Category Archives: science communication

Survey of Canadian science blog readers

Science Borealis, which is a Canadian science blog aggregator (an online location where you can find approximately 100 Canadian science blogs), is surveying blog readers in partnership with Dr. Paige Jarreau; further down this posting, I’m extending their invitation to participate *(deadline: Dec. 16, 2015)* but first a few details about Dr. Jarreau and the research.

About Dr. Paige Jareau

It seems she’s a photographer, as well as, a researcher,

Macro image of the eye of an endangered California Desert Tortoise, Gopherus agassizii. Credit: Paige Jarreau

Macro image of the eye of an endangered California Desert Tortoise, Gopherus agassizii. Credit: Paige Jarreau

You can find more of her photographs here.

Jarreau doesn’t seem to have updated her profiles in a while but here are two (one from her blog From the Lab Bench on the blogging network and one from her academic webpage,

I am a Bio/Nanotechnology scientist turned journalist, with an M.S. in Biological & Agricultural Engineering. Science is my interest, but writing is my passion. I translate science into story, and my dream is to inspire a love for science in every reader. I am also a new PhD student at the LSU Manship School of Mass Communications, focusing in science communications and policy. I currently conduct research on the communication of science—specifically climate science—to various publics, and I write about all things science on a daily basis. Please feel free to ask me questions anytime, and follow me on Twitter @FromTheLabBench.

I’m always ready for a challenge, and I live to be inspired by science.

I will earn my PhD in Mass Communication from Louisiana State University in May 2015, and will soon be a post-doctoral researcher at the Manship School of Mass Communication, LSU (Fall 2015-Spring 2016). I currently study communication practices at the intersection of science communication and new media.

Her PhD dissertation is titled: All the Science That Is Fit to Blog: An Analysis of Science Blogging Practices and this is the portion of the abstract available for viewing,

This dissertation examines science blogging practices, including motivations, routines and content decision rules, across a wide range of science bloggers. Previous research has largely failed to investigate science blogging practices from science bloggers’ perspective or to establish a sociological framework for understa…

It seems that Jarreau has turned her attention to science blog readers for her latest research.

Jarreau’s research

Her latest work began with phase one in October 2015. Here’s the announcement from her Oct. 21, 2015 posting on From the Lab Bench (, Note: A link has been removed,

Have you ever read one of these science blogs? Then head on over to fill out a readership survey for their blogs! We will learn much more about why people read science blogs, and you’ll get awesome prizes for participating, from science art to cash!

(Note – you have to completely fill out a readership survey for one of these blogs before taking the survey for another one of these blogs – but the survey will be shorter for the second blog you fill it out for!)

The survey closes on November 20th at midnight central US time!

In phase two, Jarreau has teamed up with Science Borealis, which started out as an aggregator for Canadian science blogs but has refashioned itself (from the Science Borealis About us page),

An inclusive digital science salon featuring Canadians blogging about a wide array of scientific disciplines. Science Borealis is a one-stop shop for the public, media, educators, and policy makers to source Canadian science information.

I wish they weren’t claiming to be “inclusive.” It’s too much like somebody introducing themselves as a “nice” or “kind” or … person. The truth is always the opposite.

Getting back to this latest phase of Jarreau’s research, approximately 20 Canadian science bloggers are participating through Science Borealis rather than the independent blog participation from phase one.

Extending the invitation

*From a Nov. 24, 2015 Science Borealis email,*

… Dr. Paige Jarreau from Louisiana State University and 20 other Canadian science bloggers [are conducting] a broad survey of Canadian science blog readers. Together we are trying to find out who reads science blogs in Canada, where they come from, whether Canadian-specific content is important to them and where they go for trustworthy, accurate science news and information. Your feedback will also help me learn more about my own blog readers.

It only take 5 minutes [I’d say more like 20 minutes as there’s more than one ‘essay’ question in addition to the questions where you tick off a box] to complete the survey. Begin here:

If you complete the survey you will be entered to win one of eleven prizes! A $50 Chapters Gift Card, a $20 surprise gift card, 3 Science Borealis T-shirts and 6 Surprise Gifts! PLUS everyone who completes the survey will receive a free hi-resolution science photograph from Paige’s Photography!

*(deadline for participating: Dec. 16, 2015)* You do have to read and ‘sign’ the consent form which provides a few more details about the research and outlines the privacy policy.

