow all guidance for biological safety and Biosecurity.

Katie Drummond in her May 22, 2012 posting on the Wired website’s Danger Room blog makes note of the awarded contracts (Note: I have removed the links),

Now, Darpa’s handed out seven research awards worth $15.5 million to six different companies and institutions. Among them are several Darpa favorites, including the University of Texas at Austin and the California Institute of Technology. Two contracts were also issued to the J. Craig Venter Institute. Dr. Venter is something of a biology superstar: He was among the first scientists to sequence a human genome, and his institute was, in 2010, the first to create a cell with entirely synthetic genome.

In total, nine contracts were awarded as of May 31, 2012. MIT (Massachusetts Institute of Technology) was awarded two, while  Stanford University, Harvard University, and the Foundation for Applied Molecular Evolution were each awarded one.

The J. Craig Venter Institute received a total of almost $4M for two separate contracts ($964,572 and $3,007, 321). Interestingly, Venter has just been profiled in the New York Times magazine in a May 30, 2012 article by Wil S. Hylton with nary a mention of this new project (I realize the print version couldn’t be revised but surely they could have managed a note online).  The opening paragraphs sound like a description of the Living Foundries project for people who don’t specialize in reading government documents,

In the menagerie of Craig Venter’s imagination, tiny bugs will save the world. They will be custom bugs, designer bugs — bugs that only Venter can create. He will mix them up in his private laboratory from bits and pieces of DNA, and then he will release them into the air and the water, into smokestacks and oil spills, hospitals and factories and your house.

Each of the bugs will have a mission. Some will be designed to devour things, like pollution. Others will generate food and fuel. There will be bugs to fight global warming, bugs to clean up toxic waste, bugs to manufacture medicine and diagnose disease, and they will all be driven to complete these tasks by the very fibers of their synthetic DNA.

This is is not a critical or academic  analysis of Venter’s approach to biology, synthetic or otherwise, but it does offer an in-depth profile and, given Venter’s prominence in the field of synthetic biology, it’s a worthwhile read.

Brain-controlled robotic arm means drinking coffee by yourself for the first time in 15 years

The video shows a woman getting herself a cup of coffee for the first time in 15 years. She’s tetraplegic (aka quadraplegic) and is participating in a research project funded by DARPA (US Defense Advanced Research Projects Agency) for developing neuroprostheses.

Kudos to the researchers and to the woman for her courage and persistence. The May 17, 2012 news item on Nanowerk provides some background,

DARPA launched the Revolutionizing Prosthetics program in 2006 to advance the state of upper-limb prosthetic technology with the goals of improving quality of life for service-disabled veterans and ultimately giving them the option of returning to duty. [emphasis mine] Since then, Revolutionizing Prosthetics teams have developed two anthropomorphic advanced modular prototype prosthetic arm systems, including sockets, which offer increased range of motion, dexterity and control options. Through DARPA-funded work and partnerships with external researchers, the arm systems and supporting technology continue to advance.

The newest development on this project (Revolutionizing Prosthetics) comes from the BrainGate team (mentioned in my April 19, 2012 posting [scroll down about 1/5th of the way) many of whom are affiliated with Brown University.  Alison Abbott’s May 16, 2012 Nature article provides some insight into the latest research,

The study participants — known as Cathy and Bob — had had strokes that damaged their brain stems and left them with tetraplegia and unable to speak. Neurosurgeons implanted tiny recording devices containing almost 100 hair-thin electrodes in the motor cortex of their brains, to record the neuronal signals associated with intention to move.

The work is part of the BrainGate2 clinical trial, led by John Donoghue, director of the Brown Institute for Brain Science in Providence. His team has previously reported a trial in which two participants were able to move a cursor on a computer screen with their thoughts.

The neuroscientists are working closely with computer scientists and robotics experts. The BrainGate2 trial uses two types of robotic arm: the DEKA Arm System, which is being developed for prosthetic limbs in collaboration with US military, and a heavier robot arm being developed by the German Aerospace Centre (DLR) as an external assistive device.

