Category Archives: nanotechnology

The physics of melting in two-dimensional systems

You might want to skip over the reference to snow as it doesn’t have much relevance to this story about ‘melting’, from a Feb. 1, 2017 news item on Nanowerk (Note: A link has been removed),

Snow falls in winter and melts in spring, but what drives the phase change in between?
Although melting is a familiar phenomenon encountered in everyday life, playing a part in many industrial and commercial processes, much remains to be discovered about this transformation at a fundamental level.

In 2015, a team led by the University of Michigan’s Sharon Glotzer used high-performance computing at the Department of Energy’s (DOE’s) Oak Ridge National Laboratory [ORNL] to study melting in two-dimensional (2-D) systems, a problem that could yield insights into surface interactions in materials important to technologies like solar panels, as well as into the mechanism behind three-dimensional melting. The team explored how particle shape affects the physics of a solid-to-fluid melting transition in two dimensions.

Using the Cray XK7 Titan supercomputer at the Oak Ridge Leadership Computing Facility (OLCF), a DOE Office of Science User Facility, the team’s [latest?] work revealed that the shape and symmetry of particles can dramatically affect the melting process (“Shape and symmetry determine two-dimensional melting transitions of hard regular polygons”). This fundamental finding could help guide researchers in search of nanoparticles with desirable properties for energy applications.

There is a video  of the ‘melting’ process but I have to confess to finding it a bit enigmatic,

A Feb. 1, 2017 ORNL news release (also on EurekAlert), which originated the news item, provides more detail about the research,

o tackle the problem, Glotzer’s team needed a supercomputer capable of simulating systems of up to 1 million hard polygons, simple particles used as stand-ins for atoms, ranging from triangles to 14-sided shapes. Unlike traditional molecular dynamics simulations that attempt to mimic nature, hard polygon simulations give researchers a pared-down environment in which to evaluate shape-influenced physics.

“Within our simulated 2-D environment, we found that the melting transition follows one of three different scenarios depending on the shape of the systems’ polygons,” University of Michigan research scientist Joshua Anderson said. “Notably, we found that systems made up of hexagons perfectly follow a well-known theory for 2-D melting, something that hasn’t been described until now.”

Shifting Shape Scenarios

In 3-D systems such as a thinning icicle, melting takes the form of a first-order phase transition. This means that collections of molecules within these systems exist in either solid or liquid form with no in-between in the presence of latent heat, the energy that fuels a solid-to-fluid phase change . In 2-D systems, such as thin-film materials used in batteries and other technologies, melting can be more complex, sometimes exhibiting an intermediate phase known as the hexatic phase.

The hexatic phase, a state characterized as a halfway point between an ordered solid and a disordered liquid, was first theorized in the 1970s by researchers John Kosterlitz, David Thouless, Burt Halperin, David Nelson, and Peter Young. The phase is a principle feature of the KTHNY theory, a 2-D melting theory posited by the researchers (and named based on the first letters of their last names). In 2016 Kosterlitz and Thouless were awarded the Nobel Prize in Physics, along with physicist Duncan Haldane, for their contributions to 2-D materials research.

At the molecular level, solid, hexatic, and liquid systems are defined by the arrangement of their atoms. In a crystalline solid, two types of order are present: translational and orientational. Translational order describes the well-defined paths between atoms over distances, like blocks in a carefully constructed Jenga tower. Orientational order describes the relational and clustered order shared between atoms and groups of atoms over distances. Think of that same Jenga tower turned askew after several rounds of play. The general shape of the tower remains, but its order is now fragmented.

The hexatic phase has no translational order but possesses orientational order. (A liquid has neither translational nor orientational order but exhibits short-range order, meaning any atom will have some average number of neighbors nearby but with no predicable order.)

Deducing the presence of a hexatic phase requires a leadership-class computer that can calculate large hard-particle systems. Glotzer’s team gained access to the OLCF’s 27-petaflop Titan through the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program, running its GPU-accelerated HOOMD-blue code to maximize time on the machine.