Having completed the survey, I do have a couple of comments. First, I’m delighted that this research is being conducted. I have stumbled across similar research some years ago but never had the chance to participate. (For anyone interested in previous research in this area),

Science, New Media, and the Public by Dominique Brossard and Dietram A. Scheufele. Science 4 January 2013: Vol. 339 no. 6115 pp. 40-41 DOI: 10.1126/science.1232329

While the paper is behind a paywall, the link will take to you to the paper’s abstract and, more interestingly, a list of papers which have cited Brossard’s and Scheufele’s work.

Unfortunately, I found the survey a little confusing in that I was answering questions about Science Borealis  as if it were a blog but I use it as an aggregator. (I used the link from Science Borealis, I believe if you use the link from here you will be asked about FrogHeart first.) Science Borealis does have a blog which I don’t read often as it  represents a diversity of science interests and those don’t always coincide with mine.

Also, I was sorry to see the age demographic breakdowns which were fine for certain ages but started at the age of 15. While I realize it’s unlikely that I or my colleagues have many readers under the age of 15, it would be interesting to find out if there are any. As well, Vancouver’s Science World has a blog that’s on Science Borealis and chances are good that they might have child readers, assuming they might be participating. Moving to the other end of the spectrum, the last category was age 60 and up. We have an aging population in Canada and the United States and weirdly no one questions this huge category of 60 or 64 and up. It seems obvious to me but there’s a difference between being 60 and 75, which researchers will never find out because they don’t bother asking the question. It’s not just social science and marketing researchers, more worryingly, it includes medical researchers. Yes, all those research studies telling you a drug is safe almost always don’t apply to anyone over the age of 55.

Those comments aside, here again is the link to the survey,

Good Luck on winning a prize.

*’From a Nov. 24, 2015 Science Borealis email’ added on Nov. 25, 2015 at 1240 hours PDT.

*'(deadline for participating: Dec. 16, 2015)’ added Nov. 25, 2015 at 1535 hours PDT.

*Note: I have not been able to find a mention of if, when, and/or where the results of the survey will be disseminated or published. Added Nov. 25, 2015 at 1535 hours PDT.*

Brain Talks (Vancouver, Canada) Nov. 26, 2015 event: Neurobiology of depression

Here’s more about the Brain Talks event from a Nov. 23, 3015 email announcement,

Please join us for another stimulating BrainTalks event!

Neurobiology of Depression: Insights from different treatment techniques

Thursday, Nov 26 [2015], 6:00pm @ Paetzold Auditorium, Vancouver General Hospital


Dr. Andrew Howard ~ Deep Brain Stimulation

Dr Howard will highlight what he has learned from ten years of experience with deep brain stimulation of the subcallosal gyrus for treatment-refractory major depression. He aims to present a transparent, unbiased view of the current landscape of deep brain stimulation for depression as well as hypotheses on why subcallosal gyrus deep brain stimulation has helped some and failed others.

Dr. Joseph Tham ~ Electroconvulsive Therapy

Electroconvulsive therapy has been in use since the late 1930’s and continues to be an important therapeutic modality since then in the treatment of severe depressive illness. Dr Tham will discuss current practice and ideas on mechanisms of activity.

Dr. Hassan Azim ~ Psychoanalysis for Depression

Dr Azim will make a case for the role of psychoanalysis in the reversal of adverse consequences culminating in depression. Specifically, experiential, epigenetic, and developmental factors will be considered.

Panel discussion and wine and cheese reception to follow!

Please RSVP here

You can find the Brain Talks website here, which features a homepage inviting both medical personnel and members of the general public to the events,

BrainTalks is a series of talks inviting you to contemplate emerging research about the brain. Researchers studying the brain, from various disciplines including psychiatry, neuroscience, neuroimaging, and neurology, gather to discuss current leading edge topics on the mind.

As an audience member, you join the discussion at the end of the talk, both in the presence of the entire audience, and with an opportunity afterwards to talk with the speaker more informally in a wine and cheese casual setting. The talks also serve as a connecting place for those interested in similar topics, potentially launching new endeavours or simply connecting people in discussions on how to approach their research, their knowledge, or their clinical practice.

For the general public [emphasis mine], these talks serve as a channel where by knowledge usually sequestered in inaccessible journals or university classrooms, is now available, potentially allowing people to better understand their brains and minds, how they work, and how to optimize brain health.