In the latest study, the two participants were given 30 seconds to reach and grasp foam balls. Using the DEKA arm, Bob — who had his stroke in 2006 and was given the neural implant five months before the study —- was able to grasp the targets 62% of the time. Cathy had a 46% success rate with the DEKA arm and a 21% success rate with the DLR arm. She successfully raised the bottled coffee to her lips in four out of six trials.

Nature has published the research paper (citation):

Reach and grasp by people with tetraplegia using a neurally controlled robotic arm

Authors: Leigh R. Hochberg, Daniel Bacher, Beata Jarosiewicz, Nicolas Y. Masse, John D. Simeral, Joern Vogel, Sami Haddadin, Jie Liu, Sydney S. Cash, Patrick van der Smagt and John P. Donoghue

Nature, 485, 372–375 (17 May 2012) doi:10.1038/nature11076

The paper is behind a paywall but if you have access, it’s here.

In the excess emotion after watching that video, I forgot for a moment that the ultimate is to repair soldiers and hopefully get them back into the field.

A step closer to artificial synapses courtesy of memristors

Researchers from HRL Laboratories and the University of Michigan have built what they claim is a type of artificial synapse by using memristors. From the March 29, 2012 news item on Nanowerk,

In a step toward computers that mimic the parallel processing of complex biological brains, researchers from HRL Laboratories, LLC, and the University of Michigan have built a type of artificial synapse.

They have demonstrated the first functioning “memristor” array stacked on a conventional complementary metal-oxide semiconductor (CMOS) circuit. Memristors combine the functions of memory and logic like the synapses of biological brains.

The researchers developed a vertically integrated hybrid electronic circuit by combining the novel memristor developed at the University of Michigan with wafer scale heterogeneous process integration methodology and CMOS read/write circuitry developed at HRL. “This hybrid circuit is a critical advance in developing intelligent machines,” said HRL SyNAPSE program manager and principal investigator Narayan Srinivasa. “We have created a multi-bit fully addressable memory storage capability with a density of up to 30 Gbits/cm², which is unprecedented in microelectronics.”

Industry is seeking hybrid systems such as this one, the researchers say. Dubbed “R-RAM,” they could shatter the looming limits of Moore’s Law, which predicts a doubling of transistor density and therefore chip speed every two years.

“We’re reaching the fundamental limits of transistor scaling. This hybrid integration opens many opportunities for greater memory capacity and higher performance of conventional computers.  It has great potential in future non-volatile memory that would improve upon today’s Flash, as well as reconfigurable circuits,” said Wei Lu, an associate professor at the U-M Department of Electrical Engineering and Computer Science whose group developed the memristor array.

This work is being done as part of a DARPA (Defense Advanced Research Projects Agency) project titled, SyNAPSE, from the news item,

The work is part of the Defense Advanced Research Projects Agency’s (DARPA) SyNAPSE Program, or Systems of Neuromorphic Adaptive Plastic Scalable Electronics. Since 2008, the HRL-led SyNAPSE team has been developing a new paradigm for “neuromorphic computing” modeled after biology.

While I haven’t come across HRL Laboratories before, I have mentioned Dr. Wei Lu and his work with memristors in my April 15, 2010 posting. As for HRL Laboratories, they were founded in 1948 by Howard Hughes as the Hughes Research Laboratories (from the company’s History page),

HRL Laboratories continues the legacy of technology advances that began at Hughes Research Laboratories, established by Howard Hughes in 1948. HRL Laboratories, LLC, was organized as a limited liability company (LLC) on December 17, 1997 and received its first patent on September 12, 2000. With more than 750 patents to our name since then and counting, we’re proud of our talented group of researchers, who continue the long tradition of technical excellence in innovation.

First Laser
One of Hughes’ most notable achievements came in 1960 with the demonstration of the world’s first laser which used a synthetic ruby crystal. The ruby laser became the basis of a multibillion-dollar laser range finder business for Hughes. In 2010 during the 50th anniversary of the laser, HRL was designated a Physics Historic Site by the American Physical Society and was selected an IEEE Milestones location as the facility where the first working laser was demonstrated.

