Category Archives: science communication

I sing the body cyber: two projects funded by the US National Science Foundation

Points to anyone who recognized the reference to Walt Whitman’s poem, “I sing the body electric,” from his classic collection, Leaves of Grass (1867 edition; h/t Wikipedia entry). I wonder if the cyber physical systems (CPS) work being funded by the US National Science Foundation (NSF) in the US will occasion poetry too.

More practically, a May 15, 2015 news item on Nanowerk, describes two cyber physical systems (CPS) research projects newly funded by the NSF,

Today [May 12, 2015] the National Science Foundation (NSF) announced two, five-year, center-scale awards totaling $8.75 million to advance the state-of-the-art in medical and cyber-physical systems (CPS).

One project will develop “Cyberheart”–a platform for virtual, patient-specific human heart models and associated device therapies that can be used to improve and accelerate medical-device development and testing. The other project will combine teams of microrobots with synthetic cells to perform functions that may one day lead to tissue and organ re-generation.

CPS are engineered systems that are built from, and depend upon, the seamless integration of computation and physical components. Often called the “Internet of Things,” CPS enable capabilities that go beyond the embedded systems of today.

“NSF has been a leader in supporting research in cyber-physical systems, which has provided a foundation for putting the ‘smart’ in health, transportation, energy and infrastructure systems,” said Jim Kurose, head of Computer & Information Science & Engineering at NSF. “We look forward to the results of these two new awards, which paint a new and compelling vision for what’s possible for smart health.”

Cyber-physical systems have the potential to benefit many sectors of our society, including healthcare. While advances in sensors and wearable devices have the capacity to improve aspects of medical care, from disease prevention to emergency response, and synthetic biology and robotics hold the promise of regenerating and maintaining the body in radical new ways, little is known about how advances in CPS can integrate these technologies to improve health outcomes.

These new NSF-funded projects will investigate two very different ways that CPS can be used in the biological and medical realms.

A May 12, 2015 NSF news release (also on EurekAlert), which originated the news item, describes the two CPS projects,

Bio-CPS for engineering living cells

A team of leading computer scientists, roboticists and biologists from Boston University, the University of Pennsylvania and MIT have come together to develop a system that combines the capabilities of nano-scale robots with specially designed synthetic organisms. Together, they believe this hybrid “bio-CPS” will be capable of performing heretofore impossible functions, from microscopic assembly to cell sensing within the body.

“We bring together synthetic biology and micron-scale robotics to engineer the emergence of desired behaviors in populations of bacterial and mammalian cells,” said Calin Belta, a professor of mechanical engineering, systems engineering and bioinformatics at Boston University and principal investigator on the project. “This project will impact several application areas ranging from tissue engineering to drug development.”

The project builds on previous research by each team member in diverse disciplines and early proof-of-concept designs of bio-CPS. According to the team, the research is also driven by recent advances in the emerging field of synthetic biology, in particular the ability to rapidly incorporate new capabilities into simple cells. Researchers so far have not been able to control and coordinate the behavior of synthetic cells in isolation, but the introduction of microrobots that can be externally controlled may be transformative.

In this new project, the team will focus on bio-CPS with the ability to sense, transport and work together. As a demonstration of their idea, they will develop teams of synthetic cell/microrobot hybrids capable of constructing a complex, fabric-like surface.

Vijay Kumar (University of Pennsylvania), Ron Weiss (MIT), and Douglas Densmore (BU) are co-investigators of the project.

Medical-CPS and the ‘Cyberheart’

CPS such as wearable sensors and implantable devices are already being used to assess health, improve quality of life, provide cost-effective care and potentially speed up disease diagnosis and prevention. [emphasis mine]

Extending these efforts, researchers from seven leading universities and centers are working together to develop far more realistic cardiac and device models than currently exist. This so-called “Cyberheart” platform can be used to test and validate medical devices faster and at a far lower cost than existing methods. CyberHeart also can be used to design safe, patient-specific device therapies, thereby lowering the risk to the patient.

“Innovative ‘virtual’ design methodologies for implantable cardiac medical devices will speed device development and yield safer, more effective devices and device-based therapies, than is currently possible,” said Scott Smolka, a professor of computer science at Stony Brook University and one of the principal investigators on the award.

The group’s approach combines patient-specific computational models of heart dynamics with advanced mathematical techniques for analyzing how these models interact with medical devices. The analytical techniques can be used to detect potential flaws in device behavior early on during the device-design phase, before animal and human trials begin. They also can be used in a clinical setting to optimize device settings on a patient-by-patient basis before devices are implanted.

“We believe that our coordinated, multi-disciplinary approach, which balances theoretical, experimental and practical concerns, will yield transformational results in medical-device design and foundations of cyber-physical system verification,” Smolka said.

The team will develop virtual device models which can be coupled together with virtual heart models to realize a full virtual development platform that can be subjected to computational analysis and simulation techniques. Moreover, they are working with experimentalists who will study the behavior of virtual and actual devices on animals’ hearts.

Co-investigators on the project include Edmund Clarke (Carnegie Mellon University), Elizabeth Cherry (Rochester Institute of Technology), W. Rance Cleaveland (University of Maryland), Flavio Fenton (Georgia Tech), Rahul Mangharam (University of Pennsylvania), Arnab Ray (Fraunhofer Center for Experimental Software Engineering [Germany]) and James Glimm and Radu Grosu (Stony Brook University). Richard A. Gray of the U.S. Food and Drug Administration is another key contributor.