On Titan, HOOMD-blue used 64 GPUs for each massively parallel Monte Carlo simulation of up to 1 million particles. Researchers explored 11 different shape systems, applying an external pressure to push the particles together. Each system was simulated at 21 different densities, with the lowest densities representing a fluid state and the highest densities a solid state.

The simulations demonstrated multiple melting scenarios hinging on the polygons’ shape. Systems with polygons of seven sides or more closely followed the melting behavior of hard disks, or circles, exhibiting a continuous phase transition from the solid to the hexatic phase and a first-order phase transition from the hexatic to the liquid phase. A continuous phase transition means a constantly changing area in response to a changing external pressure. A first-order phase transition is characterized by a discontinuity in which the volume jumps across the phase transition in response to the changing external pressure. The team found pentagons and fourfold pentilles, irregular pentagons with two different edge lengths, exhibit a first-order solid-to-liquid phase transition.

The most significant finding, however, emerged from hexagon systems, which perfectly followed the phase transition described by the KTHNY theory. In this scenario, the particles’ shift from solid to hexatic and hexatic to fluid in a perfect continuous phase transition pattern.

“It was actually sort of surprising that no one else has found that until now,” Anderson said, “because it seems natural that the hexagon, with its six sides, and the honeycomb-like hexagonal arrangement would be a perfect match for this theory” in which the hexatic phase generally contains sixfold orientational order.

Glotzer’s team, which recently received a 2017 INCITE allocation, is now applying its leadership-class computing prowess to tackle phase transitions in 3-D. The team is focusing on how fluid particles crystallize into complex colloids—mixtures in which particles are suspended throughout another substance. Common examples of colloids include milk, paper, fog, and stained glass.

“We’re planning on using Titan to study how complexity can arise from these simple interactions, and to do that we’re actually going to look at how the crystals grow and study the kinetics of how that happens,” said Anderson.

There is a paper on arXiv,

Shape and symmetry determine two-dimensional melting transitions of hard regular polygons by Joshua A. Anderson, James Antonaglia, Jaime A. Millan, Michael Engel, Sharon C. Glotzer
(Submitted on 2 Jun 2016 (v1), last revised 23 Dec 2016 (this version, v2))  arXiv:1606.00687 [cond-mat.soft] (or arXiv:1606.00687v2

This paper is open access and open to public peer review.

R.I.P. Mildred Dresselhaus, Queen of Carbon

I’ve been hearing about Mildred Dresselhaus, professor emerita (retired professor) at the Massachusetts Institute of Technology (MIT), just about as long as I’ve been researching and writing about nanotechnology (about 10 years including the work for my master’s project with the almost eight years on this blog).

She died on Monday, Feb. 20, 2017 at the age of 86 having broken through barriers for those of her gender, barriers for her subject area, and barriers for her age.

Mark Anderson in his Feb. 22, 2017 obituary for the IEEE (Institute of Electrical and Electronics Engineers) Spectrum website provides a brief overview of her extraordinary life and accomplishments,

Called the “Queen of Carbon Science,” Dresselhaus pioneered the study of carbon nanostructures at a time when studying physical and material properties of commonplace atoms like carbon was out of favor. Her visionary perspectives on the sixth atom in the periodic table—including exploring individual layers of carbon atoms (precursors to graphene), developing carbon fibers stronger than steel, and revealing new carbon structures that were ultimately developed into buckyballs and nanotubes—invigorated the field.

“Millie Dresselhaus began life as the child of poor Polish immigrants in the Bronx; by the end, she was Institute Professor Emerita, the highest distinction awarded by the MIT faculty. A physicist, materials scientist, and electrical engineer, she was known as the ‘Queen of Carbon’ because her work paved the way for much of today’s carbon-based nanotechnology,” MIT president Rafael Reif said in a prepared statement.