HRL has organized its researchers in a number of teams, the one of most interest in this context is the Center for Neural and Emergent Systems,

Part of HRL’s Information and Systems Sciences Laboratory, the Center for Neural and Emergent Systems (CNES) is dedicated to exploring and developing an innovative neural & emergent computing paradigm for creating intelligent, efficient machines that can interact with, react and adapt to, evolve, and learn from their environments.

CNES was founded on the principle that all intelligent systems are open thermodynamic systems capable of self-organization, whereby structural order emerges from disorder as a natural consequence of exchanging energy, matter or entropy with their environments.

These systems exist in a state far from equilibrium where the evolution of complex behaviors cannot be readily predicted from purely local interactions between the system’s parts. Rather, the emergent order and structure of the system arises from manifold interactions of its parts. These emergent systems contain amplifying-damping loops as a result of which very small perturbations can cause large effects or no effect at all. They become adaptive when the component relationships within the system become tuned for a particular set of tasks.

CNES promotes the idea that the neural system in the brain is an example of such a complex adaptive system. A key goal of CNES is to explain how computations in the brain can help explain the realization of complex behaviors such as perception, planning, decision making and navigation due to brain-body-environment interactions.

This has reminded me of HP Labs and their work with memristors (I have many postings, too many to list here) and understand that they will be rolling out ‘memristor-based’ products in 2013. From the  Oct. 8, 2011 article by Peter Clarke for EE Times,

The ‘memristor’ two-terminal non-volatile memory technology, in development at Hewlett Packard Co. since 2008, is on track to be in the market and taking share from flash memory within 18 months, according to Stan Williams, senior fellow at HP Labs.

“We have a lot of big plans for it and we’re working with Hynix Semiconductor to launch a replacement for flash in the summer of 2013 and also to address the solid-state drive market,” Williams told the audience of the International Electronics Forum, being held here [Seville, Spain].

ETA June 11, 2012: New artificial synapse development is mentioned in George Dvorsky’s June 11, 2012 posting (on the IO9.com website) about a nanoscale electrochemical switch developed by researchers in a Japan.

US DARPA competition for $2M robotics project prize

The presolicitation proposer’s webcast takes place April 16, 2012 according to this notice,

Robotics Challenge Virtual Proposer Day
The Defense Advanced Research Projects Agency (DARPA) is sponsoring a virtual Proposers’ Day Workshop for the potential proposer community, for the Robotics Challenge program. The virtual workshop will be held on April 16, 2012 via a live webcast from 12:00 PM to 4:00 PM EDT.

The goals of the Proposer Day are: (a) to introduce the science and technology community (industry, academia, and Government) to the Robotics Challenge program vision and goals; (b) to engage investigators that may have capabilities to develop elements of interest and relevance to the Robotics Challenge goals; and (c) to encourage and promote teaming arrangements among organizations that have the relevant expertise, research facilities, and capabilities for executing research and development responsive to the Robotics Challenge program goals. Aside from traditional robotics researchers, a successful team will likely combine cutting edge advancements and expertise from the areas of mechanism design and control systems, embedded controls, biophysics, machine-human interface, modeling & simulation, gaming and autonomy. The Proposers’ Day will include overview presentations by various government personnel (both internal and external to DARPA) and a Q&A session.

Program Goals and Description:

The primary goal of the DARPA Robotics Challenge program is to develop ground robotic capabilities to execute complex tasks in dangerous, degraded, human-engineered environments. The program will focus on robots that can use available human tools, ranging from hand tools to vehicles. The program aims to advance the key robotic technologies of supervised autonomy, mounted mobility, dismounted mobility, dexterity, strength, and platform endurance. Supervised autonomy will be developed to allow robot control by non-expert operators, to lower operator workload, and to allow effective operation despite low fidelity (low bandwidth, high latency, intermittent) communications.

DARPA intends to solicit innovative research proposals in the area of robotics for disaster response. Proposed research should investigate innovative approaches that enable revolutionary advances in science, devices, or systems. Specifically excluded is research that primarily results in evolutionary improvements to the existing state of practice.

