Category Archives: nanotechnology

Nature-inspired but not really, a new design rule for nanostructures

It’s fascinating to observe the news release writer’s attempt to package this research as biomimetic when the new design rule is not found in nature. An Oct. 7, 2015 news item on ScienceDaily provides an introduction to the work from the Lawrence Berkeley National Laboratory,

Scientists aspire to build nanostructures that mimic the complexity and function of nature’s proteins. These microscopic widgets could be customized into incredibly sensitive chemical detectors or long-lasting catalysts. But as with any craft that requires extreme precision, researchers must first learn how to finesse the materials they’ll use to build these structures. A new discovery is a big step in this direction. The scientists discovered a design rule that enables a recently created material to exist.

An Oct. 7, 2015 Lawrence Berekeley National Laboratory (Berkeley Lab) news release (also on EurekAlert), which originated the news item, features more detail about the research and the writer’s gyrations,

The scientists discovered a design rule that enables a recently created material to exist. The material is a peptoid nanosheet. It’s a flat structure only two molecules thick, and it’s composed of peptoids, which are synthetic polymers closely related to protein-forming peptides.

The design rule controls the way in which polymers adjoin to form the backbones that run the length of nanosheets. Surprisingly, these molecules link together in a counter-rotating pattern not seen in nature. [emphasis mine] This pattern allows the backbones to remain linear and untwisted, a trait that makes peptoid nanosheets larger and flatter than any biological structure.

The Berkeley Lab scientists say this never-before-seen design rule could be used to piece together complex nanosheet structures and other peptoid assemblies such as nanotubes and crystalline solids.

What’s more, they discovered it by combining computer simulations with x-ray scattering and imaging methods to determine, for the first time, the atomic-resolution structure of peptoid nanosheets.

“This research suggests new ways to design biomimetic structures, [emphasis mine]” says Steve Whitelam, a co-corresponding author of the Nature paper. “We can begin thinking about using design principles other than those nature offers.”

The news release goes on to note the previous work which this newest research builds on and provides yet more detail about the latest and greatest,

Peptoid nanosheets were discovered by Zuckermann’s group five years ago. They found that under the right conditions, peptoids self assemble into two-dimensional assemblies that can grow hundreds of microns across. This “molecular paper” has become a hot prospect as a protein-mimicking platform for molecular design.

To learn more about this potential building material, the scientists set out to learn its atom-resolution structure. This involved feedback between experiment and theory. Microscopy and scattering data gathered at the Molecular Foundry and the Advanced Light Source, also a DOE Office of Science user facility located at Berkeley Lab, were compared with molecular dynamics simulations conducted at NERSC.

The research revealed several new things about peptoid nanosheets. Their molecular makeup varies throughout their structure, they can be formed only from peptoids of a certain minimum length, they contain water pockets, and they are potentially porous when it comes to water and ions.

These insights are intriguing on their own, but when the scientists examined the structure of the nanosheets’ backbone, they were surprised to see a design rule not found in the field of protein structural biology.

Here’s the difference: In nature, proteins are composed of beta sheets and alpha helices. These fundamental building blocks are themselves composed of backbones, and the polymers that make up these backbones are all joined together using the same rule. Each adjacent polymer rotates incrementally in the same direction, so that a twist runs along the backbone.

This rule doesn’t apply to peptoid nanosheets. Along their backbones, adjacent monomer units rotate in opposite directions. These counter-rotations cancel each other out, resulting in a linear and untwisted backbone. This enables backbones to be tiled in two dimensions and extended into large sheets that are flatter than anything nature can produce.

“It was a big surprise to find the design rule that makes peptoid nanosheets possible has eluded the field of biology until now,” says Mannige [Ranjan Mannige, a postdoctoral researcher at the Molecular Foundry]. “This rule could perhaps be used to build many more unrealized structures.”

Adds Zuckermann [Peptoid nanosheets were discovered by Zuckermann’s group five years ago. They found that under the right conditions, peptoids self assemble into two-dimensional assemblies that can grow hundreds of microns across. This “molecular paper” has become a hot prospect as a protein-mimicking platform for molecular design.

To learn more about this potential building material, the scientists set out to learn its atom-resolution structure. This involved feedback between experiment and theory. Microscopy and scattering data gathered at the Molecular Foundry and the Advanced Light Source, also a DOE Office of Science user facility located at Berkeley Lab, were compared with molecular dynamics simulations conducted at NERSC.

The research revealed several new things about peptoid nanosheets. Their molecular makeup varies throughout their structure, they can be formed only from peptoids of a certain minimum length, they contain water pockets, and they are potentially porous when it comes to water and ions.

These insights are intriguing on their own, but when the scientists examined the structure of the nanosheets’ backbone, they were surprised to see a design rule not found in the field of protein structural biology.

Here’s the difference: In nature, proteins are composed of beta sheets and alpha helices. These fundamental building blocks are themselves composed of backbones, and the polymers that make up these backbones are all joined together using the same rule. Each adjacent polymer rotates incrementally in the same direction, so that a twist runs along the backbone.

This rule doesn’t apply to peptoid nanosheets. Along their backbones, adjacent monomer units rotate in opposite directions. These counter-rotations cancel each other out, resulting in a linear and untwisted backbone. This enables backbones to be tiled in two dimensions and extended into large sheets that are flatter than anything nature can produce.

“It was a big surprise to find the design rule that makes peptoid nanosheets possible has eluded the field of biology until now,” says Mannige. “This rule could perhaps be used to build many more unrealized structures.”

Adds Zuckermann, [Ron Zuckermann directs the Molecular Foundry’s Biological Nanostructures Facility.] “We also expect there are other design principles waiting to be discovered, which could lead to even more biomimetic nanostructures.”

They might have been better off describing the work as “bioinspired” but it is a tricky thing to describe and there doesn’t seem to be an easy way out of describing this discovery which is based on observations from nature but follows no rule found in nature.

Here’s a link to and a citation for the paper,

Peptoid nanosheets exhibit a new secondary-structure motif by Ranjan V. Mannige, Thomas K. Haxton, Caroline Proulx, Ellen J. Robertson, Alessia Battigelli, Glenn L. Butterfoss, Ronald N. Zuckermann, & Stephen Whitelam. Nature (2015) doi:10.1038/nature15363 Published online 07 October 2015

This paper is behind a paywall.

