Tag Archives: YeonJoo Jeong

Analogue memristor for next-generation brain-mimicking (neuromorphic) computing

This research into an analogue memristor comes from The Korea Institute of Science and Technology (KIST) according to a September 20, 2022 news item on Nanowerk, Note: A link has been removed,

Neuromorphic computing system technology mimicking the human brain has emerged and overcome the limitation of excessive power consumption regarding the existing von Neumann computing method. A high-performance, analog artificial synapse device, capable of expressing various synapse connection strengths, is required to implement a semiconductor device that uses a brain information transmission method. This method uses signals transmitted between neurons when a neuron generates a spike signal.

However, considering conventional resistance-variable memory devices widely used as artificial synapses, as the filament grows with varying resistance, the electric field increases, causing a feedback phenomenon, resulting in rapid filament growth. Therefore, it is challenging to implement considerable plasticity while maintaining analog (gradual) resistance variation concerning the filament type.

The Korea Institute of Science and Technology (KIST), led by Dr. YeonJoo Jeong’s team at the Center for Neuromorphic Engineering, solved the limitations of analog synaptic characteristics, plasticity and information preservation, which are chronic obstacles regarding memristors, neuromorphic semiconductor devices. He announced the development of an artificial synaptic semiconductor device capable of highly reliable neuromorphic computing (Nature Communications, “Cluster-type analogue memristor by engineering redox dynamics for high-performance neuromorphic computing”).

Caption: Concept image of the article Credit: Korea Institute of Science and Technology (KIST)

A September 20, 2022 (Korea) National Research Council of Science & Technology press release on EurekAlert, which originated the news item, delves further into the research,

The KIST research team fine-tuned the redox properties of active electrode ions to solve small synaptic plasticity hindering the performance of existing neuromorphic semiconductor devices. Furthermore, various transition metals were doped and used in the synaptic device, controlling the reduction probability of active electrode ions. It was discovered that the high reduction probability of ions is a critical variable in the development of high-performance artificial synaptic devices.

Therefore, a titanium transition metal, having a high ion reduction probability, was introduced by the research team into an existing artificial synaptic device. This maintains the synapse’s analog characteristics and the device plasticity at the synapse of the biological brain, approximately five times the difference between high and low resistances. Furthermore, they developed a high-performance neuromorphic semiconductor that is approximately 50 times more efficient.

Additionally, due to the high alloy formation reaction concerning the doped titanium transition metal, the information retention increased up to 63 times compared with the existing artificial synaptic device. Furthermore, brain functions, including long-term potentiation and long-term depression, could be more precisely simulated.

The team implemented an artificial neural network learning pattern using the developed artificial synaptic device and attempted artificial intelligence image recognition learning. As a result, the error rate was reduced by more than 60% compared with the existing artificial synaptic device; additionally, the handwriting image pattern (MNIST) recognition accuracy increased by more than 69%. The research team confirmed the feasibility of a high-performance neuromorphic computing system through this improved the artificial synaptic device.

Dr. Jeong of KIST stated, “This study drastically improved the synaptic range of motion and information preservation, which were the greatest technical barriers of existing synaptic mimics.” “In the developed artificial synapse device, the device’s analog operation area to express the synapse’s various connection strengths has been maximized, so the performance of brain simulation-based artificial intelligence computing will be improved.” Additionally, he mentioned, “In the follow-up research, we will manufacture a neuromorphic semiconductor chip based on the developed artificial synapse device to realize a high-performance artificial intelligence system, thereby further enhancing competitiveness in the domestic system and artificial intelligence semiconductor field.”

Here’s a link to and a citation for the paper,

Cluster-type analogue memristor by engineering redox dynamics for high-performance neuromorphic computing by Jaehyun Kang, Taeyoon Kim, Suman Hu, Jaewook Kim, Joon Young Kwak, Jongkil Park, Jong Keuk Park, Inho Kim, Suyoun Lee, Sangbum Kim & YeonJoo Jeong. Nature Communications volume 13, Article number: 4040 (2022) DOI: https://doi.org/10.1038/s41467-022-31804-4 Published: 12 July 2022

This paper is open access.