A secondary program goal is to make ground robot software development more accessible, and lower software acquisition cost while increasing capability. This will be accomplished by creating and providing Government Furnished Equipment (GFE) to some performers in the form of a robotic hardware platform with arms, legs, torso, and head, called the GFE Platform. Availability of the GFE Platform will allow teams without hardware expertise or hardware to participate.

A parallel secondary program goal is to make ground robot systems development (both hardware and software) more accessible, and lower acquisition cost while increasing capability. This will be accomplished by creating and providing GFE in the form of an open-source, real-time, operator-interactive, virtual test-bed simulator, called the GFE Simulator. The GFE Simulator will be populated with models of robots, robot components, and field environments. The accuracy of the models will be rigorously validated on a physical test-bed.

The creation of a widely available, validated, affordable, community supported and enhanced virtual test environment will play a catalytic role, similar to the role the Simulation Program with Integrated Circuit Emphasis (SPICE) played for integrated circuits, allowing new hardware and software designs to be evaluated without the need for physical prototyping. This simulator will lower the barrier for companies to enter the robotics market by allowing them to quickly explore and test new designs at minimal cost with high confidence in the results. It will also catalyze disaggregation of robot software, hardware, and component suppliers, leading to increased competition, increased innovation, and lower cost.

DARPA anticipates that the GFE Simulator will also enhance Science, Technology, Engineering, and Mathematics (STEM) education. For example in the For Inspiration and Recognition of Science and Technology (FIRST) competition, by allowing students to virtually prototype the design and control of robots, then compare experimental and simulated results – a fundamental lesson in the engineering skill of modeling.

Registration Information:
Participants must register for the Proposers’ Day workshop through the registration website by Friday, April 13th at Noon EDT.  The Proposer Day meeting is unclassified and open to the general public.

Here is the DARPA Robotics Challenge Notice webpage. You can find the 42-page document (DARPA-BAA-12-39 [DARPA Robotics Challenge]) listing all the proposal details and eligibility here. It looks like Canadians or Canadian teams and other can apply although I suggest you confirm this by contacting these folks directly at DARPA-BAA-12-39@darpa.mil.

There are some general details here in the April 11, 2012 news item on physorg.com,

DARPA’s Robotics Challenge will launch in October 2012.  Teams are sought to compete in challenges involving staged disaster-response scenarios in which robots will have to successfully navigate a series of physical tasks corresponding to anticipated, real-world disaster-response requirements.

The proposal due date is May 31, 2012, according to the 42-page DARPA-BAA-12-39 (DARPA Robotics Challenge) document.

Geckskin and Z-Man

Z-Man or do I mean SpiderMan? They used to make reference to SpiderMan and/or geckos when there was some research breakthrough or other concerning adhesion (specifically, bioadhesion) but these days, it’s all geckos, all the time.

I’m going to start with the first announcement from the research team at the University of Massachusetts at Amherst, from the Feb. 17, 2012 news item on Nanowerk,

For years, biologists have been amazed by the power of gecko feet, which let these 5-ounce lizards produce an adhesive force roughly equivalent to carrying nine pounds up a wall without slipping. Now, a team of polymer scientists and a biologist at the University of Massachusetts Amherst have discovered exactly how the gecko does it, leading them to invent “Geckskin,” a device that can hold 700 pounds on a smooth wall. Doctoral candidate Michael Bartlett in Alfred Crosby’s polymer science and engineering lab at UMass Amherst is the lead author of their article describing the discovery in the current online issue of Advanced Materials (“Looking Beyond Fibrillar Features to Scale Gecko-Like Adhesion”). The group includes biologist Duncan Irschick, a functional morphologist who has studied the gecko’s climbing and clinging abilities for over 20 years. Geckos are equally at home on vertical, slanted, even backward-tilting surfaces.

Here’s a picture illustrating the material’s strength,

A card-sized pad of Geckskin can firmly attach very heavy objects such as this 42-inch television weighing about 40 lbs. (18 kg) to a smooth vertical surface. The key innovation by Bartlett and colleagues was to create a soft pad woven into a stiff fabric that includes a synthetic tendon. Together these features allow the stiff yet flexible pad to “drape” over a surface to maximize contact. Photo courtesy of UMass Amherst

This image is meant as an illustration of what the product could do and not as a demonstration, i.e., the tv is not being held up by ‘geckskin’.