Don’t forget to RSVP, so they’ll know how big a box of wine to purchase.

Café Scientifique (Vancouver, Canada) on climate change and rise of complex life on Nov. 24, 2015 and Member of Parliament Joyce Murray’s Paris Climate Conference breakfast meeting

On Tuesday, November 24, 2015 at 7:30 pm in the back room of The Railway Club (2nd floor of 579 Dunsmuir St. [at Seymour St.]), Café Scientifique will be hosting a talk about climate change and the rise of complex life (from the Nov. 12, 2015 announcement),

Our speaker for the evening will be Dr. Mark Jellinek.  The title of his talk is:

The Formation and Breakup of Earth’s Supercontinents and the Remarkable Link to Earth’s Climate and the Rise of Complex Life

Earth history is marked by the intermittent formation and breakup of “supercontinents”, where all the land mass is organized much like a completed jigsaw puzzle centered at the equator or pole of the planet. Such events disrupt the mantle convective motions that cool our planet, affecting the volcanic and weathering processes that maintain Earth’s remarkably hospitable climate, in turn. In this talk I will explore how the last two supercontinental cycles impelled Earth into profoundly different climate extreme’s: a ~150 million year long cold period involving protracted global glaciations beginning about 800 million years ago and a ~100 million year long period of extreme warming beginning about 170 million years ago. One of the most provocative features of the last period of global glaciation is the rapid emergence of complex, multicellular animals about 650 million years ago. Why global glaciation might stimulate such an evolutionary bifurcation is, however, unclear. Predictable environmental stresses related to effects of the formation and breakup of the supercontinent Rodinia on ocean chemistry and Earth’s surface climate may play a crucial and unexpected role that I will discuss.

A professor in the Dept. of Earth, Ocean and Atmospheric Sciences at the University of British Columbia, Dr. Jellinek’s research interests include Volcanology, Geodynamics, Planetary Science, Geological Fluid Mechanics. You can find out more about Dr. Jellinek and his work here.

Joyce Murray and the Paris Climate Conference (sold out)

Joyce Murray is a Canadian Member of Parliament, (Liberal) for the riding of Vancouver Quadra who hosts a regular breakfast meeting where topics of interest (child care, seniors, transportation, the arts, big data, etc.) are discussed. From a Nov. 13, 2015 email announcement,

You are invited to our first post-election Vancouver Quadra MP Breakfast Connections on November 27th at Enigma Restaurant, for a discussion with Dr. Mark Jaccard on why the heat will be on world leaders in Paris, in the days leading to December 12th,  at the Paris Climate Conference (COP 21).

After 20 years of UN negotiations, the world expects a legally binding universal agreement on climate to keep temperature increases below 2°C! The climate heat will especially be on laggards like Canada and Australia’s new Prime Ministers. What might be expected of the Right Honorable Justin Trudeau and his provincial premiers? What are the possible outcomes of COP21?

Dr. Jaccard has worked with leadership in countries like China and the United States, and helped develop British Columbia’s innovative Climate Action Plan and Carbon Tax.

Join us for this unique opportunity to engage with a climate policy expert who has participated in this critical global journey. From the occasion of the 1992 Rio Earth Summit resulting in the UN Framework Convention on Climate Change (UNFCCC), through the third Conference of Parties’ (COP3) Kyoto Protocol, to COP21 today, the building blocks for a binding international solution have been assembled. What’s still missing?

Mark has been a professor in the School of Resource and Environmental Management at Simon Fraser University since 1986 and is a global leader and consultant on structuring climate mitigation solutions. Former Chair and CEO of the British Columbia Utilities Commission, he has published over 100 academic papers, most of these related to his principal research focus: the design and application of energy-economy models that assess the effectiveness of sustainable energy and climate policies.

When: Friday November 27th 7:30 to 9:00AM

Where: Enigma Restaurant 4397 west 10th Avenue (at Trimble)

Cost: $20 includes a hot buffet breakfast; $10 for students (cash only please)

RSVP by emailing or call 604-664-9220


They’re not even taking names for a waiting list. You can find out more about Dr. Jaccard’s work here.