Smart windows need anti-aging treatments

I’ve long been interested in electrochromic windows and this is the first I’ve heard of a problem with limited lifespans. Here’s more from an Oct. 1, 2015 news item on Nanowerk (Note: A link has been removed),

Electrochromic windows, so-called ‘smart windows’, share a well-known problem with rechargeable batteries – their limited lifespan. Researchers at Uppsala University [Sweden] have now worked out an entirely new way to rejuvenate smart windows which have started to show signs of age. The study, published in Nature Materials (“Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films”), may open the way to other areas of application.

An Oct. 1, 2015 Uppsala University press release (also on EurekAlert), which originated the new item, describes previous work on electrochromic windows to provide context for the current research,

The electrochromic smart windows are controlled electrically. This kind of window is the result of research carried out at Uppsala University. Commercial production has recently been started by the company ChromoGenics AB.

The electrochromic smart window is made up of a series of thin layers on top of each other. The most important of these are two layers of tungsten oxide and nickel oxide, both about a third of a micrometer thick. They are separated by an electrolyte layer. The window’s opacity to visible light and solar energy varies when an electrical current flows between the oxide layers.

“The principle is the same as for an electric battery. Here the tungsten-oxide is the cathode and the nickel-oxide the anode. Opacity depends on how much the ‘battery’ is charged,” says Rui-Tao Wen, a doctoral student who carried out the study as part of his thesis.

The lifespan of both electric batteries and electrochromic smart windows is a well-known problem. They need to work after being charged and discharged many times if they are to be really profitable.

In the study, the researchers show that an electrochromic tungsten oxide layer which has been charged and discharged many times and has started to lose its capacity can be restored to its former high capacity. This is achieved by running a weak electric current through it while it is in light mode. This takes about an hour. In this way, the electric charge which has ‘fastened’ in the material is removed and the tungsten oxide layer is like new again.

“This is a new way to rejuvenate smart windows so that they last much longer. And the same principle might perhaps be used for electric batteries,” says Claes-Göran Granqvist, senior professor at the Ångström Laboratory, Uppsala University and one of the authors of the study.

Here’s a link to and a citation for the paper,

Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films by Rui-Tao Wen, Claes G. Granqvist, & Gunnar A. Niklasson. Nature Materials 14, 996–1001 (2015) doi:10.1038/nmat4368 Published online 10 August 2015

This paper is behind a paywall.

Cellulose nanocrystals and a computational approach to new materials

There’s been a lot of research into cellulose nanomaterials as scientists work to develop applications for cellulose nanocrystals (CNC)* and cellulose nanofibrils (CNF). To date, there have been no such breakthroughs or, as they used to say, no such ‘killer apps’. An Oct. 2, 2015 news item on Nanowerk highlights work which made finally lead the way,

Theoretically, nanocellulose could be the next hot supermaterial.

A class of biological materials found within numerous natural systems, most notably trees, cellulose nanocrystals have captured researchers’ attention for their extreme strength, toughness, light weight, and elasticity. The materials are so strong and tough, in fact, that many people think they could replace Kevlar in ballistic vests and combat helmets for military. Unlike their source material (wood), cellulose nanocrystals are transparent, making them exciting candidates for protective eyewear, windows, or displays.

Although there is a lot of excitement around the idea of nanocellulose-based materials, the reality often falls flat.

“It’s difficult to make these theoretical properties materialize in experiments,” said Northwestern Engineering’s Sinan Keten. “Researchers will make composite materials with nanocellulose and find that they fall short of theory.”

Keten, an assistant professor of mechanical, civil, and environmental engineering at Northwestern University’s McCormick School of Engineering, and his team are bringing the world one step closer to a materials-by-design approach toward developing nanocomposites with cellulose. They have developed a novel, multi-scale computational framework that explains why these experiments do not produce the ideal material and proposes solutions for fixing these shortcomings, specifically by modifying the surface chemistry of cellulose nanocrystals to achieve greater hydrogen bonding with polymers.

An Oct. 2, 2015 (McCormick School of Engineering) Northwestern University news release (also on EurekAlert), which originated the news item, provides more context for the research before describing a new technique for better understanding the materials,

Found within the cellular walls of wood, cellulose nanocrystals are an ideal candidate for polymer nanocomposites — materials where a synthetic polymer matrix is embedded with nanoscale filler particles. Nanocomposites are commonly made synthetic fillers, such as silica, clay, or carbon black, and are used in a myriad of applications ranging from tires to biomaterials.

“Cellulose nanocrystals are an attractive alternative because they are naturally bioavailable, renewable, nontoxic, and relatively inexpensive,” Keten said. “And they can be easily extracted from wood pulp byproducts from the paper industry.”

Problems arise, however, when researchers try to combine the nanocellulose filler particles with the polymer matrix. The field has lacked an understanding of how the amount of filler affects the composite’s overall properties as well as the nature of the nanoscale interactions between the matrix and the filler.

Keten’s solution improves this understanding by focusing on the length scales of the materials rather than the nature of the materials themselves. By understanding what factors influence properties on the atomic scale, his computational approach can predict the nanocomposite’s properties as it scales up in size — with a minimal need for experimentation.

“Rather than just producing a material and then testing it to see what its properties are, we instead strategically tune design parameters in order to develop materials with a targeted property in mind,” Sinko said. “When you are equalizing music, you can turn knobs to adjust the bass, treble, etc. to produce a desired sound. In materials-by-design, we similarly can ‘turn the knobs’ of specific parameters to adjust the resulting properties.”

Here’s a link to and a citation for the paper,

Tuning Glass Transition in Polymer Nanocomposites with Functionalized Cellulose Nanocrystals through Nanoconfinement by Xin Qin, Wenjie Xia, Robert Sinko, and Sinan Keten. Nano Lett., Article ASAP
DOI: 10.1021/acs.nanolett.5b02588 Publication Date (Web): September 4, 2015

Copyright © 2015 American Chemical Society

This paper is open access.