There are other research teams around the world working on ways to imitate the properties of gecko feet or bioadhesion (my Nov. 2, 2011 posting mentions some work on robots with ‘gecko feet’ at Simon Fraser University [Canada] and my March 19, 2012 posting mentions in passing some work being done at the University of Waterloo [Canada] are two recent examples).

The University of Massachusetts team’s innovation (from the Feb. 17, 2012 news item),

The key innovation by Bartlett and colleagues was to create an integrated adhesive with a soft pad woven into a stiff fabric, which allows the pad to “drape” over a surface to maximize contact. Further, as in natural gecko feet, the skin is woven into a synthetic “tendon,” yielding a design that plays a key role in maintaining stiffness and rotational freedom, the researchers explain.

Importantly, the Geckskin’s adhesive pad uses simple everyday materials such as polydimethylsiloxane (PDMS), which holds promise for developing an inexpensive, strong and durable dry adhesive.

The UMass Amherst researchers are continuing to improve their Geckskin design by drawing on lessons from the evolution of gecko feet, which show remarkable variation in anatomy. “Our design for Geckskin shows the true integrative power of evolution for inspiring synthetic design that can ultimately aid humans in many ways,” says Irschick.

The research at the University of Massachusetts is being funded, in part, by DARPA (US Defense Advanced Research Projects Agency) through its Z-man program. From the March 2, 2012 news item on Nanowerk,

“Geckskin” is one output of the Z-Man program. It is a synthetically-fabricated reversible adhesive inspired by the gecko’s ability to climb surfaces of various materials and roughness, including smooth surfaces like glass. Performers on Z-Man designed adhesive pads to mimic the gecko foot over multiple length scales, from the macroscopic foot tendons to the microscopic setae and spatulae, to maximize reversible van der Waals interactions with the surface.

Here’s the reasoning for the Z-Man program, from the March 2, 2012 news item,

The Defense Advanced Research Projects Agency (DARPA)’s “Z-Man program” aims to develop biologically inspired climbing aids to enable soldiers to scale vertical walls constructed from typical building materials, while carrying a full combat load, and without the use of ropes or ladders.

Soldiers operate in all manner of environments, including tight urban terrain. Their safety and effectiveness demand maximum flexibility for maneuvering and responding to circumstances. To overcome obstacles and secure entrance and egress routes, soldiers frequently rely on ropes, ladders and related climbing tools. Such climbing tools cost valuable time to use, have limited application and add to the load warfighters are forced to carry during missions.

The Z-Man program provides more information, as well as, images here, where you will find this image, which is not as pretty as the one with the tv screen but this one is a demonstration,

A proof-of-concept demonstration of a 16-square-inch sheet of Geckskin adhering to a vertical glass wall while supporting a static load of up to 660 pounds. (from the Z-Man Program website)

In the very latest news, the University of Massachusetts team has won international funding for its (and Cambridge University’s) work on bioadhesion. From the University of Massachusetts at Amherst March 28, 2012 [news release],

Duncan Irschick, Biology, and Al Crosby, Polymer Science and Engineering, with Walter Federle of Cambridge University, have been awarded a three-year, $900,000 grant from the Human Frontiers Science Program (HFSP) in Strasbourg, France, to study bioadhesion in geckos and insects.

Theirs was one of only 25 teams from among approximately 800 to apply worldwide. HFSP is a global organization that funds research at the frontiers of the life sciences.

Crosby, Irschick and colleagues received international scientific and media attention over the past several weeks for their discovery reported in the journal Advanced Materials, of how gecko feet and skin produce an adhesive force roughly equivalent to the 5-ounce animal carrying nine pounds up a wall without slipping. This led them to invent “Geckskin,” a device that can hold 700 pounds on a smooth wall. Irschick, a functional morphologist who has studied the gecko’s climbing and clinging abilities for over 20 years, says the lizards are equally at home on vertical, slanted and even backward-tilting surfaces.