Bringing memristors to the masses and cutting down on energy use

One of my earliest posts featuring memristors (May 9, 2008) focused on their potential for energy savings but since then most of my postings feature research into their application in the field of neuromorphic (brainlike) computing. (For a description and abbreviated history of the memristor go to this page on my Nanotech Mysteries Wiki.)

In a sense this July 30, 2018 news item on Nanowerk is a return to the beginning,

A new way of arranging advanced computer components called memristors on a chip could enable them to be used for general computing, which could cut energy consumption by a factor of 100.

This would improve performance in low power environments such as smartphones or make for more efficient supercomputers, says a University of Michigan researcher.

“Historically, the semiconductor industry has improved performance by making devices faster. But although the processors and memories are very fast, they can’t be efficient because they have to wait for data to come in and out,” said Wei Lu, U-M professor of electrical and computer engineering and co-founder of memristor startup Crossbar Inc.

Memristors might be the answer. Named as a portmanteau of memory and resistor, they can be programmed to have different resistance states–meaning they store information as resistance levels. These circuit elements enable memory and processing in the same device, cutting out the data transfer bottleneck experienced by conventional computers in which the memory is separate from the processor.

A July 30, 2018 University of Michigan news release (also on EurekAlert), which originated the news item, expands on the theme,

… unlike ordinary bits, which are 1 or 0, memristors can have resistances that are on a continuum. Some applications, such as computing that mimics the brain (neuromorphic), take advantage of the analog nature of memristors. But for ordinary computing, trying to differentiate among small variations in the current passing through a memristor device is not precise enough for numerical calculations.

Lu and his colleagues got around this problem by digitizing the current outputs—defining current ranges as specific bit values (i.e., 0 or 1). The team was also able to map large mathematical problems into smaller blocks within the array, improving the efficiency and flexibility of the system.

Computers with these new blocks, which the researchers call “memory-processing units,” could be particularly useful for implementing machine learning and artificial intelligence algorithms. They are also well suited to tasks that are based on matrix operations, such as simulations used for weather prediction. The simplest mathematical matrices, akin to tables with rows and columns of numbers, can map directly onto the grid of memristors.

The memristor array situated on a circuit board.

The memristor array situated on a circuit board. Credit: Mohammed Zidan, Nanoelectronics group, University of Michigan.

Once the memristors are set to represent the numbers, operations that multiply and sum the rows and columns can be taken care of simultaneously, with a set of voltage pulses along the rows. The current measured at the end of each column contains the answers. A typical processor, in contrast, would have to read the value from each cell of the matrix, perform multiplication, and then sum up each column in series.

“We get the multiplication and addition in one step. It’s taken care of through physical laws. We don’t need to manually multiply and sum in a processor,” Lu said.

His team chose to solve partial differential equations as a test for a 32×32 memristor array—which Lu imagines as just one block of a future system. These equations, including those behind weather forecasting, underpin many problems science and engineering but are very challenging to solve. The difficulty comes from the complicated forms and multiple variables needed to model physical phenomena.

When solving partial differential equations exactly is impossible, solving them approximately can require supercomputers. These problems often involve very large matrices of data, so the memory-processor communication bottleneck is neatly solved with a memristor array. The equations Lu’s team used in their demonstration simulated a plasma reactor, such as those used for integrated circuit fabrication.

This work is described in a study, “A general memristor-based partial differential equation solver,” published in the journal Nature Electronics.

It was supported by the Defense Advanced Research Projects Agency (DARPA) (grant no. HR0011-17-2-0018) and by the National Science Foundation (NSF) (grant no. CCF-1617315).

Here’s a link and a citation for the paper,

A general memristor-based partial differential equation solver by Mohammed A. Zidan, YeonJoo Jeong, Jihang Lee, Bing Chen, Shuo Huang, Mark J. Kushner & Wei D. Lu. Nature Electronicsvolume 1, pages411–420 (2018) DOI: https://doi.org/10.1038/s41928-018-0100-6 Published: 13 July 2018

This paper is behind a paywall.

For the curious, Dr. Lu’s startup company, Crossbar can be found here.