*Cellulose nanocrystals (CNC) are also known as nancellulose crystals (NCC).

Cellulose nanocrystals and supercapacitors at McMaster University (Canada)

Photos: Xuan Yang and Kevin Yager.

Photos: Xuan Yang and Kevin Yager. Courtesy McMaster University

I love that featherlike structure holding up a tiny block of something while balanced on what appears to be a series of medallions. What it has to do with supercapacitors (energy storage) and cellulose nanocrystals is a mystery but that’s one of the images you’ll find illustrating an Oct. 7, 2015 news item on Nanotechnology Now featuring research at McMaster University,

McMaster Engineering researchers Emily Cranston and Igor Zhitomirsky are turning trees into energy storage devices capable of powering everything from a smart watch to a hybrid car.

The scientists are using cellulose, an organic compound found in plants, bacteria, algae and trees, to build more efficient and longer-lasting energy storage devices or supercapacitors. This development paves the way toward the production of lightweight, flexible, and high-power electronics, such as wearable devices, portable power supplies and hybrid and electric vehicles.

A Sept. 10, 2015 McMaster University news release, which originated the news item, describes the research in more detail,

Cellulose offers the advantages of high strength and flexibility for many advanced applications; of particular interest are nanocellulose-based materials. The work by Cranston, an assistant chemical engineering professor, and Zhitomirsky, a materials science and engineering professor, demonstrates an improved three-dimensional energy storage device constructed by trapping functional nanoparticles within the walls of a nanocellulose foam.

The foam is made in a simplified and fast one-step process. The type of nanocellulose used is called cellulose nanocrystals and looks like uncooked long-grain rice but with nanometer-dimensions. In these new devices, the ‘rice grains’ have been glued together at random points forming a mesh-like structure with lots of open space, hence the extremely lightweight nature of the material. This can be used to produce more sustainable capacitor devices with higher power density and faster charging abilities compared to rechargeable batteries.

Lightweight and high-power density capacitors are of particular interest for the development of hybrid and electric vehicles. The fast-charging devices allow for significant energy saving, because they can accumulate energy during braking and release it during acceleration.

For anyone interested in a more detailed description of supercapacitors, there’s my favourite one which involves Captain America’s shield along with some serious science in my April 28, 2014 posting.

Getting back to the research at McMaster, here’s a link to and a citation for the paper,

Cellulose Nanocrystal Aerogels as Universal 3D Lightweight Substrates for Supercapacitor Materials by Xuan Yang, Kaiyuan Shi, Igor Zhitomirsky, and Emily D. Cranston. Advanced Materials DOI: 10.1002/adma.201502284View/save citation First published online 2 September 2015

This paper is behind a paywall.

One final bit, cellulose nanocrystals (CNC) are sometimes referred to as nanocrystalline cellulose (NCC).

Interfaces are the device—organic semiconductors and their edges

Researchers at the University of British Columbia (UBC; Canada) have announced a startling revelation according to an Oct. 6, 2015 news item on ScienceDaily,

As the push for thinner and faster electronics continues, a new finding by University of British Columbia scientists could help inform the design of the next generation of cheaper, more efficient devices.

The work, published this week in Nature Communications, details how electronic properties at the edges of organic molecular systems differ from the rest of the material.

An Oct. 6, 2015 UBC news release on EurekAlert, which originated the news item, expands on the theme,

Organic [as in carbon-based] materials–plastics–are of great interest for use in solar panels, light emitting diodes and transistors. They’re low-cost, light, and take less energy to produce than silicon. Interfaces–where one type of material meets another–play a key role in the functionality of all these devices.

“We found that the polarization-induced energy level shifts from the edge of these materials to the interior are significant, and can’t be neglected when designing components,” says UBC PhD researcher Katherine Cochrane, lead author of the paper.

‘While we were expecting some differences, we were surprised by the size of the effect and that it occurred on the scale of a single molecule,” adds UBC researcher Sarah Burke, an expert on nanoscale electronic and optoelectronic materials and author on the paper.

The researchers looked at ‘nano-islands’ of clustered organic molecules. The molecules were deposited on a silver crystal coated with an ultra-thin layer of salt only two atoms deep. The salt is an insulator and prevents electrons in the organic molecules from interacting with those in the silver–the researchers wanted to isolate the interactions of the molecules.

Not only did the molecules at the edge of the nano-islands have very different properties than in the middle, the variation in properties depended on the position and orientation of other molecules nearby.

The researchers, part of UBC’s Quantum Matter Institute, used a simple, analytical model to explain the differences which can be extended to predict interface properties in much more complex systems, like those encountered in a real device.

Herbert Kroemer said in his Nobel Lecture that ‘The interface is the device’ and it’s equally true for organic materials,” says Burke. [emphasis mine] “The differences we’ve seen at the edges of molecular clusters highlights one effect that we’ll need to consider as we design new materials for these devices, but likely they are many more surprises waiting to be discovered.”

Cochrane and colleagues plan to keep looking at what happens at interfaces in these materials and to work with materials chemists to guide the design rules for the structure and electronic properties of future devices.


The experiment was performed at UBC’s state-of-the-art Laboratory for Atomic Imaging Research, which features three specially designed ultra-quiet rooms that allow the instruments to sit in complete silence, totally still, to perform their delicate measurements. This allowed the researchers to take dense data sets with a tool called a scanning tunnelling microscope (STM) that showed them the energy levels in real-space on the scale of single atoms.

Here’s a link to and a citation for the paper,

Pronounced polarization-induced energy level shifts at boundaries of organic semiconductor nanostructures by K. A. Cochrane, A. Schiffrin, T. S. Roussy, M. Capsoni, & S. A. Burke. Nature Communications 6, Article number: 8312 doi:10.1038/ncomms9312 Published 06 October 2015

This paper is open access. Yes, I borrowed from Nobel Laureate, Herbert Kroemer for the headline. As Woody Guthrie (legendary American folksinger) once said, more or less, “Only steal from the best.”