Not having heard of the Human Science Frontier Program (HSFP) previously, I was moved to investigate further. From the About Us page,

The Human Frontier Science Program is a program of funding for frontier research in the life sciences. It is implemented by the International Human Frontier Science Program Organization (HFSPO) with its office in Strasbourg.

The members of the HFSPO, the so-called Management Supporting Parties (MSPs) are the contributing countries and the European Union, which contributes on behalf of the non-G7 EU members.

The current MSPs are Australia, Canada, France, Germany, India, Italy, Japan, Republic of Korea, Norway, New Zealand, Switzerland the United Kingdom, the United States of America and the European Union.

I wonder how much impact all the publicity had on the funding decision. In any event, it’s good to find out about a new funding program and I wish anyone who applies the best of luck!

DARPA’s Shredder challenge solved

Out of a field of almost 9,000 registered teams, the San Francisco-based “All Your Shreds Are Belong to U.S.” team won the $50,000 prize. Here’s a brief description of the challenge (highlighted in my Nov. 28, 2011 posting), from the DARPA Shredder Challenge page,

Today’s troops often confiscate the remnants of destroyed documents in war zones, but reconstructing them is a daunting task. DARPA’s [Defense Advanced Research Projects Agency] Shredder Challenge called upon computer scientists, puzzle enthusiasts and anyone else who likes solving complex problems to compete for up to $50,000 by piecing together a series of shredded documents.

The goal was to identify and assess potential capabilities that could be used by our warfighters operating in war zones, but might also create vulnerabilities to sensitive information that is protected through our own shredding practices throughout the U.S. national security community.

There were five puzzles in all and, as of my Nov. 28, 2011 posting, the fifth was the only one that had not been solved. By Dec. 2, 2011 all the puzzles had been solved. From the Dec. 5, 2011 news item on physorg.com,

The ‘All Your Shreds Are Belong to U.S.’ team, which won the $50,000 prize, used custom-coded, computer-vision algorithms to suggest fragment pairings to human assemblers for verification. In total, the winning team spent nearly 600 man-hours developing algorithms and piecing together documents that were shredded into more than 10,000 pieces.

The Shredder Challenge represents a preliminary investigation into the area of information security to identify and assess potential capabilities that could be used by war fighters operating in war zones to more quickly obtain valuable information from confiscated, shredded documents and gain a quantitative understanding of potential vulnerabilities inherent to the shredding of sensitive U.S. National security documents.

While the contest is now closed, it’s still possible to try this puzzle for fun. You can find out more about the various puzzle solutions and the winning team’s submission here.

$50,000 from DARPA if you can solve five puzzles

If you’re planning to win the DARPA (US Defense Advanced Research Projects Agency) Shredder Challenge, you’d best register by Nov. 28, 2011, 5 pm ET. In other words, there’s about 40 mins. left. From the DARPA Shredder Challenge page,

Today’s troops often confiscate the remnants of destroyed documents in war zones, but reconstructing them is a daunting task. DARPA’s Shredder Challenge calls upon computer scientists, puzzle enthusiasts and anyone else who likes solving complex problems to compete for up to $50,000 by piecing together a series of shredded documents.

The goal is to identify and assess potential capabilities that could be used by our warfighters operating in war zones, but might also create vulnerabilities to sensitive information that is protected through our own shredding practices throughout the U.S. national security community.

Do you have the skills to reconstruct shredded documents and solve the puzzle?


The Shredder Challenge is comprised of five separate puzzles in which the number of documents, the document subject matter and the method of shredding will be varied to present challenges of increasing difficulty. To complete each problem, participants must provide the answer to a puzzle embedded in the content of the reconstructed document.

The overall prizewinner and prize awarded will depend on the number and difficulty of the problems solved. DARPA will release the challenge problems on October 27, 2011 at 12:00 PM Eastern and announce a winner the week of December 5, 2011 once final results are calculated.

Teams have solved up to four puzzles; it’s the answer to the last puzzle which is proving elusive. There’s not much time left to register but there is still time to solve the puzzles.