Friends and colleagues describe Dresselhaus as a gifted instructor as well as a tireless and inspired researcher. And her boundless generosity toward colleagues, students, and girls and women pursuing careers in science is legendary.

In 1963, Dresselhaus began her own career studying carbon by publishing a paper on graphite in the IBM Journal for Research and Development, a foundational work in the history of nanotechnology. To this day, her studies of the electronic structure of this material serve as a reference point for explorations of the electronic structure of fullerenes and carbon nanotubes. Coauthor, with her husband Gene Dresselhaus, of a leading book on carbon fibers, she began studying the laser vaporation of carbon and the “carbon clusters” that resulted. Researchers who followed her lead discovered a 60-carbon structure that was soon identified as the icosahedral “soccer ball” molecular configuration known as buckminsterfullerene, or buckyball. In 1991, Dresselhaus further suggested that fullerene could be elongated as a tube, and she outlined these imagined objects’ symmetries. Not long after, researchers announced the discovery of carbon nanotubes.

When she began her nearly half-century career at MIT, as a visiting professor, women consisted of just 4 percent of the undergraduate student population.  So Dresselhaus began working toward the improvement of living conditions for women students at the university. Through her leadership, MIT adopted an equal and joint admission process for women and men. (Previously, MIT had propounded the self-fulfilling prophecy of harboring more stringent requirements for women based on less dormitory space and perceived poorer performance.) And so promoting women in STEM—before it was ever called STEM—became one of her passions. Serving as president of the American Physical Society, she spearheaded and launched initiatives like the Committee on the Status of Women in Physics and the society’s more informal committees of visiting women physicists on campuses around the United States, which have increased the female faculty and student populations on the campuses they visit.

If you have the time, please read Anderson’s piece in its entirety.

One fact that has impressed me greatly is that Dresselhaus kept working into her eighties. I featured a paper she published in an April 27, 2012 posting at the age of 82 and she was described in the MIT write up at the time as a professor, not a professor emerita. I later featured Dresselhaus in a May 31, 2012 posting when she was awarded the Kavli Prize for Nanoscience.

It seems she worked almost to the end. Recently, GE (General Electric) posted a video “What If Scientists Were Celebrities?” starring Mildred Dresselhaus,

H/t Mark Anderson’s obituary Feb. 22, 2017 piece. The video was posted on Feb. 8, 2017.

Goodbye to the Queen of Carbon!

University of Alberta scientists use ultra fast (terahertz) microscopy to see ultra small (electron dynamics)

This is exciting news for Canadian science and the second time there has been a breakthrough development from the province of Alberta within the last five months (see Sept. 21, 2016 posting on quantum teleportation). From a Feb. 21, 2017 news item on ScienceDaily,

For the first time ever, scientists have captured images of terahertz electron dynamics of a semiconductor surface on the atomic scale. The successful experiment indicates a bright future for the new and quickly growing sub-field called terahertz scanning tunneling microscopy (THz-STM), pioneered by the University of Alberta in Canada. THz-STM allows researchers to image electron behaviour at extremely fast timescales and explore how that behaviour changes between different atoms.

From a Feb. 21, 2017 University of Alberta news release on EurekAlert, which originated the news item, expands on the theme,

“We can essentially zoom in to observe very fast processes with atomic precision and over super fast time scales,” says Vedran Jelic, PhD student at the University of Alberta and lead author on the new study. “THz-STM provides us with a new window into the nanoworld, allowing us to explore ultrafast processes on the atomic scale. We’re talking a picosecond, or a millionth millionth of a second. It’s something that’s never been done before.”

Jelic and his collaborators used their scanning tunneling microscope (STM) to capture images of silicon atoms by raster scanning a very sharp tip across the surface and recording the tip height as it follows the atomic corrugations of the surface. While the original STM can measure and manipulate single atoms–for which its creators earned a Nobel Prize in 1986–it does so using wired electronics and is ultimately limited in speed and thus time resolution.