It is fascinating to observe how terminology is shifting from pacemakers and deep brain stimulators as implants to “CPS such as wearable sensors and implantable devices … .” A new category has been created, CPS, which conjoins medical devices with other sensing devices such as wearable fitness monitors found in the consumer market. I imagine it’s an attempt to quell fears about injecting strange things into or adding strange things to your body—microrobots and nanorobots partially derived from synthetic biology research which are “… capable of performing heretofore impossible functions, from microscopic assembly to cell sensing within the body.” They’ve also sneaked in a reference to synthetic biology, an area of research where some concerns have been expressed, from my March 19, 2013 post about a poll and synthetic biology concerns,

In our latest survey, conducted in January 2013, three-fourths of respondents say they have heard little or nothing about synthetic biology, a level consistent with that measured in 2010. While initial impressions about the science are largely undefined, these feelings do not necessarily become more positive as respondents learn more. The public has mixed reactions to specific synthetic biology applications, and almost one-third of respondents favor a ban “on synthetic biology research until we better understand its implications and risks,” while 61 percent think the science should move forward.

I imagine that for scientists, 61% in favour of more research is not particularly comforting given how easily and quickly public opinion can shift.

A May 27, 2015 presentation on Bruno Pontecorvo in Vancouver (Canada)

A movie about Bruno Pontecorvo (a mover and shaker in the world of neutrino physics) is being hosted by ARPICO (Society of Italian Researchers and Professionals in Western Canada) on Wednesday, May 27, 2015. From a May 12, 2015 ARPICO announcement,

Maksimovic – The story of Bruno Pontecorvo

Prof. Samoil Bilenky will introduce a short movie on the life of Bruno Pontecorvo.

The movie will trace the main points of Bruno Pontecorvo’s life, a nuclear physicist, born in 1913 in Pisa (Italy) and dead in 1993 in Dubna (Russia).
Samoil Bilenky worked with Pontecorvo from 1975 until 1989 in Dubna where they developed the theory of neutrino masses and oscillations and proposed experiments on the search for neutrino oscillations.

The impact of Bruno Pontecorvo on neutrino physics is well recognized in the Scientific Community.

Prof. Samoil Bilenky obtained his doctoral degree at JINR (Joint Institute for Nuclear Research) in Dubna and collaborated with Bruno Pontecorvo for over a decade. He was also professor at the Moscow State University and later at SISSA (Scuola Internazionale Superiore di Studi Avanzati) in Italy. He has been a visiting scientist at TRIUMF (Canada’s National Laboratory for Particle and Nuclear Physics) in Canada, at DESY (Deutsches Elektronen-Synchrotron) in Germany, at the University of Valencia (Spain), the University of Turin (Italy) and at the TU Munich (Germany).
In 2002 prof. Samoil Bilenky received the Bruno Pontecorvo Prize and in 1999 he received the Humboldt Research Award.

Here are location and other event details,

The story of Bruno Pontecorvo
  • May 27, 2015 – 7:15pm
  • Activity Room, Main Level – 480 Broughton St, Vancouver, BC
  • Underground pay parking is available – EasyPark – Lot 64
    Everyone is invited to a no-host dinner with the Board of Directors afterwards.

Enjoy!

Research2Reality: a science media engagement experience dedicated to Canadian science

As of May 11, 2015, Canadians will be getting an addition to their science media environment (from the May 4, 2015 news release),

Research2Reality to celebrate Canadian research stars

Social media initiative to popularize scientific innovation

May 4, 2015, TORONTO – On Monday, May 11, Research2Reality.com goes live and launches a social media initiative that will make the scientist a star. Following in the footsteps of popular sites like IFLScience and How Stuff Works, Research2Reality uses a video series and website to engage the community in the forefront of scientific discoveries made here in Canada.

The interviews feature some of Canada’s leading researchers such as Dick Peltier – director of the Centre for Global Change Science at the University of Toronto, Sally Aitken – director of the Centre for Forest Conservation Genetics at the University of British Columbia and Raymond Laflamme – executive director of the Institute for Quantum Computing at the University of Waterloo.

“Right now many Canadians don’t understand the scope of cutting-edge work being done in our backyards,” says Research2Reality co-founder and award-winning professor Molly Shoichet. “This initiative will bridge that gap between researchers and the public.”

Also launching Monday, May 11, courtesy of Research2Reality’s official media partner, Discovery Science, is a complementary website www.sciencechannel.ca/Shows/Research2Reality. The new website will feature the exclusive premieres of a collection of interview sessions. In addition, Discovery Science and Discovery will broadcast an imaginative series of public service announcements through the end of the year, while social media accounts will promote Research2Reality, including Discovery’s flagship science and technology program DAILY PLANET.

About Research2Reality:
Research2Reality is a social media initiative designed to popularize the latest Canadian research. It was founded by Molly Shoichet, Professor of Chemical Engineering & Applied Chemistry and Canada Research Chair in Tissue Engineering at the University of Toronto, and Mike MacMillan, founder and producer of Lithium Studios Productions. Research2Reality’s founding partners are leading research-intensive universities – the University of Alberta, the University of British Columbia, McMaster University, the University of Toronto, the University of Waterloo, and Western University – along with the Ontario Government and Discovery Networks. Discovery Science is the official media partner. Research2Reality is also supported by The Globe and Mail.