Science and the movies (Bond’s Spectre and The Martian)

There’s some nanotechnology in the new James Bond movie, Spectre, according to Johnny Brayson in his Nov. 5, 2015 (?) article for Bustle (Note: A link has been removed),

James Bond has always been known for his gadgets, and although Daniel Craig’s version of the character has been considerably less doohickey-heavy than past iterations, he’s still managed to make use of a few over the years, from his in-car defibrillator in Casino Royale to his biometric-coded gun in Skyfall. But Spectre, the newest Bond film, changes up the formula and brings more gadgets than fans have seen in years. There are returning favorites like a tricked out Aston Martin and an exploding watch, but there’s also a new twist on an old gadget that allows Bond to be tracked by his bosses, an injected microchip that records his every move. …

To Bond fans, though, the technology isn’t totally new. In Casino Royale, Bond is injected with a microchip that tracks his location and monitors his vital signs. However, when he’s captured by the bad guys, the device is cut out of his arm, rendering it useless. MI6 seems to have learned their lesson in Spectre, because this time around Bond is injected with Smart Blood, consisting of nanotechnology that does the same thing while flowing microscopically through his veins. As for whether it could really happen, the answer is not yet, but someday it could be.

Brayson provides an introduction to some of the exciting developments taking place scientifically in an intriguing way by relating those developments to a James Bond movie. Unfortunately, some of  his details  are wrong. For example, he is describing a single microchip introduced subcutaneously (under the skin) synonymously with ‘smart blood’ which would be many, many microchips prowling your bloodstream.

So, enjoy the article but exercise some caution. For example, this part in his article is mostly right (Note: Links have been removed),

However, there does actually exist nanotechnology that has been safely inserted into a human body — just not for the purposes of tracking.  Some “nanobots”, microscopic robots, have been used within the human eye to deliver drugs directly to the area that needs them [emphasis mine], and the idea is that one day similar nanobots will be able to be injected into one’s bloodstream to administer medication or even perform surgery. Some scientists even believe that a swarm of nanobots in the bloodstream could eventually make humans immune to disease, as the bots would simply destroy or fix any issues as soon as they arrive.

According to a Jan. 30, 2015 article by Jacopo Prisco for CNN, scientists at ETH Zurich were planning to start human clinical trials to test ‘micro or nanobots’ in the human eye. I cannot find any additional information about the proposed trials. Similarly, Israeli researcher Ido Bachelet announced a clinical trial of DNA nanobots on one patient to cure their leukemia (my Jan. 7, 2015 posting). An unsuccessful attempt to get updated information can found in a May 2015 Reddit Futurology posting.

The Martian

That film has been doing very well and, for the most part, seems to have gotten kudos for its science. However for those who like to dig down for more iinformation, Jeffrey Kluger’s Sept. 30, 2015 article for Time magazine expresses some reservations about the science while enthusing over its quality as a film,

… Go see The Martian. But still: Don’t expect all of the science to be what it should be. The hard part about good science fiction has always been the fiction part. How many liberties can you take and how big should they be before you lose credibility? In the case of The Martian, the answer is mixed.

The story’s least honest device is also its most important one: the massive windstorm that sweeps astronaut Mark Watney (Matt Damon) away, causing his crew mates to abandon him on the planet, assuming he has been killed. That sets the entire castaway tale into motion, but on a false note, because while Mars does have winds, its atmosphere is barely 1% of the density of Earth’s, meaning it could never whip up anything like the fury it does in the story.

“I needed a way to force the astronauts off the planet, so I allowed myself some leeway,” Weir conceded in a statement accompanying the movie’s release. …

It was exceedingly cool actually, and for that reason Weir’s liberty could almost be forgiven, but then the story tries to have it both ways with the same bit of science. When a pressure leak causes an entire pod on Watney’s habitat to blow up, he patches a yawning opening in what’s left of the dwelling with plastic tarp and duct tape. That might actually be enough to do the job in the tenuous atmosphere that does exist on Mars. But in the violent one Weir invents for his story, the fix wouldn’t last a day.

There’s more to this entertaining and educational article including embedded images and a video.