Modern lasers produce very short light pulses that can measure a whole range of ultra-fast processes, but typically over length scales limited by the wavelength of light at hundreds of nanometers. Much effort has been expended to overcome the challenges of combining ultra-fast lasers with ultra-small microscopy. The University of Alberta scientists addressed these challenges by working in a unique terahertz frequency range of the electromagnetic spectrum that allows wireless implementation. Normally the STM needs an applied voltage in order to operate, but Jelic and his collaborators are able to drive their microscope using pulses of light instead. These pulses occur over really fast timescales, which means the microscope is able to see really fast events.

By incorporating the THz-STM into an ultrahigh vacuum chamber, free from any external contamination or vibration, they are able to accurately position their tip and maintain a perfectly clean surface while imaging ultrafast dynamics of atoms on surfaces. Their next step is to collaborate with fellow material scientists and image a variety of new surfaces on the nanoscale that may one day revolutionize the speed and efficiency of current technology, ranging from solar cells to computer processing.

“Terahertz scanning tunneling microscopy is opening the door to an unexplored regime in physics,” concludes Jelic, who is studying in the Ultrafast Nanotools Lab with University of Alberta professor Frank Hegmann, a world expert in ultra-fast terahertz science and nanophysics.

Here’s are links to and citations for the team’s 2013 paper and their latest,

An ultrafast terahertz scanning tunnelling microscope by Tyler L. Cocker, Vedran Jelic, Manisha Gupta, Sean J. Molesky, Jacob A. J. Burgess, Glenda De Los Reyes, Lyubov V. Titova, Ying Y. Tsui, Mark R. Freeman, & Frank A. Hegmann. Nature Photonics 7, 620–625 (2013) doi:10.1038/nphoton.2013.151 Published online 07 July 2013

Ultrafast terahertz control of extreme tunnel currents through single atoms on a silicon surface by Vedran Jelic, Krzysztof Iwaszczuk, Peter H. Nguyen, Christopher Rathje, Graham J. Hornig, Haille M. Sharum, James R. Hoffman, Mark R. Freeman, & Frank A. Hegmann. Nature Physics (2017)  doi:10.1038/nphys4047 Published online 20 February 2017

Both papers are behind a paywall.

Nominations open for Kabiller Prizes in Nanoscience and Nanomedicine ($250,000 for visionary researcher and $10,000 for young investigator)

For a change I can publish something that doesn’t have a deadline in three days or less! Without more ado (from a Feb. 20, 2017 Northwestern University news release by Megan Fellman [h/t Nanowerk’s Feb. 20, 2017 news item]),

Northwestern University’s International Institute for Nanotechnology (IIN) is now accepting nominations for two prestigious international prizes: the $250,000 Kabiller Prize in Nanoscience and Nanomedicine and the $10,000 Kabiller Young Investigator Award in Nanoscience and Nanomedicine.

The deadline for nominations is May 15, 2017. Details are available on the IIN website.

“Our goal is to recognize the outstanding accomplishments in nanoscience and nanomedicine that have the potential to benefit all humankind,” said David G. Kabiller, a Northwestern trustee and alumnus. He is a co-founder of AQR Capital Management, a global investment management firm in Greenwich, Connecticut.

The two prizes, awarded every other year, were established in 2015 through a generous gift from Kabiller. Current Northwestern-affiliated researchers are not eligible for nomination until 2018 for the 2019 prizes.

The Kabiller Prize — the largest monetary award in the world for outstanding achievement in the field of nanomedicine — celebrates researchers who have made the most significant contributions to the field of nanotechnology and its application to medicine and biology.

The Kabiller Young Investigator Award recognizes young emerging researchers who have made recent groundbreaking discoveries with the potential to make a lasting impact in nanoscience and nanomedicine.