Research2Reality details

A Valentine of sorts to Canadian science researchers from Molly Shoichet (pronounced shoy [and] quette as in David Arquette)  and her producing partner Mike MacMillan of Lithium Studios, Research2Reality gives Canadians an opportunity to discover online some of the extraordinary work done by scientists of all stripes, including (unusually) social scientists, in this country. The top tier in this effort is the interview video series ‘The Orange Chair Sessions‘  which can be found and shared across

Shoichet and MacMillan are convinced there’s an appetite for more comprehensive science information. Supporting The Orange Chair Sessions is a complementary website operated by Discovery Channel where there are

  • more interviews
  • backgrounders,
  • biographies,
  • blogs, and
  • links to other resources

Discovery Channel is also going to be airing special one minute  public service announcements (PSA) on topics like water, quantum computing, and cancer. Here’s one of the first of those PSAs,

“I’m very excited about this and really hope that other people will be too,” says Shoichet. The audience for the Research2Reality endeavour is for people who like to know more and have questions when they see news items about science discoveries that can’t be answered by investigating mainstream media programmes or trying to read complex research papers.

This is a big undertaking. ” Mike and I thought about this for about two years.” Building on the support they received from the University of Toronto, “We reached out to the vice-presidents of research at the top fifteen universities in the country.” In the end, six universities accepted the invitation to invest in this project,

  • the University of British Columbia,
  • the University of Alberta,
  • Western University (formerly the University of Western Ontario),
  • McMaster University,
  • Waterloo University, and, of course,
  • the University of Toronto

(Unfortunately, Shoichet was not able to answer a question about the cost for an individual episode but perhaps when there’s time that detail and more about the financing will be made available. [ETA May 11, 2015 1625 PDT: Ivan Semeniuk notes this is a $400,000 project in his Globe and Mail May 11, 2015 article.]) As part of their involvement, the universities decide which of their researchers/projects should be profiled then Research2Reality swings into action. “We shoot our own video, that is, we (Mike and I) come out and conduct interviews that take approximately fifteen minutes. We also shoot a b-roll, that is, footage of the laboratories and other relevant sites so it’s not all ‘talking heads’.” Shoichet and MacMillan are interested in the answer to two questions, “What are you doing? and Why do we care?” Neither interviewer/producer is seen or heard on camera as they wanted to keep the focus on the researcher.

Three videos are being released initially with another 67 in the pipeline for a total of 70.  The focus is on research of an international calibre and one of the first interviews to be released (Shoichet’s will be release later) is Raymond Laflamme’s (he’s also featured in the ‘quantum PSA’.

Raymond Laflamme

Who convinces a genius that he’s gotten an important cosmological concept wrong or ignored it? Alongside Don Page, Laflamme accomplished that feat as one of Stephen Hawking’s PhD students at the University of Cambridge. Today (May 11, 2015), Laflamme is (from his Wikipedia entry)

… co-founder and current director of the Institute for Quantum Computing at the University of Waterloo. He is also a professor in the Department of Physics and Astronomy at the University of Waterloo and an associate faculty member at Perimeter Institute for Theoretical Physics. Laflamme is currently a Canada Research Chair in Quantum Information.

Laflamme changed his focus from quantum cosmology to quantum information while at Los Alamos, “To me, it seemed natural. Not much of a change.” It is the difference between being a theoretician and an experimentalist and anyone who’s watched The Big Bang Theory (US television programme) knows that Laflamme made a big leap.

One of his major research interests is quantum cryptography, a means of passing messages you can ensure are private. Laflamme’s team and a team in Vienna (Austria) have enabled two quantum communication systems, one purely terrestrial version, which can exchange messages with another such system up to 100 km. away. There are some problems yet to be solved with terrestrial quantum communication. First, buildings, trees, and other structures provide interference as does the curvature of the earth. Second, fibre optic cables absorb some of the photons en route.

Satellite quantum communication seems more promising as these problems are avoided altogether. The joint Waterloo/Vienna team of researchers has  conducted successful satellite experiments in quantum communication in the Canary Islands.

While there don’t seem to be any practical, commercial quantum applications, Laflamme says that isn’t strictly speaking the truth, “In the last 10  to 15 years many ideas have been realized.” The talk turns to quantum sensing and Laflamme mentions two startups and notes he can’t talk about them yet. But there is Universal Quantum Devices (UQD), a company that produces parts for quantum sensors. It is Laflamme’s startup, one he co-founded with two partners. (For anyone unfamiliar with the Canadian academic scene, Laflamme’s home institution, the University of Waterloo, is one of the most actively ‘innovative’ and business-oriented universities in Canada.)

LaFlamme’s interests extend beyond laboratory work and business. He’s an active science communicator as can be seen in this 2010 TEDxWaterloo presentation where he takes his audience from the discovery of fire to quantum physics concepts such as a ‘quantum superposition’ and the ‘observer effect’ to the question, ‘What is reality?’ in approximately 18 mins.

For anyone who needs a little more information, a quantum superposition is a term referring the ability of a quantum object to inhabit two states simultaneously, e.g., on/off. yes/no, alive/dead, as in Schrödinger’s cat. (You can find out more about quantum superpositions in this Wikipedia essay and about Schrodinger’s cat in this Wikipedia essay.) The observer effect is a phenomenon whereby the observer of a quantum experiment affects that experiment by the act of observing it. (You can find out more about the observer effect in this Wikipedia essay.)

The topic of reality is much trickier to explain. No one has yet been able to offer a viable theory for why the world at the macro scale behaves one way (classical physics) and the world at the quantum scale behaves another way (quantum physics). As Laflamme notes, “There is no such thing as a superposition in classical physics but we can prove in the laboratory that it exists in quantum physics.” He goes on to suggest that children, raised in an environment where quantum physics and its applications are commonplace, will have an utterly different notion as to what constitutes reality.