Commercializing nanotechnology: Peter Thiel’s Breakout Labs and Argonne National Laboratories

Breakout Labs

I last wrote about entrepreneur Peter Thiel’s Breakout Labs project in an Oct. 26, 2011 posting announcing its inception. An Oct. 6, 2015 Breakout Labs news release (received in my email) highlights a funding announcement for four startups of which at least three are nanotechnology-enabled,

Breakout Labs, a program of Peter Thiel’s philanthropic organization, the Thiel Foundation, announced today that four new companies advancing scientific discoveries in biomedical, chemical engineering, and nanotechnology have been selected for funding.

“We’re always hearing about bold new scientific research that promises to transform the world, but far too often the latest discoveries are left withering in a lab,” said Lindy Fishburne, Executive Director of Breakout Labs. “Our mission is to help a new type of scientist-entrepreneur navigate the startup ecosystem and build lasting companies that can make audacious scientific discoveries meaningful to everyday life. The four new companies joining the Breakout Labs portfolio – nanoGriptech, Maxterial, C2Sense, and CyteGen – embody that spirit and we’re excited to be working with them to help make their vision a reality.”

The future of adhesives: inspired by geckos

Inspired by the gecko’s ability to scuttle up walls and across ceilings due to their millions of micro/nano foot-hairs,nanoGriptech (, based in Pittsburgh, Pa., is developing a new kind of microfiber adhesive material that is strong, lightweight, and reusable without requiring glues or producing harmful residues. Currently being tested by the U.S. military, NASA, and top global brands, nanoGriptech’s flagship product Setex™ is the first adhesive product of its kind that is not only strong and durable, but can also be manufactured at low cost, and at scale.

“We envision a future filled with no-leak biohazard enclosures, ergonomic and inexpensive car seats, extremely durable aerospace adhesives, comfortable prosthetic liners, high performance athletic wear, and widely available nanotechnology-enabled products manufactured less expensively — all thanks to the grippy little gecko,” said Roi Ben-Itzhak, CFO and VP of Business Development for nanoGriptech.

A sense of smell for the digital world

Despite the U.S. Department of Agriculture’s recent goals to drastically reduce food waste, most consumers don’t realize the global problem created by 1.3 billion metric tons of food wasted each year — clogging landfills and releasing unsustainable levels of methane gas into the atmosphere. Using technology developed at MIT’s Swager lab, Cambridge, Ma.-based C2Sense( is developing inexpensive, lightweight hand-held sensors based on carbon nanotubes which can detect fruit ripeness and meat, fish and poultry freshness. Smaller than a half of a business card, these sensors can be developed at very low cost, require very little power to operate, and can be easily integrated into most agricultural supply chains, including food storage packaging, to ensure that food is picked, stored, shipped, and sold at optimal freshness.

“Our mission is to bring a sense of smell to the digital world. With our technology, that package of steaks in your refrigerator will tell you when it’s about to go bad, recommend some recipe options and help build out your shopping list,” said Jan Schnorr, Chief Technology Officer of C2Sense.

Amazing metals that completely repel water

MaxterialTM, Inc. develops amazing materials that resist a variety of detrimental environmental effects through technology that emulates similar strategies found in nature, such as the self-cleaning lotus leaf and antifouling properties of crabs. By modifying the surface shape or texture of a metal, through a method that is very affordable and easy to introduce into the existing manufacturing process, Maxterial introduces a microlayer of air pockets that reduce contact surface area. The underlying material can be chemically the same as ever, retaining inherent properties like thermal and electrical conductivity. But through Maxterial’s technology, the metallic surface also becomes inherently water repellant. This property introduces the superhydrophobic maxterial as a potential solution to a myriad of problems, such as corrosion, biofouling, and ice formation. Maxterial is currently focused on developing durable hygienic and eco-friendly anti-corrosion coatings for metallic surfaces.

“Our process has the potential to create metallic objects that retain their amazing properties for the lifetime of the object – this isn’t an aftermarket coating that can wear or chip off,” said Mehdi Kargar, Co-founder and CEO of Maxterial, Inc. “We are working towards a day when shipping equipment can withstand harsh arctic environments, offshore structures can resist corrosion, and electronics can be fully submersible and continue working as good as new.”

New approaches to combat aging

CyteGen ( wants to dramatically increase the human healthspan, tackle neurodegenerative diseases, and reverse age-related decline. What makes this possible now is new discovery tools backed by the dream team of interdisciplinary experts the company has assembled. CyteGen’s approach is unusually collaborative, tapping into the resources and expertise of world-renowned researchers across eight major universities to focus different strengths and perspectives to achieve the company’s goals. By approaching aging from a holistic, systematic point of view, rather than focusing solely on discrete definitions of disease, they have developed a new way to think about aging, and to develop treatments that can help people live longer, healthier lives.

“There is an assumption that aging necessarily brings the kind of physical and mental decline that results in Parkinson’s, Alzheimer’s, and other diseases. Evidence indicates otherwise, which is what spurred us to launch CyteGen,” said George Ugras, Co-Founder and President of CyteGen.

To date, Breakout Labs has invested in more than two dozen companies at the forefront of science, helping radical technologies get beyond common hurdles faced by early stage companies, and advance research and development to market much more quickly. Portfolio companies have raised more than six times the amount of capital invested in the program by the Thiel Foundation, and represent six Series A valuations ranging from $10 million to $60 million as well as one acquisition.

You can see the original Oct. 6, 2015 Breakout Labs news release here or in this Oct. 7, 2015 news item on Azonano.

Argonne National Labs and Nano Design Works (NDW) and the Argonne Collaborative Center for Energy Storage Science (ACCESS)

The US Department of Energy’s Argonne National Laboratory’s Oct. 6, 2015 press release by Greg Cunningham announced two initiatives meant to speed commercialization of nanotechnology-enabled products for the energy storage and other sectors,

Few technologies hold more potential to positively transform our society than energy storage and nanotechnology. Advances in energy storage research will revolutionize the way the world generates and stores energy, democratizing the delivery of electricity. Grid-level storage can help reduce carbon emissions through the increased adoption of renewable energy and use of electric vehicles while helping bring electricity to developing parts of the world. Nanotechnology has already transformed the electronics industry and is bringing a new set of powerful tools and materials to developers who are changing everything from the way energy is generated, stored and transported to how medicines are delivered and the way chemicals are produced through novel catalytic nanomaterials.