Café Scientifique (Vancouver, Canada) and noise on Oct. 27, 2015

On Tuesday, October 27, 2015  Café Scientifique, in the back room of The Railway Club (2nd floor of 579 Dunsmuir St. [at Seymour St.]), will be hosting a talk on the history of noise (from the Oct. 13, 2015 announcement),

Our speaker for the evening will be Dr. Shawn Bullock.  The title of his talk is:

The History of Noise: Perspectives from Physics and Engineering

The word “noise” is often synonymous with “nuisance,” which implies something to be avoided as much as possible. We label blaring sirens, the space between stations on the radio dial and the din of a busy street as “noise.” Is noise simply a sound we don’t like? We will consider the evolution of how scientists and engineers have thought about noise, beginning in the 19th-century and continuing to the present day. We will explore the idea of noise both as a social construction and as a technological necessity. We’ll also touch on critical developments in the study of sound, the history of physics and engineering, and the development of communications technology.

This description is almost identical to the description Bullock gave for a November 2014 talk he titled: Snap, Crackle, Pop!: A Short History of Noise which he summarizes this way after delivering the talk,

I used ideas from the history of physics, the history of music, the discipline of sound studies, and the history of electrical engineering to make the point that understanding “noise” is essential to understanding advancements in physics and engineering in the last century. We began with a discussion of 19th-century attitudes toward noise (and its association with “progress” and industry) before moving on to examine the early history of recorded sound and music, early attempts to measure noise, and the noise abatement movement. I concluded with a brief overview of my recent work on the role of noise in the development of the modem during the early Cold War.

You can find out more about Dr. Bullock who is an assistant professor of science education at Simon Fraser University here at his website.

On the subject of noise, although not directly related to Bullock’s work, there’s some research suggesting that noise may be having a serious impact on marine life. From an Oct. 8, 2015 Elsevier press release on EurekAlert,

Quiet areas should be sectioned off in the oceans to give us a better picture of the impact human generated noise is having on marine animals, according to a new study published in Marine Pollution Bulletin. By assigning zones through which ships cannot travel, researchers will be able to compare the behavior of animals in these quiet zones to those living in noisier areas, helping decide the best way to protect marine life from harmful noise.

The authors of the study, from the University of St Andrews, UK, the Oceans Initiative, Cornell University, USA, and Curtin University, Australia, say focusing on protecting areas that are still quiet will give researchers a better insight into the true impact we are having on the oceans.

Almost all marine organisms, including mammals like whales and dolphins, fish and even invertebrates, use sound to find food, avoid predators, choose mates and navigate. Chronic noise from human activities such as shipping can have a big impact on these animals, since it interferes with their acoustic signaling – increased background noise can mean animals are unable to hear important signals, and they tend to swim away from sources of noise, disrupting their normal behavior.

The number of ships in the oceans has increased fourfold since 1992, increasing marine noise dramatically. Ships are also getting bigger, and therefore noisier: in 2000 the biggest cargo ships could carry 8,000 containers; today’s biggest carry 18,000.

“Marine animals, especially whales, depend on a naturally quiet ocean for survival, but humans are polluting major portions of the ocean with noise,” said Dr. Christopher Clark from the Bioacoustics Research Program, Cornell University. “We must make every effort to protect quiet ocean regions now, before they grow too noisy from the din of our activities.”

For the new study, lead author Dr. Rob Williams and the team mapped out areas of high and low noise pollution in the oceans around Canada. Using shipping route and speed data from Environment Canada, the researchers put together a model of noise based on ships’ location, size and speed, calculating the cumulative sound they produce over the course of a year. They used the maps to predict how noisy they thought a particular area ought to be.

To test their predictions, in partnership with Cornell University, they deployed 12 autonomous hydrophones – devices that can measure noise in water – and found a correlation in terms of how the areas ranked from quietest to noisiest. The quiet areas are potential noise conservation zones.

“We tend to focus on problems in conservation biology. This was a fun study to work on, because we looked for opportunities to protect species by working with existing patterns in noise and animal distribution, and found that British Colombia offers many important habitat for whales that are still quiet,” said Dr. Rob Williams, lead author of the study. “If we think of quiet, wild oceans as a natural resource, we are lucky that Canada is blessed with globally rare pockets of acoustic wilderness. It makes sense to talk about protecting acoustic sanctuaries before we lose them.”

Although it is clear that noise has an impact on marine organisms, the exact effect is still not well understood. By changing their acoustic environment, we could be inadvertently choosing winners and losers in terms of survival; researchers are still at an early stage of predicting who will win or lose under different circumstances. The quiet areas the team identified could serve as experimental control sites for research like the International Quiet Ocean Experiment to see what effects ocean noise is having on marine life.