Laflamme is also interested in music and consulted on a ‘quantum symphony’. He has this to say about it in an Sept. 20, 2012 piece on the University of Waterlo website,

Science and art share a common goal — to help us understand our universe and ourselves.  Research at IQC [Institute for Quantum Computing] aims to provide important new understanding of nature’s building blocks, and devise methods to turn that understanding into technologies beneficial for society.Since founding IQC a decade ago, I have sought ways to bridge science and the arts, with the belief that scientific discovery itself is a source of beauty and inspiration.  Our collaboration with the Kitchener-Waterloo Symphony was an example — one of many yet to come — of how science and the arts provide different but complementary insights into our universe and ourselves.

I wrote about the IQC and the symphony which debuted at the IQC’s opening in a Sept. 25, 2012 posting.

Music is not the only art which has attracted Laflamme’s talents. He consulted on a documentary, The Quantum Tamers: Revealing our weird and wired future, a co-production between Canada’s Perimeter Institute and Title Entertainment,

From deep inside the sewers of Vienna, site of groundbreaking quantum teleportation experiments, to cutting-edge quantum computing labs, to voyages into the minds of the world’s brightest thinkers, including renowned British scientist Stephen Hawking, this documentary explores the coming quantum technological revolution.

All of this suggests an interest in science not seen since the 19th century when scientists could fill theatres for their lectures. Even Hollywood is capitalizing on this interest. Laflamme, who saw ‘Interstellar’, ‘The Imitation Game’ (Alan Turing), and ‘The Theory of Everything’ (Stephen Hawking) in fall 2014 comments, “I was surprised by how much science there was in The Imitation Game and Interstellar.” As for the Theory of Everything, “I was apprehensive since I know Stephen well. But, the actor, Eddie Redmayne, and the movie surprised me. There were times when he moved his head or did something in a particular way—he was Stephen. Also, most people don’t realize what an incredible sense of humour Stephen has and the movie captured that well.” Laflamme also observed that it was a movie about a relationship and not really concerned with science and its impacts (good and ill) or scientific accomplishments.  Although he allows, “It could have had more science.”

Research2Reality producers

Molly Shoichet

Co-producer Shoichet has sterling scientific credentials of her own. In addition to this science communication project, she runs the Shoichet Lab at the University of Toronto (from the Dr. Molly Shoichet bio page),

Dr. Molly Shoichet holds the Tier 1 Canada Research Chair in Tissue Engineering and is University Professor of Chemical Engineering & Applied Chemistry, Chemistry and Biomaterials & Biomedical Engineering at the University of Toronto. She is an expert in the study of Polymers for Drug Delivery & Regeneration which are materials that promote healing in the body.

Dr. Shoichet has published over to 480 papers, patents and abstracts and has given over 310 lectures worldwide.  She currently leads a laboratory of 25 researchers and has graduated 134 researchers over the past 20 years.  She founded two spin-off companies from research in her laboratory.

Dr. Shoichet is the recipient of many prestigious distinctions and the only person to be a Fellow of Canada’s 3 National Academies: Canadian Academy of Sciences of the Royal Society of Canada, Canadian Academy of Engineering, and Canadian Academy of Health Sciences. Dr. Shoichet holds the Order of Ontario, Ontario’s highest honour and is a Fellow of the American Association for the Advancement of Science. In 2013, her contributions to Canada’s innovation agenda and the advancement of knowledge were recognized with the QEII Diamond Jubilee Award. In 2014, she was given the University of Toronto’s highest distinction, University Professor, a distinction held by less than 2% of the faculty.

Mike MacMillan

MacMIllan’s biography (from the Lithium Studios website About section hints this is his first science-oriented series (Note: Links have been removed),

Founder of Lithium Studios Productions
University of Toronto (‘02)
UCLA’s Professional Producing Program (‘11)

His first feature, the dark comedy / thriller I Put a Hit on You (2014, Telefilm Canada supported), premiered at this year’s Slamdance Film Festival in Park City. Guidance (2014, Telefilm Canada supported, with super producer Alyson Richards over at Edyson), a dark comedy/coming of age story is currently in post-production, expected to join the festival circuit in September 2014.

Mike has produced a dozen short films with Toronto talents Dane Clark and Linsey Stewart (CAN – Long Branch, Margo Lily), Samuel Fluckiger (SWISS – Terminal, Nightlight) and Darragh McDonald (CAN – Love. Marriage. Miscarriage.). They’ve played at the top film fests around the world and won a bunch of awards.

Special skills include kickass hat collection and whiskey. Bam.

Final comments

It’s nice to see the Canadian scene expanding; I’m particularly pleased to learn social scientists will be included.Too often researchers from the physical sciences or natural sciences and researchers from the social sciences remain aloof from each other. In April 2013, I attended a talk by Evelyn Fox Keller, physicist, feminist, and philosopher, who read from a paper she’d written based on a then relatively recent experience in South Africa where researchers had aligned themselves in two different groups and refused to speak to each other. They were all anthropologists but the sticking point was the type of science they practiced. One group were physical anthropologists and the other were cultural anthropologists. That’s an extreme example unfortunately symptomatic of a great divide. Bravo to Research2Reality for bringing the two groups together.

As for the science appetite Shoichet and MacMillan see in Canada, this is not the only country experiencing a resurgence of interest; they’ve been experiencing a science media expansion in the US.  Neil deGrasse Tyson’s Star Talk television talk show, which also exists as a radio podcast, debuted on April 19, 2015 (Yahoo article by Calla Cofield); Public Radio Exchange’s (PRX) Transistor; a STEM (science, technology, engineering, and mathematics) audio project debuted in Feb. 2015; and video podcast Science Goes to the Movies also debuted in Feb. 2015 (more about the last two initiatives in my March 6, 2015 posting [scroll down about 40% of the way]). Finally (for the burgeoning US science media scene) and neither least nor new, David Bruggeman has a series of posts titled, Science and Technology Guests on Late Night, Week of …, on his Pasco Phronesis blog which has been running for many years. Bruggeman’s series is being included here because most people don’t realize that US late night talk shows have jumped into the science scene. You can check  David’s site here as he posts this series on Mondays and this is Monday, May 11, 2015.