Recognizing the power of these technologies and seeking to accelerate their impact, the U.S. Department of Energy’s Argonne National Laboratory has created two new collaborative centers that provide an innovative pathway for business and industry to access Argonne’s unparalleled scientific resources to address the nation’s energy and national security needs. These centers will help speed discoveries to market to ensure U.S. industry maintains a lead in this global technology race.

“This is an exciting time for us, because we believe this new approach to interacting with business can be a real game changer in two areas of research that are of great importance to Argonne and the world,” said Argonne Director Peter B. Littlewood. “We recognize that delivering to market our breakthrough science in energy storage and nanotechnology can help ensure our work brings the maximum benefit to society.”

Nano Design Works (NDW) and the Argonne Collaborative Center for Energy Storage Science (ACCESS) will provide central points of contact for companies — ranging from large industrial entities to smaller businesses and startups, as well as government agencies — to benefit from Argonne’s world-class expertise, scientific tools and facilities.

NDW and ACCESS represent a new way to collaborate at Argonne, providing a single point of contact for businesses to assemble tailored interdisciplinary teams to address their most challenging R&D questions. The centers will also provide a pathway to Argonne’s fundamental research that is poised for development into practical products. The chance to build on existing scientific discovery is a unique opportunity for businesses in the nano and energy storage fields.

The center directors, Andreas Roelofs of NDW and Jeff Chamberlain of ACCESS, have both created startups in their careers and understand the value that collaboration with a national laboratory can bring to a company trying to innovate in technologically challenging fields of science. While the new centers will work with all sizes of companies, a strong emphasis will be placed on helping small businesses and startups, which are drivers of job creation and receive a large portion of the risk capital in this country.

“For a startup like mine to have the ability to tap the resources of a place like Argonne would have been immensely helpful,” said Roelofs. “We”ve seen the power of that sort of access, and we want to make it available to the companies that need it to drive truly transformative technologies to market.”

Chamberlain said his experience as an energy storage researcher and entrepreneur led him to look for innovative approaches to leveraging the best aspects of private industry and public science. The national laboratory system has a long history of breakthrough science that has worked its way to market, but shortening that journey from basic research to product has become a growing point of emphasis for the national laboratories over the past couple of decades. The idea behind ACCESS and NDW is to make that collaboration even easier and more powerful.

“Where ACCESS and NDW will differ from the conventional approach is through creating an efficient way for a business to build a customized, multi-disciplinary team that can address anything from small technical questions to broad challenges that require massive resources,” Chamberlain said. “That might mean assembling a team with chemists, physicists, computer scientists, materials engineers, imaging experts, or mechanical and electrical engineers; the list goes on and on. It’s that ability to tap the full spectrum of cross-cutting expertise at Argonne that will really make the difference.”

Chamberlain is deeply familiar with the potential of energy storage as a transformational technology, having led the formation of Argonne’s Joint Center for Energy Storage Research (JCESR). The center’s years-long quest to discover technologies beyond lithium-ion batteries has solidified the laboratory’s reputation as one of the key global players in battery research. ACCESS will tap Argonne’s full battery expertise, which extends well beyond JCESR and is dedicated to fulfilling the promise of energy storage.

Energy storage research has profound implications for energy security and national security. Chamberlain points out that approximately 1.3 billion people across the globe do not have access to electricity, with another billion having only sporadic access. Energy storage, coupled with renewable generation like solar, could solve that problem and eliminate the need to build out massive power grids. Batteries also have the potential to create a more secure, stable grid for countries with existing power systems and help fight global climate disruption through adoption of renewable energy and electric vehicles.

Argonne researchers are pursuing hundreds of projects in nanoscience, but some of the more notable include research into targeted drugs that affect only cancerous cells; magnetic nanofibers that can be used to create more powerful and efficient electric motors and generators; and highly efficient water filtration systems that can dramatically reduce the energy requirements for desalination or cleanup of oil spills. Other researchers are working with nanoparticles that create a super-lubricated state and other very-low friction coatings.

“When you think that 30 percent of a car engine’s power is sacrificed to frictional loss, you start to get an idea of the potential of these technologies,” Roelofs said. “But it’s not just about the ideas already at Argonne that can be brought to market, it’s also about the challenges for businesses that need Argonne-level resources. I”m convinced there are many startups out there working on transformational ideas that can greatly benefit from the help of a place Argonne to bring those ideas to fruition. That is what has me excited about ACCESS and NDW.”

For more information on ACCESS, see:

For more information on NDW, see:

You can read more about the announcement in an Oct. 6, 2015 article by Greg Watry for R&D magazine featuring an interview with Andreas Roelofs.

Royal Institution, science, and nanotechnology 101 and #RE_IMAGINE at the London College of Fashion

I’m featuring two upcoming events in London (UK).

Nanotechnology 101: The biggest thing you’ve never seen

 Gold Nanowire Array Credit: lacomj via Flickr:

Gold Nanowire Array
Credit: lacomj via Flickr: [downloaded from]

Already sold out, this event is scheduled for Oct. 20, 2015. Here’s why you might want to put yourself on a waiting list, from the Royal Institution’s Nanotechnology 101 event page,

How could nanotechnology be used to create smart and extremely resilient materials? Or to boil water three times faster? Join former NASA Nanotechnology Project Manager Michael Meador to learn about the fundamentals of nanotechnology—what it is and why it’s unique—and how this emerging, disruptive technology will change the world. From invisibility cloaks to lightweight fuel-efficient vehicles and a cure for cancer, nanotechnology might just be the biggest thing you can’t see.

About the speaker

Michael Meador is currently Director of the U.S. National Nanotechnology Coordination Office, on secondment from NASA where he had been managing the Nanotechnology Project in the Game Changing Technology Program, working to mature nanotechnologies with high potential for impact on NASA missions. One part of his current job is to communicate nanotechnology research to policy-makers and the public.