“Sound is perceived differently by different species, and some are more affected by noise than others,” said Christine Erbe, co-author of the study and Director of the Marine Science Center, Curtin University, Australia.

So far, the researchers have focused on marine mammals – whales, dolphins, porpoises, seals and sea lions. With a Pew Fellowship in Marine Conservation, Dr. Williams now plans to look at the effects of noise on fish, which are less well understood. By starting to quantify that and let people know what the likely economic effect on fisheries or on fish that are culturally important, Dr. Williams hopes to get the attention of the people who make decisions that affect ocean noise.

“When protecting highly mobile and migratory species that are poorly studied, it may make sense to focus on threats rather than the animals themselves. Shipping patterns decided by humans are often more predictable than the movements of whales and dolphins,” said Erin Ashe, co-author of the study and co-founder of the Oceans Initiative from the University of St Andrews.

Keeping areas of the ocean quiet is easier than reducing noise in already busy zones, say the authors of the study. However, if future research that stems from noise protected zones indicates that overall marine noise should be reduced, there are several possible approaches to reducing noise. The first is speed reduction: the faster a ship goes, the noisier it gets, so slowing down would reduce overall noise. The noisiest ships could also be targeted for replacement: by reducing the noise produced by the noisiest 10% of ships in use today, overall marine noise could be reduced by more than half. The third, more long-term, option would be to build quieter ships from the outset.

I can’t help wondering why Canadian scientists aren’t involved in this research taking place off our shores. Regardless, here’s a link to and a citation for the paper,

Quiet(er) marine protected areas by Rob Williams, Christine Erbe, Erin Ashe, & Christopher W. Clark. Marine Pollution Bulletin Available online 16 September 2015 In Press, Corrected Proof doi:10.1016/j.marpolbul.2015.09.012

This is an open access paper.

A trio of nano news items from Japan (Irago Conference 2015, novel tuneable metallofullerenes, and nanoislands and skeletal skin for fuel cells)

Getting onto a list for news releases from Japan has been a boon. I don’t know how it happened but now I can better keep up with the nanotechnology effort in the country where the term was first coined (Norio Taniguchi) and which is a research leader in this field.

Irago Conference

This is a very intriguing conference, from a joint Oct. 18, 2015 Toyohashi University of Technology and University of Electro-Communications press release,

Organized by the Toyohashi University of Technology and University of Electro-Communications, Tokyo, the Irago Conference aims to enhance mutual understanding between scientists, engineers, policy makers, and experts from a wide spectrum of pure and applied sciences in order to resolve major global issues.

The Irago Conference 2015 is a unique conference combining thought provoking insights into global issues including disaster mitigation, neuroscience, public health monitoring, and nanotechnology [emphasis mine] by internationally renowned invited speakers with selected talks, posters, and demonstrations from academics, industrialists, and think tanks. The conference is truly a ‘360 degree outlook on critical scientific and technological challenges’ facing mankind.

Recent changes in global economics and industrial priorities, environmental and energy policies, food production and population movements have produced formidable challenges that must be addressed for sustaining life on earth.

The Irago Conference will highlight the major issues by bringing together experts from across the world who will give their views on key areas such as energy and natural resources, medicine and public health, disaster prevention and management, as well as other advances in science, technology and life sciences.

Observation, measurement, and monitoring are the keywords of the core topics covered at Irago 2015 with invited speakers Professor Masashi Hayakawa (University of Electro-Communications, Japan) presenting his pioneering research on “Earthquake prediction with electromagnetic phenomena, and Nobuhiko Okabe  (Kawasaki City Institute for Public Health, Japan) discussing “The role and contribution of Kawasaki City Institute for Public Health (Local Public Health Laboratory), locally and globally” with first hand examples of monitoring food safety and the spread of possible diseases carried by insects.

The Irago Conference will be streamed live. Visit the conference website for the links to the streaming site.

When: Thursday, 22 October 2015 to Friday 23  October 2015.

Where: Irago Sea-Park & Spa Hotel, Tahara, Aichi, Japan

They don’t appear to have set up the streaming link yet.