“The IIN at Northwestern University is a hub of excellence in the field of nanotechnology,” said Kabiller, chair of the IIN executive council and a graduate of Northwestern’s Weinberg College of Arts and Sciences and Kellogg School of Management. “As such, it is the ideal organization from which to launch these awards recognizing outstanding achievements that have the potential to substantially benefit society.”

Nanoparticles for medical use are typically no larger than 100 nanometers — comparable in size to the molecules in the body. At this scale, the essential properties (e.g., color, melting point, conductivity, etc.) of structures behave uniquely. Researchers are capitalizing on these unique properties in their quest to realize life-changing advances in the diagnosis, treatment and prevention of disease.

“Nanotechnology is one of the key areas of distinction at Northwestern,” said Chad A. Mirkin, IIN director and George B. Rathmann Professor of Chemistry in Weinberg. “We are very grateful for David’s ongoing support and are honored to be stewards of these prestigious awards.”

An international committee of experts in the field will select the winners of the 2017 Kabiller Prize and the 2017 Kabiller Young Investigator Award and announce them in September.

The recipients will be honored at an awards banquet Sept. 27 in Chicago. They also will be recognized at the 2017 IIN Symposium, which will include talks from prestigious speakers, including 2016 Nobel Laureate in Chemistry Ben Feringa, from the University of Groningen, the Netherlands.

2015 recipient of the Kabiller Prize

The winner of the inaugural Kabiller Prize, in 2015, was Joseph DeSimone the Chancellor’s Eminent Professor of Chemistry at the University of North Carolina at Chapel Hill and the William R. Kenan Jr. Distinguished Professor of Chemical Engineering at North Carolina State University and of Chemistry at UNC-Chapel Hill.

DeSimone was honored for his invention of particle replication in non-wetting templates (PRINT) technology that enables the fabrication of precisely defined, shape-specific nanoparticles for advances in disease treatment and prevention. Nanoparticles made with PRINT technology are being used to develop new cancer treatments, inhalable therapeutics for treating pulmonary diseases, such as cystic fibrosis and asthma, and next-generation vaccines for malaria, pneumonia and dengue.

2015 recipient of the Kabiller Young Investigator Award

Warren Chan, professor at the Institute of Biomaterials and Biomedical Engineering at the University of Toronto, was the recipient of the inaugural Kabiller Young Investigator Award, also in 2015. Chan and his research group have developed an infectious disease diagnostic device for a point-of-care use that can differentiate symptoms.

BTW, Warren Chan, winner of the ‘Young Investigator Award’, and/or his work have been featured here a few times, most recently in a Nov. 1, 2016 posting, which is mostly about another award he won but also includes links to some his work including my April 27, 2016 post about the discovery that fewer than 1% of nanoparticle-based drugs reach their destination.

Aliens wreak havoc on our personal electronics

The aliens in question are subatomic particles and the havoc they wreak is low-grade according to the scientist who was presenting on the topic at the AAAS (American Association for the Advancement of Science) 2017 Annual Meeting (Feb. 16 – 20, 2017) in Boston, Massachusetts. From a Feb. 17, 2017 news item on ScienceDaily,

You may not realize it but alien subatomic particles raining down from outer space are wreaking low-grade havoc on your smartphones, computers and other personal electronic devices.

When your computer crashes and you get the dreaded blue screen or your smartphone freezes and you have to go through the time-consuming process of a reset, most likely you blame the manufacturer: Microsoft or Apple or Samsung. In many instances, however, these operational failures may be caused by the impact of electrically charged particles generated by cosmic rays that originate outside the solar system.

“This is a really big problem, but it is mostly invisible to the public,” said Bharat Bhuva, professor of electrical engineering at Vanderbilt University, in a presentation on Friday, Feb. 17 at a session titled “Cloudy with a Chance of Solar Flares: Quantifying the Risk of Space Weather” at the annual meeting of the American Association for the Advancement of Science in Boston.