Here’s some logistical information from the event page,

7.00pm to 8.30pm, Tuesday 20 October
The Theatre

Standard £12
Concession £8
Associate £6
Free to Members, Faraday Members and Fellows

For anyone who may not know offhand where the Royal Institution and its theatre is located,

The Royal Institution of Great Britain
21 Albemarle Street

+44 (0) 20 7409 2992
(9.00am – 6.00pm Mon – Fri)

Here’s a description of the Royal Institution from its Wikipedia entry (Note: Links have been removed),

The Royal Institution of Great Britain (often abbreviated as the Royal Institution or RI) is an organisation devoted to scientific education and research, based in London.

The Royal Institution was founded in 1799 by the leading British scientists of the age, including Henry Cavendish and its first president, George Finch, the 9th Earl of Winchilsea,[1] for

diffusing the knowledge, and facilitating the general introduction, of useful mechanical inventions and improvements; and for teaching, by courses of philosophical lectures and experiments, the application of science to the common purposes of life.
— [2]

Much of its initial funding and the initial proposal for its founding were given by the Society for Bettering the Conditions and Improving the Comforts of the Poor, under the guidance of philanthropist Sir Thomas Bernard and American-born British scientist Sir Benjamin Thompson, Count Rumford. Since its founding it has been based at 21 Albemarle Street in Mayfair. Its Royal Charter was granted in 1800. The Institution announced in January 2013 that it was considering sale of its Mayfair headquarters to meet its mounting debts.[3]


While this isn’t a nanotechnology event, it does touch on topics discussed here many times: wearable technology, futuristic fashion, and the integration of technology into the body. The Digital Anthropology Lab (of the  London College of Fashion, which is part of the University of the Arts London) is being officially launched with a special event on Oct. 16, 2015. Before describing the event, here’s more about the Digital Anthropology Lab from its homepage,

Crafting fashion experience digitally

The Digital Anthropology Lab, launching in Autumn 2015, London College of Fashion, University of the Arts London is a research studio bringing industry and academia together to develop a new way of making smarter with technology.

The Digital Anthropology Lab, London College of Fashion, experiments with artefacts, communities, consumption and making in the digital space, using 3D printing, body scanning, code and electronics. We focus on an experimental approach to digital anthropology, allowing us to practically examine future ways in which digital collides with the human experience. We connect commercial partners to leading research academics and graduate students, exploring seed ideas for fashion tech.


We radically re-imagine this emerging fashion- tech space, exploring both the beautification of technology for wearables and critically explore the ‘why.’


Join us to experiment with, ‘The Internet of Fashion Things.’ Where the Internet of Things, invisible big data technologies, virtual fit and meta-data collide.


With the luxury of the imagination, we aim to re- wire our digital ambitions and think again about designing future digital fashion experiences for generation 2050.

Here’s information I received from the Sept. 30, 2015 announcement I received via email,

The Digital Anthropology Lab at London College of Fashion, UAL invites you to #RE_IMAGINE: A forum exploring the now, near and future of fashion technology.

#RE_IMAGINE, the Digital Anthropology Lab’s launch event, will present a fantastically diverse range of digital speakers and ask them to respond to the question – ‘Where are our digital selves heading?’

Join us to hear from pioneers, risk takers, entrepreneurs, designers and inventors including Ian Livingston CBE, Luke Robert Mason from New Bionics, Katie Baron from Stylus, J. Meejin Yoon from MIT among others. Also come to see what happened when we made fashion collide with the Internet of Things, they are wearable but not as you know it…

#RE_IMAGINE aims to be an informative, networked and enlightening brainstorm of a day. To book your place please follow this link.

To coincide with the exhibition Digital Disturbances, Fashion Space Gallery presents a late night opening event. Alongside a curator tour will be a series of interactive demonstrations and displays which bring together practitioners working across design, science and technology to investigate possible human and material futures. We’d encourage you to stay and enjoy this networking opportunity.

Friday 16th October 2015

9.30am – 5pm – Forum event 

5pm – 8.30pm – Digital Disturbances networking event

London College of Fashion

20 John Princes Street
W1G 0BJ 

Ticket prices are £75.00 for a standard ticket and £35.00 for concession tickets (more details here).

For more #RE_IMAGINE specifics, there’s the event’s Agenda page. As for Digital Disturbances, here’s more from the Fashion Space Gallery’s Exhibition homepage,

Digital Disturbances

11th September – 12th December 2015

Digital Disturbances examines the influence of digital concepts and tools on fashion. It provides a lens onto the often strange effects that emerge from interactions across material and virtual platforms – information both lost and gained in the process of translation. It presents the work of seven designers and creative teams whose work documents these interactions and effects, both in the design and representation of fashion. They can be traced across the surfaces of garments, through the realisation of new silhouettes, in the remixing of images and bodies in photography and film, and into the nuances of identity projected into social and commercial spaces.

Designers include: ANREALAGE, Bart Hess, POSTmatter, Simone C. Niquille and Alexander Porter, Flora Miranda, Texturall and Tigran Avetisyan.

Digital Disturbances is curated by Leanne Wierzba.

Two events—two peeks into the future.

Safer sunblock and bioadhesive nanoparticles from Yale University

The skin has a lot of protective barriers but it’s always possible to make something better so a sunblock that doesn’t penetrate teh skin at all seems like it might be a good thing. Interestingly, this new sunblock or sunscreen is enabled by nanoparticles but not the metallic nanoparticles found in what are sometimes called nanosunscreens. From a Sept. 29, 2015 news item on Nanowerk,

Researchers at Yale have developed a sunscreen that doesn’t penetrate the skin, eliminating serious health concerns associated with commercial sunscreens.

Most commercial sunblocks are good at preventing sunburn, but they can go below the skin’s surface and enter the bloodstream. As a result, they pose possible hormonal side effects and could even be promoting the kind of skin cancers they’re designed to prevent.

But researchers at Yale have developed a new sunblock, made with bioadhesive nanoparticles, that stays on the surface of the skin.

A Sept. 28, 2015 Yale University news release by William Weir, whch originated the news item, describes the research in more detail,

“We found that when we apply the sunblock to the skin, it doesn’t come off, and more importantly, it doesn’t penetrate any further into the skin,” said the paper’s senior author, Mark Saltzman, the Goizueta Foundation Professor of Biomedical Engineering. “Nanoparticles are large enough to keep from going through the skin’s surface, and our nanoparticles are so adhesive that they don’t even go into hair follicles, which are relatively open.”