It’s early days for Research2Reality and it doesn’t yet have the depth one might wish. The videos are short (the one featured on the Discovery Channel’s complementary website is less than 2 mins. and prepare yourself for ads). They may not be satisfying from an information perspective but what makes The Orange Chair Series fascinating is the peek into the Canadian research scene. Welcome to Research2Reality and I hope to hear more about you in the coming months.

[ETA May 11, 2015 at 1625 PDT: Semeniuk’s May 11, 2015 article mentions a few other efforts to publicize Canadian research (Note: Links have been removed),

For example, Research Matters, a promotional effort by the Council of Ontario Universities, has built up a large bank of short articles on its website that highlight researchers across the province. Similarly, the Canada Foundation for Innovation, which channels federal dollars toward research infrastructure and projects, produces features stories with embedded videos about the scientists who are enabled by their investments.

What makes Research2Reality different, said Dr. Shoichet, is an approach that doesn’t speak for one region, field of research of  [sic] funding stream.

One other aspect which distinguishes Research2Reality from the other science promotion efforts is the attempt to reach out to the audience. The Canada Foundation for Innovation and Council for Ontario Universities are not known for reaching out directly to the general public.]

Science as revolution: the 2016 European Science Open Forum in Manchester, UK

Should you be interested in presenting at the 2016 European Science Open Forum (2016 ESOF) which takes place July 22 – 27, 2016 in Manchester, UK, you have until June 1, 2015 at 10 am CET to make your submission.

Here’s more from the ESOF 2016 homepage,

Science as Revolution from Cottonopolis to Graphene City

Manchester is the city where Marx met Engels and Rolls met Royce. Similarly ESOF 2016 will be a meeting of minds, bringing together many of the world’s foremost scientific thinkers, innovators and scholars. Capitalising on Manchester’s unique history as the birthplace of the Industrial Revolution the theme for ESOF 2016 has been announced as ‘science as revolution’.

ESOF 2016 will comprise a number of distinct programme tracks:

• A science programme of seminars, workshops and debates on the latest research and related policy issues, structured around a programme of keynote speakers and the latest scientific issues. The call for proposals is now open.

• A science-to-business programme to explore the major issues for research within business and industry and the role of universities for business.

• A career programme showcasing career opportunities across Europe and beyond for researchers at all stages of their careers.

An exhibition that showcases the best of European academic, public and private research.

A forum to host other meetings, satellite events and networking opportunities (e.g. science policy advisers and science media)

Call for proposals

Submissions for the science programme are now open until the deadline for session proposals is 1 June 2015 at 10:00 am CET. There are nine core themes running through the science programme, spanning particle physics to pandemics, antimicrobial resistance to artificial intelligence and the Anthropocene epoch. More information on each of the themes can be found here. The nine themes are:

• Healthy populations

• Material dimensions

• Sustaining the environment

• Turing’s legacy – data and the human brain

• Far frontiers

• Living in the Future

• Bio-revolution

• Science for policy and policy for science

• Science in our cultures

A May 4, 3015 ESOF 2016 announcement extends the invitation (I apologize for the repetition but there’s enlightening additional  information such as the invitation being global and free registration is included if your proposal is accepted),

With themes spanning antimicrobial research to artificial intelligence, the green economy to graphene – there are hundreds of topics to be explored and even more reasons to get involved in the science programme. Playing on Manchester’s unique history as the birthplace of the Industrial Revolution, the overarching theme for the event has been announced as ‘science as revolution’. As such, ESOF 2016 will be an opportunity to discuss the socio-cultural and economic implications and impacts of scientific revolutions from regional, national, European and global perspectives.

Over recent years ESOF has developed into the largest multi-disciplinary science meeting in Europe, where scientists meet scientists, policy makers, media specialists, business leaders and the wider community. The home of ESOF 2016 is Manchester, UK – the city where Marx met …. . Similarly ESOF 2016 will be a meeting of minds, bringing together many of the world’s foremost scientific thinkers, innovators and scholars from 23-27 July 2016. And 2016 is a special year for science in Manchester, coinciding with the 250th anniversary of the birth of John Dalton – the father of atomic theory. ESOF will be the culmination of an 18 month celebration of science in the city.

There is still plenty of time for proposals to be submitted for science-based seminars, workshops and debates on the latest research and policy issues, all of which are warmly welcomed. This is an open invitation to individuals and organisations alike and it is hoped that the call will inspire our foremost thinkers and researchers from across the global scientific community to take a unique look to share with us how science, technology and innovation has the potential to transform all our lives.

Please note that all session organisers and speakers are entitled to complimentary registration for the conference, with access to the full science programme, plenary sessions and the ESOF 2016 exhibition.

Manchester is being described as Europe’s City of Science 2016 which I thought was an initiative of Dublin’s city council when the city hosted the 2012 ESOF and which was then adopted by Copenhagen in 2014 during its ESOF hosting period. It appears I may have misunderstood and this title is part of the ESOF hosting designation as per a Sept. 30, 2013 University of Manchester press release,  Perhaps one of these days I’ll be able to settle the matter for my own satisfaction if no one else’s.

Teachers talk neuroscience with “I’m a Scientist – Get me out of here” neuroscientists

I can’t believe it’s been four years since I’ve mentioned the I’m a scientist, Get me out of Here programme in the UK. Here’s a description from its homepage,

 A free online event where school students meet and interact with scientists. It’s an X Factor-style competition between scientists, where the students are the judges.