A Feb. 17, 2017 Vanderbilt University news release (also on EurekAlert), which originated the news item, expands on  the theme,

When cosmic rays traveling at fractions of the speed of light strike the Earth’s atmosphere they create cascades of secondary particles including energetic neutrons, muons, pions and alpha particles. Millions of these particles strike your body each second. Despite their numbers, this subatomic torrent is imperceptible and has no known harmful effects on living organisms. However, a fraction of these particles carry enough energy to interfere with the operation of microelectronic circuitry. When they interact with integrated circuits, they may alter individual bits of data stored in memory. This is called a single-event upset or SEU.

Since it is difficult to know when and where these particles will strike and they do not do any physical damage, the malfunctions they cause are very difficult to characterize. As a result, determining the prevalence of SEUs is not easy or straightforward. “When you have a single bit flip, it could have any number of causes. It could be a software bug or a hardware flaw, for example. The only way you can determine that it is a single-event upset is by eliminating all the other possible causes,” Bhuva explained.

There have been a number of incidents that illustrate how serious the problem can be, Bhuva reported. For example, in 2003 in the town of Schaerbeek, Belgium a bit flip in an electronic voting machine added 4,096 extra votes to one candidate. The error was only detected because it gave the candidate more votes than were possible and it was traced to a single bit flip in the machine’s register. In 2008, the avionics system of a Qantus passenger jet flying from Singapore to Perth appeared to suffer from a single-event upset that caused the autopilot to disengage. As a result, the aircraft dove 690 feet in only 23 seconds, injuring about a third of the passengers seriously enough to cause the aircraft to divert to the nearest airstrip. In addition, there have been a number of unexplained glitches in airline computers – some of which experts feel must have been caused by SEUs – that have resulted in cancellation of hundreds of flights resulting in significant economic losses.

An analysis of SEU failure rates for consumer electronic devices performed by Ritesh Mastipuram and Edwin Wee at Cypress Semiconductor on a previous generation of technology shows how prevalent the problem may be. Their results were published in 2004 in Electronic Design News and provided the following estimates:

  • A simple cell phone with 500 kilobytes of memory should only have one potential error every 28 years.
  • A router farm like those used by Internet providers with only 25 gigabytes of memory may experience one potential networking error that interrupts their operation every 17 hours.
  • A person flying in an airplane at 35,000 feet (where radiation levels are considerably higher than they are at sea level) who is working on a laptop with 500 kilobytes of memory may experience one potential error every five hours.

Bhuva is a member of Vanderbilt’s Radiation Effects Research Group, which was established in 1987 and is the largest academic program in the United States that studies the effects of radiation on electronic systems. The group’s primary focus was on military and space applications. Since 2001, the group has also been analyzing radiation effects on consumer electronics in the terrestrial environment. They have studied this phenomenon in the last eight generations of computer chip technology, including the current generation that uses 3D transistors (known as FinFET) that are only 16 nanometers in size. The 16-nanometer study was funded by a group of top microelectronics companies, including Altera, ARM, AMD, Broadcom, Cisco Systems, Marvell, MediaTek, Renesas, Qualcomm, Synopsys, and TSMC

“The semiconductor manufacturers are very concerned about this problem because it is getting more serious as the size of the transistors in computer chips shrink and the power and capacity of our digital systems increase,” Bhuva said. “In addition, microelectronic circuits are everywhere and our society is becoming increasingly dependent on them.”