Using mouse models, the researchers tested their sunblock against direct ultraviolet rays and their ability to cause sunburn. In this regard, even though it used a significantly smaller amount of the active ingredient than commercial sunscreens, the researchers’ formulation protected equally well against sunburn.

They also looked at an indirect — and much less studied — effect of UV light. When the active ingredients of sunscreen absorb UV light, a chemical change triggers the generation of oxygen-carrying molecules known as reactive oxygen species (ROS). If a sunscreen’s agents penetrate the skin, this chemical change could cause cellular damage, and potentially facilitate skin cancer.

“Commercial chemical sunblock is protective against the direct hazards of ultraviolet damage of DNA, but might not be against the indirect ones,” said co-author Michael Girardi, a professor of dermatology at Yale Medical School. “In fact, the indirect damage was worse when we used the commercial sunblock.”

Girardi, who specializes in skin cancer development and progression, said little research has been done on the ultimate effects of sunblock usage and the generation of ROS, “but obviously, there’s concern there.”

Previous studies have found traces of commercial sunscreen chemicals in users’ bloodstreams, urine, and breast milk. There is evidence that these chemicals cause disruptions with the endocrine system, such as blocking sex hormone receptors.

To test penetration levels, the researchers applied strips of adhesive tape to skin previously treated with sunscreen. The tape was then removed rapidly, along with a thin layer of skin. Repeating this procedure allowed the researchers to remove the majority of the outer skin layer, and measure how deep the chemicals had penetrated into the skin. Traces of the sunscreen chemical administered in a conventional way were found to have soaked deep within the skin. The Yale team’s sunblock came off entirely with the initial tape strips.

Tests also showed that a substantial amount of the Yale team’s sunscreen remained on the skin’s surface for days, even after exposure to water. When wiped repeatedly with a towel, the new sunblock was entirely removed. [emphasis mine]

To make the sunblock, the researchers developed a nanoparticle with a surface coating rich in aldehyde groups, which stick tenaciously to the outer skin layer. The nanoparticle’s hydrophilic layer essentially locks in the active ingredient, a hydrophobic chemical called padimate O.

Some sunscreen solutions that use larger particles of inorganic compounds, such as titanium dioxide or zinc oxide, also don’t penetrate the skin. For aesthetic reasons, though, these opaque sunscreen products aren’t very popular. By using a nanoparticle to encase padimate O, an organic chemical used in many commercial sunscreens, the Yale team’s sunblock is both transparent and stays out of the skin cells and bloodstream.

This seems a little confusing to me and I think clarification may be helpful. My understanding is that the metallic nanoparticles (nano titanium dioxide and nano zinc oxide) engineered for use in commercial sunscreens are also (in addition to the macroscale titanium dioxide and zinc oxide referred to in the Yale news release) too large to pass through the skin. At least that was the understanding in 2010 and I haven’t stumbled across any information that is contradictory. Here’s an excerpt from a July 20, 2010 posting where I featured portions of a debate between Georgia Miller (at that time representing Friends of the Earth) and Dr. Andrew Maynard (at that time director of the University of Michigan Risk Science Center and a longtime participant in the nanotechnology risk discussions),

Three of the scientists whose work was cited by FoE as proof that nanosunscreens are dangerous either posted directly or asked Andrew to post comments which clarified the situation with exquisite care,

Despite FoE’s implications that nanoparticles in sunscreens might cause cancer because they are photoactive, Peter Dobson points out that there are nanomaterials used in sunscreens that are designed not to be photoactive. Brian Gulson, who’s work on zinc skin penetration was cited by FoE, points out that his studies only show conclusively that zinc atoms or ions can pass through the skin, not that nanoparticles can pass through. He also notes that the amount of zinc penetration from zinc-based sunscreens is very much lower than the level of zinc people have in their body in the first place. Tilman Butz, who led one of the largest projects on nanoparticle penetration through skin to date, points out that – based on current understanding – the nanoparticles used in sunscreens are too large to penetrate through the skin.

However, there may be other ingredients which do pass through into the bloodstream and are concerning.

One other thing I’d like to note. Not being able to remove the sunscreen easily ( “When wiped repeatedly with a towel, the new sunblock was entirely removed.”) may prove to be a problem as we need Vitamin D, which is for the most part obtainable by sun exposure.

In any event, here’s a link to and a citation for the paper,

A sunblock based on bioadhesive nanoparticles by Yang Deng, Asiri Ediriwickrema, Fan Yang, Julia Lewis, Michael Girardi, & W. Mark Saltzman. Nature Materials (2015) doi:10.1038/nmat4422 Published online 28 September 2015

This paper is behind a paywall.

An easier and cheaper way to make: wearable and disposable medical tattoolike patches

A Sept. 29, 2015 news item on ScienceDaily features an electronic health patch that’s cheaper and easier to make,

A team of researchers has invented a method for producing inexpensive and high-performing wearable patches that can continuously monitor the body’s vital signs for human health and performance tracking. The researchers believe their new method is compatible with roll-to-roll manufacturing.

The researchers have provided a photograph of a prototype patch,

Assitant professor Nanshu Lu and her team have developed a faster, inexpensive method for making epidermal electronics. Cockrell School of Engineering

Assitant professor Nanshu Lu and her team have developed a faster, inexpensive method for making epidermal electronics. Cockrell School of Engineering

A University of Texas at Austin Sept. 29, 2015 news release (also on EurekAlert), which originated the news item, provides more details,

Led by Assistant Professor Nanshu Lu, the team’s manufacturing method aims to construct disposable tattoo-like health monitoring patches for the mass production of epidermal electronics, a popular technology that Lu helped develop in 2011.

The team’s breakthrough is a repeatable “cut-and-paste” method that cuts manufacturing time from several days to only 20 minutes. The researchers believe their new method is compatible with roll-to-roll manufacturing — an existing method for creating devices in bulk using a roll of flexible plastic and a processing machine.