Students challenge the scientists over fast-paced online text-based live CHATs. They ASK the scientists anything they want, and VOTE for their favourite scientist to win a prize of £500 to communicate their work with the public.

The next event will run from Monday 15th June – Friday 26th June 2015.

Right now the ‘I ’m a scientist, Get me out of Here’ programme is holding a special session on neuroscience for teachers. It runs until Friday, May 22, 2015. Here’s an explanation for this special session from an April 24, 2015 posting by Pete Etchells for the Guardian science blogs (Note: Links have been removed),

Over the past few years, there seems to have been an insidious pandemic of nonsense neuroscientific claims creeping into the education system. In 2013, the Wellcome Trust commissioned a series of surveys of parents and teachers, asking about various types of educational tools or teaching methods, and the extent to which they believe they have a basis in neuroscience. Worryingly, 76% of teachers responded that they used learning styles in their teaching, and a further 19% responded that they either use, or intend to use, left brain/right brain distinctions to help inform learning methods. Both of these approaches have been thoroughly debunked, and have no place in either neuroscience or education.

In October last year [2014], I reported on another study that showed that in the intervening time, things hadn’t really improved – 91% of UK teachers in that survey believed that there were differences in the way that students think and learn, depending on which hemisphere of the brain is ‘dominant’. …

Etchells describes the special Learning Zone in more detail (Note: Links have been removed),

“Teachers are encouraged to improve their teaching, and improve student progress at schools, but they don’t necessarily have the access to knowledge that researchers have” says Shane McCracken, Director of Gallomanor Communications, the team who run the event. “This is our way of letting them access that knowledge without having to subscribe to and read a bunch of academic papers.”

So far, questions have asked about a wide range of topics, including the potential effects of diet on memory, to what extent parental involvement can have an effect on learning and development, exam revision techniques, and the impact of apparent increase in rates of dyslexia among schoolchildren. Over a hundred teachers from schools across the country have been involved to date.

Of course, given the scope of the event, it’s impossible to target a critical mass of schools. But while it may not make a widespread mark on busting brain myths in education, it’s an excellent start, and it’s great to see these sorts of initiatives being funded. “We’re hoping these four weeks demonstrate that teachers want to talk with researchers about the science of learning” says Shane. “If the demand is there then we hope to keep providing similar opportunities in future on the platform. And potentially for researchers in other areas to talk to professionals in different fields.”

You can find the Science of Learning (teacher’s neuroscience learning zone) here. There’s an upcoming live chat on Monday, May 11, 2015 at 8 pm BST. I have looked at the site’s teacher registration form and it looks to me as if anyone from anywhere can register for an account and possibly join in to the live chat provided they have the time.

Science in the 21st Century: how short should your abstracts be and what about litigation?

Writing tips for abstracts

A May 1, 2015 news item on phys.org  profiles research that contradicts every writing tip you’ve ever gotten about abstracts for your science research,

When writing the abstracts for journal articles, most scientists receive similar advice: keep it short, dry, and simple. But a new analysis by University of Chicago researchers of over one million abstracts finds that many of these tips backfire, producing abstracts cited less than their long, flowery, and jargon-filled peers.

“What I think is funny is there’s this disconnect between what you’d like to read, and what scientists actually cite,” said Stefano Allesina, professor of evolution and ecology at the University of Chicago, Computation Institute fellow and faculty, and senior author of the study. “It’s very suggestive that we should not trust writing tips we take for granted.”

During a seminar for incoming graduate students on how to write effective abstracts, Allesina wondered whether there was hard evidence for the “rules” that were taught. So Allesina and Cody Weinberger, a University of Chicago undergraduate, gathered hundreds of writing suggestions from scientific literature and condensed them into “Ten Simple Rules,” including “Keep it short,” “Keep it simple,” “Signal novelty and importance,” and “Show confidence.”

Here’s a link to and a citation for the paper,

Ten Simple (Empirical) Rules for Writing Science by Cody J. Weinberger, James A. Evans, & Stefano Allesina. PLOS Published: April 30, 2015 DOI: 10.1371/journal.pcbi.1004205

This is an open access journal.

From the paper (Note: Links have been removed),

Scientists receive (and offer) much advice on how to write an effective paper that their colleagues will read, cite, and celebrate [2–15]. Fundamentally, the advice is similar to that given to journalists: keep the text short, simple, bold, and easy to understand. Many resources recommend the parsimonious use of adjectives and adverbs, the use of present tense, and a consistent style. Here we put this advice to the test, and measure the impact of certain features of academic writing on success, as proxied by citations.

The abstract epitomizes the scientific writing style, and many journals force their authors to follow a formula—including a very strict word-limit, a specific organization into paragraphs, and even the articulation of particular sentences and claims (e.g., “Here we show that…”).

For our analysis, we collected more than one million abstracts from eight disciplines, spanning 17 years. The disciplines were chosen so that biology was represented by three allied fields (Ecology, Evolution, and Genetics). We drew upon a wide range of comparison disciplines, namely Analytic Chemistry, Condensed Matter Physics, Geology, Mathematics, and Psychology (see table in S1 Text). We measured whether certain features of the abstract consistently led to more (or fewer) citations than expected, after accounting for other factors that certainly influence citations, such as article age (S1 Fig), number of authors and references, and the journal in which it was published.