Tuneable metallofullerenes

Originally issued as a Sept. 21, 2015 press release, the University of Electro-Communications has issued an Oct. 19, 2015 version,

Tiny nanoscale molecules in the form of spherical carbon cages, or ‘fullerenes’, have received considerable attention in recent years. Individual or small groups of atoms can be trapped inside fullerenes, creating stable molecules with unique electronic structures and unusual properties that can be exploited in the field of nanomaterials and biomedical science.

Endohedral metallofullerenes (EMFs) are one such class of molecules, in which one or more metal atoms are encapsulated inside many kinds of carbon cages. Crucially, the metal atom(s) are not chemically bonded with the carbon surrounds, but they do donate electrons to the carbon cage. Scientists have recently begun to understand how to control the movement, behavior and positioning of the enclosed atoms by adding other atoms, such as silicon or germanium (in their silyl or germyl groups), to the fullerene surface. This allows for the manipulation and fine-tuning of the EMF’s properties.

Now, Masahiro Kako and co-workers at the University of Electro-Communications in Tokyo, together with scientists across Japan and the USA, have created and analyzed the effects of silylation and germylation on an EMF called Lu3N@Ih-C80 (three lutetium atoms bonded to a nitrogen atom encased inside a carbon 80 cage).

Using X-ray crystallography, electrochemical analyses and theoretical calculations, the team discovered that adding silyl groups or germyl groups to the fullerene structure was a versatile way of controlling the EMF’s electronic properties. The exact positioning of the silyl or germyl groups in bonding to the carbon structure determined the energy gaps present in the EMF, and determined the orientation of the bonded metal atoms inside the cage.

The germyl groups donated more electrons and the process worked slightly more efficiently than the silyl groups, but Kako and his team believe that both provide an effective way of fine-tuning EMF electronic characteristics.


A brief history of fullerenes

Fullerenes are carbon molecules that take the shape of spheres. The most famous and abundant fullerene is the buckminsterfullerene, or ‘buckyball’, C60, which resembles a soccer ball in shape with a bonded carbon atom at each point of every polygon.

Endohedral metallofullerenes, or EMFs, are created by trapping a metal atom or atoms inside a fullerene cage, rather like a hamster in a ball. The trapped atom(s) are not chemically-bonded to the carbon, but they do interact with it by donating electrons, thus creating unique and very useful molecules for nanomaterial science and biomedicine.

Silylation and germylation

The addition of other atoms to fullerene surfaces can affect EMF properties, by regulating the behavior of the metal atoms inside the fullerene cage. In one EMF, the movement of lanthanum atoms is restricted to two dimensions by the addition of silyl groups to the carbon cage. This alters the electrostatic potentials inside the cage and restricts the lanthanum atoms’ mobility, and thus changes the overall properties of the whole molecule.

This study by Masahiro Kako and co-workers further enhances understanding of the effects of silylation and germalytion (the addition of silicon-based and germanium-based groups) on lutetium-based EMFs. The team have shown that the exact positioning of the additional atoms in the carbon structure can influence the energy gaps across the molecule, thereby allowing them to tune the electronic properties of the EMF. This ability to ‘fine-tune’ EMFs could have some applications for functional materials in molecular electronics, such as acceptors in organic photovoltaic devices.

Further work

Kako and his team hope to carry out further investigations into the addition of alternative groups of atoms to fullerenes, to add to the tuning properties of silicon- and germanium-based groups. This could expand on the versatility of EMFs and their potential applications in future.

Fullerenes don’t get that much attention these days when compared to graphene and carbon nanotubes although there seems to be increasing interest in their potential as cages.

Here’s a link to and a citation for the paper,

Preparation, Structural Determination, and Characterization of Electronic Properties of Bis-Silylated and Bis-Germylated Lu3N@Ih-C80 by Prof. Dr. Masahiro Kako, Kyosuke Miyabe, Dr. Kumiko Sato, Dr. Mitsuaki Suzuki, Dr. Naomi Mizorogi, Dr. Wei-Wei Wang, Prof. Dr. Michio Yamada, Prof. Dr. Yutaka Maeda, Prof. Dr. Marilyn M. Olmstead, Prof. Dr. Alan L. Balch, Prof. Dr. Shigeru Nagase, and Prof. Dr. Takeshi Akasaka. Chemistry – A European Journal DOI: 10.1002/chem.201503579 Article first published online: 21 SEP 2015

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Nanoislands and skeletal skin for fuel cells

This final item concerns a platinum ‘skin’. From an Oct. 21, 2015 University of Electro-Communications press release,

Polymer electrolyte fuel cells (PEFC) could provide an alternative to traditional fossil fuel power, but higher performance and durability under harsh conditions are needed before PEFC vehicles can be considered commercially viable. Now researchers at the University of Electro-Communications, the University of Tokushima and Japan Synchrotron Radiation Research Institute in Japan have synthesised catalysts from platinum cobalt (PtCo3) nanoparticles on carbon (C) with tin oxide (SnO2) nanoislands and shown that they perform better than any previously reported.