Reliable, ultrathin wearable electronic devices that stick to the skin like a temporary tattoo are a relatively new innovation. These devices have the ability to pick up and transmit the human body’s vital signals, tracking heart rate, hydration level, muscle movement, temperature and brain activity.

Although it is a promising invention, a lengthy, tedious and costly production process has until now hampered these wearables’ potential.

“One of the most attractive aspects of epidermal electronics is their ability to be disposable,” Lu said. “If you can make them inexpensively, say for $1, then more people will be able to use them more frequently. This will open the door for a number of mobile medical applications and beyond.”

The UT Austin method is the first dry and portable process for producing these electronics, which, unlike the current method, does not require a clean room, wafers and other expensive resources and equipment. Instead, the technique relies on freeform manufacturing, which is similar in scope to 3-D printing but different in that material is removed instead of added.

The two-step process starts with inexpensive, pre-fabricated, industrial-quality metal deposited on polymer sheets. First, an electronic mechanical cutter is used to form patterns on the metal-polymer sheets. Second, after removing excessive areas, the electronics are printed onto any polymer adhesives, including temporary tattoo films. The cutter is programmable so the size of the patch and pattern can be easily customized.

Deji Akinwande, an associate professor and materials expert in the Cockrell School, believes Lu’s method can be transferred to roll-to-roll manufacturing.

“These initial prototype patches can be adapted to roll-to-roll manufacturing that can reduce the cost significantly for mass production,” Akinwande said. “In this light, Lu’s invention represents a major advancement for the mobile health industry.”

After producing the cut-and-pasted patches, the researchers tested them as part of their study. In each test, the researchers’ newly fabricated patches picked up body signals that were stronger than those taken by existing medical devices, including an ECG/EKG, a tool used to assess the electrical and muscular function of the heart. The team also found that their patch conforms almost perfectly to the skin, minimizing motion-induced false signals or errors.

The UT Austin wearable patches are so sensitive that Lu and her team can envision humans wearing the patches to more easily maneuver a prosthetic hand or limb using muscle signals. For now, Lu said, “We are trying to add more types of sensors including blood pressure and oxygen saturation monitors to the low-cost patch.”

Here’s a link to and a citation for the paper,

“Cut-and-Paste” Manufacture of Multiparametric Epidermal Sensor Systems by Shixuan Yang, Ying-Chen Chen, Luke Nicolini, Praveenkumar Pasupathy, Jacob Sacks, Su Becky, Russell Yang, Sanchez Daniel, Yao-Feng Chang, Pulin Wang, David Schnyer, Dean Neikirk, and Nanshu Lu. Advanced Materials DOI: 10.1002/adma.201502386 First published: 23 September 2015

This paper is behind a paywall.

Anyone have a spare portabella (also known as, portobello) mushroom? I need for my phone

Scientists as the University of California at Riverside (UCR) have developed a type of lithium-ion battery with portabella mushrooms, from a Sept. 29, 2015 news item on ScienceDaily,

Can portabella mushrooms stop cell phone batteries from degrading over time?

Researchers at the University of California, Riverside Bourns College of Engineering think so.

They have created a new type of lithium-ion battery anode using portabella mushrooms, which are inexpensive, environmentally friendly and easy to produce. The current industry standard for rechargeable lithium-ion battery anodes is synthetic graphite, which comes with a high cost of manufacturing because it requires tedious purification and preparation processes that are also harmful to the environment.

A Sept. 29, 2015 UCR news release (also on EurekAlert) by Sean Nealon, which originated the news item, expands on the theme,

With the anticipated increase in batteries needed for electric vehicles and electronics, a cheaper and sustainable source to replace graphite is needed. Using biomass, a biological material from living or recently living organisms, as a replacement for graphite, has drawn recent attention because of its high carbon content, low cost and environmental friendliness.

UC Riverside engineers were drawn to using mushrooms as a form of biomass because past research has established they are highly porous, meaning they have a lot of small spaces for liquid or air to pass through. That porosity is important for batteries because it creates more space for the storage and transfer of energy, a critical component to improving battery performance.

In addition, the high potassium salt concentration in mushrooms allows for increased electrolyte-active material over time by activating more pores, gradually increasing its capacity.

A conventional anode allows lithium to fully access most of the material during the first few cycles and capacity fades from electrode damage occurs from that point on. The mushroom carbon anode technology could, with optimization, replace graphite anodes. It also provides a binderless and current-collector free approach to anode fabrication.

“With battery materials like this, future cell phones may see an increase in run time after many uses, rather than a decrease, due to apparent activation of blind pores within the carbon architectures as the cell charges and discharges over time,” said Brennan Campbell, a graduate student in the Materials Science and Engineering program at UC Riverside.

Nanocarbon architectures derived from biological materials such as mushrooms can be considered a green and sustainable alternative to graphite-based anodes, said Cengiz Ozkan, a professor of mechanical engineering and materials science and engineering.

The nano-ribbon-like architectures transform upon heat treatment into an interconnected porous network architecture which is important for battery electrodes because such architectures possess a very large surface area for the storage of energy, a critical component to improving battery performance.

One of the problems with conventional carbons, such as graphite, is that they are typically prepared with chemicals such as acids and activated by bases that are not environmentally friendly, said Mihri Ozkan, a professor of electrical and computer engineering. Therefore, the UC Riverside team is focused on naturally-derived carbons, such as the skin of the caps of portabella mushrooms, for making batteries.

It is expected that nearly 900,000 tons of natural raw graphite would be needed for anode fabrication for nearly six million electric vehicle forecast to be built by 2020. This requires that the graphite be treated with harsh chemicals, including hydrofluoric and sulfuric acids, a process that creates large quantities of hazardous waste. The European Union projects this process will be unsustainable in the future.

Here’s link to and a citation for the paper,

Hierarchically Porous Carbon Anodes for Li-ion Batteries by Brennan Campbell, Robert Ionescu, Zachary Favors, Cengiz S. Ozkan, & Mihrimah Ozkan. [Nature] Scientific Reports 5, Article number: 14575 (2015)  doi:10.1038/srep14575 Published online: 29 September 2015

This is an open access paper