Here are some of the results (from the paper),

We find that shorter abstracts (fewer words [R1a] and fewer sentences [R1b]) consistently lead to fewer citations, with short sentences (R2) being beneficial only in Mathematics and Physics. Similarly, using more (rather than fewer) adjectives and adverbs is beneficial (R5). Also, writing an abstract with fewer common (R3a) or easy (R3b) words results in more citations.

The use of the present tense (R4) is beneficial in Biology and Psychology, while it has a negative impact in Chemistry and Physics, possibly reflecting differences in disciplinary culture.

While matching the keywords (R6) leads to universally negative outcomes, signaling the novelty and importance of the work (R7) has positive effects. The use of superlatives (R8) is also positive, while avoiding “hedge” words is negative in Biology and Physics, but positive in Chemistry.

Finally, choosing “pleasant,” “active,” and “easy to imagine” words (R10) has positive effects across the board.

The issue the researchers particularized from the results may not be what you expect (from the paper),

… Despite the fact that anybody in their right mind would prefer to read short, simple, and well-written prose with few abstruse terms, when building an argument and writing a paper, the limiting step is the ability to find the right article. For this, scientists rely heavily on search techniques, especially search engines, where longer and more specific abstracts are favored. Longer, more detailed, prolix prose is simply more available for search. This likely explains our results, and suggests the new landscape of linguistic fitness in 21st century science. …

It seems to me that while prolix prose’s popularity, predtaing search engines and the internet, is now being reinforced by our digital media. In short, while there are many complaints about digital media and shortened attention spans, it seems that in some cases digital media is encouraging wordiness.

Litigation and research

A May 1, 2015 posting by Michael Halpern for the Guardian science blogs sheds light on some legal tactics that lend themselves quite well to intimidating science researchers (Note: Links have been removed),

In 2009, a law firm representing Philip Morris submitted freedom of information requests to the University of Stirling for the work of three scientists – Gerard Hastings, Anne Marie Mackintosh and Linda Bauld – who were studying the impact of tobacco marketing on adolescents. They sought all primary data, questionnaires, handbooks and documents related to the researchers’ work, much of which was confidential.

Although the requests were eventually dropped due to negative publicity, responding to and challenging them cost the scientists and the university’s lawyers many weeks of work. “The stress of all this is considerable,” the scientists involved, wrote afterwards. “We are not lawyers and, like most civilians, find the law abstruse and the overt threat of serious punishment extremely disconcerting.”

This was no isolated incident. Activists and corporations of all political stripes in a growing number of countries are increasingly harassing and intimidating university scientists, using public information laws which were originally designed for citizens to understand the workings of government.

In an editorial in this week’s Science magazine, climate scientist Michael Mann and I explore this problem and ask a pressing question: how do we balance public accountability with the privacy essential for scientific inquiry?

The post is well worth reading in its entirety as Halpern goes on to describe the situation in more detail.

Virtual Reality (VR) becomes educational (at Case Western Reserve University and Miami Children’s Hospital)

I have two virtual reality news bits the most recent concerning Case Western Reserve University (CWRU; located in Cleveland, Ohio) and Microsoft’s HoloLens in an April 29, 2015 CWRU press release (also on EurekAlert), Note: Some of this academic press release reads like marketing collateral,

Case Western Reserve University Radiology Professor Mark Griswold knew his world had changed the moment he first used a prototype of Microsoft’s HoloLens headset. Two months later, one of the university’s medical students illustrated exactly why.

“There’s the aortic valve,” Satyam Ghodasara exclaimed as he used Microsoft’s device to examine a holographic heart. “Now I understand.”

Today, Griswold told tens of thousands of people how HoloLens can transform learning across countless subjects, including those as complex as the human body. Speaking to an in-person and online audience at Microsoft’s annual Build conference, he highlighted disciplines as disparate as art history and engineering–but started with a holographic heart. In traditional anatomy, after all, students like Ghodasara cut into cadavers to understand the body’s intricacies.

With HoloLens, Griswold explained, “you see it truly in 3D. You can take parts in and out. You can turn it around. You can see the blood pumping–the entire system.”

In other words, technology not only can match existing educational methods–it can actually improve upon them. Which, in many ways, is why Cleveland Clinic CEO Toby Cosgrove contacted then-Microsoft executive Craig Mundie in 2013, after the hospital and university first agreed to partner on a new education building.

“We launched this collaboration to prepare students for a health care future that is still being imagined,” Cleveland Clinic CEO Delos “Toby” Cosgrove said of what has become a 485,000-square-foot Health Education Campus project. “By combining a state-of-the-art structure, pioneering technology, and cutting-edge teaching techniques, we will provide them the innovative education required to lead in this new era.”

As Cosgrove, Case Western Reserve President Barbara R. Snyder and other academic leaders engaged more extensively with Microsoft, the more potential everyone saw.

“For more than a century, our medical school has been renowned for inventing and reinventing approaches to teaching and learning that take root nationwide,” President Snyder said. “When we match that expertise with the interdisciplinary knowledge of our faculty, we create a rich environment to explore the educational potential of Microsoft’s extraordinary technology.”

After a small group including Griswold, engineering professor Marc Buchner and Cleveland Clinic education technology leader Neil Mehta first experienced HoloLens in December, the faculty returned to Cleveland to create a core team dedicated to exploring the technology’s academic potential. In February, 10 members of the team–including Ghodasara–returned to Microsoft for a HoloLens programming deep dive.

Ghodasara already had taken the traditional anatomy class at Case Western Reserve, but it wasn’t until he used the HoloLens headset that he first visualized the aortic valve in its entirety–unobstructed by other elements of the cardiac system and undamaged by earlier dissection efforts. Members of the Microsoft team were in the room when Ghodasara had his “aha” moment; a few weeks later, the heart demonstration became part of the Build conference agenda.