Fuel cell research has focused on platinum alloys and transition metal oxides to improve on the durability and catalytic performance of platinum on carbon. Previous work with SnO2 islands grown on platinum tin alloy with carbon had already shown some improvement in the oxygen reduction reactions that occur in fuel cells. However growing islands of only SnO2 on other alloys posed a challenge.

Now Yasuhiro Iwasawa at the University of Electro-Communications and his colleagues have grown SnO2 islands on Pt3Co nanoparticles on carbon (Pt3Co/C) by selective electrochemical deposition of tin metal, which is then oxidized. The addition of the SnO2 nanoislands doubled the catalytic performance of the Pt3Co/C catalysts. In addition they were undamaged after undergoing 5000 cycles of voltage changes to test their durability.

The structure the Pt3Co nanoparticles form has a Pt3Co core surrounded by a platinum skin that has a rough – “skeleton” – morphology. The researchers attribute the high catalytic performance in part to efficient electronic modification specifically at the platinum skin surface, and in particular to the unique property of the SnO2 nanoislands at the compressive platinum skeleton-skin surface.

“In general, adhesion of transition metal oxides on carbon induces depression of the electrical conductivity of the carbon,” explain the researchers in their report. “Hence, the selective nano-SnO2 decoration on the Pt-enriched-surface nanoparticles provides a significant advantage as a cathode catalyst.”


Polymer electrolyte fuel cells

Polymer electrolyte fuel cells consist of two porous polymer membranes. On one side hydrogen gas molecules give up electrons and on the other oxygen gas molecules accept electrons completing a current circuit.  The ions can then penetrate the membrane and combine to form water.

Polymer electrolyte fuel cells have several advantages over conventional fuel as they do not deplete the limited supplies of fossil fuels, and the waste products are water and heat, and therefore relatively non-polluting. The efficiency of fuel cells has already highlighted their potential for powering small vehicles.


The formation of hydrogen and oxygen ions from the gas molecules are referred to as redox reactions from the term ‘reduction’ and ‘oxidation’. In fuel cells neutral oxygen molecules are reduced to negatively charge oxygen ions with a charge of -2. The oxidation number is thus ‘reduced’ from 0 to -2. In contrast, ionisation of hydrogen molecules to positively charge hydrogen ions (that is single protons) increases the oxygen number by one – ‘oxidation’.

Catalysts are used to increase the efficiency of the redox reactions in fuel cells to improve the power and current density. The efficiency of the catalysts is measured in terms of the oxygen reduction reaction (ORR) activity.

Improving ORR

The researchers measured the potential difference required for other reactions in the presence of their catalyst to determine how the additional SnO2 islands improved the ORR. Their observations suggest that strain at the nanoislands on the Pt3Co nanoparticles modifies the electronic structure so that the centre of the electron d band is decreased. This decreases oxygen adsorption and improves the performance of the catalyst. In addition there is an increase in the proton affinity of the platinum near the nanoislands, which significantly enhances the ORR further still.

Here’s a link to and a citation for the paper,

Surface-Regulated Nano-SnO2/Pt3Co/C Cathode Catalysts for Polymer Electrolyte Fuel Cells Fabricated by a Selective Electrochemical Sn Deposition Method by Kensaku Nagasawa, Shinobu Takao, Shin-ichi Nagamatsu, Gabor Samjeské, Oki Sekizawa, Takuma Kaneko, Kotaro Higashi, Takashi Yamamoto, Tomoya Uruga†, and Yasuhiro Iwasawa. J. Am. Chem. Soc., 2015, 137 (40), pp 12856–12864 DOI: 10.1021/jacs.5b04256 Publication Date (Web): September 27, 2015

Copyright © 2015 American Chemical Society

This paper is behind a paywall.