Case Western Reserve is the only university represented during the three-day event, a distinction Griswold attributes in part to the core team’s breadth of expertise and collegial approach.

“Without all of those people coming together,” Griswold said, “this would not have happened.”

When Griswold took the stage as part of Microsoft’s opening keynote at the Build conference, Ghodasara, Buchner and Chief Information Officer Sue Workman also were in the audience. Back in Cleveland, three of Professor Buchner’s undergraduates–John Billingsley, Henry Eastman and Tim Sesler–demonstrated some of the potential of the HoloLens technology live in the Tinkham Veale University Center.

Buchner, whose specialties include simulation and game design, believes Microsoft’s innovation “has the capability to transform engineering education.”

Because the technology is relatively easy to use, students will be able to build, operate and analyze all manner of devices and systems. “[It will] encourage experimentation,” Buchner said, “leading to deeper understanding and improved product design.”

In truth, HoloLens ultimately could have applications for dozens of Case Western Reserve’s academic programs. NASA’s Jet Propulsion Laboratory already has worked with Microsoft to develop software that will allow Earth-based scientists to work on Mars with a specially designed rover vehicle. A similar collaboration could enable students here to take part in archeological digs around the world. Or astronomy students could stand in the midst of colliding galaxies, securing front-row view of the unfolding chaos. Art history professors could present masterpieces in their original settings–a centuries-old castle, or even the Sistine Chapel.

“The whole campus has the potential to use this,” Griswold said. “Our ability to use this for education is almost limitless.”

For now, however, the top priority is creating a full digital anatomy curriculum, a process launched with the advent of the Health Education Campus, and now experiencing even greater momentum. Among the key collaborators are a team of medical students and anatomy and radiology faculty who are already investigating the use of these kinds of technology. This team, led by Amy Wilson­Delfosse, the medical school’s associate dean for curriculum, and Suzanne Wish-Baratz, an assistant professor who is one of the primary leaders of anatomy education, fully expects to have a digital curriculum ready for the new Health Education Campus.

Also essential, Griswold said, has been the advice and assistance of Microsoft’s HoloLens team and executives.

“It’s been a joy to work with them. They have been so friendly, so collaborative, so willing to work with us on this,” Griswold said. “We’re going to do incredible things together.”

Ohio is not the only state where virtual reality is being incorporated into medical education.

Florida

From an April 30, 2015 Next Galaxy Corp. news release,

Incorporating eye gaze control, gestures, and voice commands while “walking around” inside an emergency medical experience, Next Galaxy’s Virtual Reality Model educates participants far beyond today’s methodology of passively watching video and taking written tests.

Next Galaxy Corp (OTC: NXGA) recently announced the signing of an agreement with Miami Children’s Hospital to use the Company’s VR Model to develop immersive Virtual Reality medical instructional content for patient and medical professional education. Per the multi-year agreement, Next Galaxy and Miami Children’s Hospital are jointly developing VR Instructionals on cardiopulmonary resuscitation (CPR) and other lifesaving procedures, which will be released as an application for smartphones.

Assessments are incorporated directly into the medical VR models, creating situations where participants are required to make the appropriate decisions about proper techniques. The Virtual CPR instructional will measure metrics and provide real-time feedback ensuring participants accurately perform CPR techniques. Further, the instructional will explain any mistake and prompt users to try again when errors are made. Supportive messages are delivered upon success.

The medical VR models will be viewable through smartphones and desktops as 3D, and via VR devices such as Google Cardboard, VRONE and Oculus Rift.

About Next Galaxy Corporation

Next Galaxy Corporation is a leading developer of innovative content solutions and fully Immersive Consumer Virtual Reality technology. The Company’s flagship consumer product in development is CEEK, a next-generation fully immersive entertainment and educational social virtual reality platform featuring a combination of live action and 3D experiences. Next Galaxy’s CEEK simulates the communal experience of attending events, such as concerts, sporting events, movies or conferences through Virtual Reality. Next Galaxy is developing entertainment and educational experiences for VR Cinema, VR Concerts, VR Sports, VR Business, VR Tourism and more. In short, Next Galaxy is building the meeting places of the future. For further information, visit www.nextgalaxycorp.com

This seems to be the second time this information has been distributed (March 11, 2015 news release on PRNewswire), a widely adopted practice. Consequently and thankfully, there’s a March 11, 2015 article by Celia Ampel for the South Florida Business Journal which provides more details about the technology and explaining how a smartphone fits into virtual reality,

The best way to learn CPR is an immersive experience, Miami Children’s Hospital leaders believe — not a video.

“If I’m watching a video, I can pause and count, but there’s no way to tell if I counted to six or seven,” Next Galaxy President Mary Spio said. “Because [the virtual reality application] is voice-activated, they’re going to be able to count out loud and self-assess whether they’re doing it correctly.”

Next Galaxy (Pink Sheets: NXGA)’s virtual reality technology uses a smartphone app. Users can put their smartphone into a virtual reality headset for an immersive experience, or see 3D content through the phone.

The application will be available to the public in the next few months, Spio said.

This deal and another with Miami-Dade Country Public Schools are transforming Next Galaxy Corp according to Ampel’s article,

The five-person company will be hiring about 20 full-time employees in the next six months, focusing on developers with 3D modeling and gaming experience, she said.

Quadrupling the size of your company in six months can be quite a challenge. I wish them good luck with their expansion and their virtual reality course materials.

As to what all this mixed-reality/virtual reality might look like, there’s this image from Case Western Reserve University,

Courtesy: Case Western Reserve University

Courtesy: Case Western Reserve University