To determine the rate of SEUs in 16-nanometer chips, the Vanderbilt researchers took samples of the integrated circuits to the Irradiation of Chips and Electronics (ICE) House at Los Alamos National Laboratory. There they exposed them to a neutron beam and analyzed how many SEUs the chips experienced. Experts measure the failure rate of microelectronic circuits in a unit called a FIT, which stands for failure in time. One FIT is one failure per transistor in one billion hours of operation. That may seem infinitesimal but it adds up extremely quickly with billions of transistors in many of our devices and billions of electronic systems in use today (the number of smartphones alone is in the billions). Most electronic components have failure rates measured in 100’s and 1,000’s of FITs.

chart

Trends in single event upset failure rates at the individual transistor, integrated circuit and system or device level for the three most recent manufacturing technologies. (Bharat Bhuva, Radiation Effects Research Group, Vanderbilt University)

“Our study confirms that this is a serious and growing problem,” said Bhuva.“This did not come as a surprise. Through our research on radiation effects on electronic circuits developed for military and space applications, we have been anticipating such effects on electronic systems operating in the terrestrial environment.”

Although the details of the Vanderbilt studies are proprietary, Bhuva described the general trend that they have found in the last three generations of integrated circuit technology: 28-nanometer, 20-nanometer and 16-nanometer.

As transistor sizes have shrunk, they have required less and less electrical charge to represent a logical bit. So the likelihood that one bit will “flip” from 0 to 1 (or 1 to 0) when struck by an energetic particle has been increasing. This has been partially offset by the fact that as the transistors have gotten smaller they have become smaller targets so the rate at which they are struck has decreased.

More significantly, the current generation of 16-nanometer circuits have a 3D architecture that replaced the previous 2D architecture and has proven to be significantly less susceptible to SEUs. Although this improvement has been offset by the increase in the number of transistors in each chip, the failure rate at the chip level has also dropped slightly. However, the increase in the total number of transistors being used in new electronic systems has meant that the SEU failure rate at the device level has continued to rise.

Unfortunately, it is not practical to simply shield microelectronics from these energetic particles. For example, it would take more than 10 feet of concrete to keep a circuit from being zapped by energetic neutrons. However, there are ways to design computer chips to dramatically reduce their vulnerability.

For cases where reliability is absolutely critical, you can simply design the processors in triplicate and have them vote. Bhuva pointed out: “The probability that SEUs will occur in two of the circuits at the same time is vanishingly small. So if two circuits produce the same result it should be correct.” This is the approach that NASA used to maximize the reliability of spacecraft computer systems.

The good news, Bhuva said, is that the aviation, medical equipment, IT, transportation, communications, financial and power industries are all aware of the problem and are taking steps to address it. “It is only the consumer electronics sector that has been lagging behind in addressing this problem.”

The engineer’s bottom line: “This is a major problem for industry and engineers, but it isn’t something that members of the general public need to worry much about.”

That’s fascinating and I hope the consumer electronics industry catches up with this ‘alien invasion’ issue. Finally, the ‘bit flips’ made me think of the 1956 movie ‘Invasion of the Body Snatchers‘.

Using sugar for a better way to clean nanoparticles from organisms

Researchers at the US National Institute of Standards and Technology (NIST) have found that a laboratory technique used for over 60 years is the best way to date to clean nanoparticles from organisms. From a Jan. 26, 2017 news item on ScienceDaily,

Sometimes old-school methods provide the best ways of studying cutting-edge tech and its effects on the modern world.

Giving a 65-year-old laboratory technique a new role, researchers at the National Institute of Standards and Technology (NIST) have performed the cleanest separation to date of synthetic nanoparticles from a living organism. The new NIST method is expected to significantly improve experiments looking at the potential environmental and health impacts of these manufactured entities. It will allow scientists to more accurately count how many nanoparticles have actually been ingested by organisms exposed to them.

A Jan. 26, 2017 NIST news release (also on EurekAlert), which originated the news item, offers more detail,

The common roundworm Caenorhabditis elegans has been used in recent years as a living model for laboratory studies of how biological and chemical compounds may affect multicellular organisms. These compounds include engineered nanoparticles (ENPs), bits of material between 1 and 100 nanometers (billionths of a meter, or about 1/10,000 the diameter of a red blood cell). Previous research has often focused on quantifying the amount and size of engineered nanoparticles ingested by C. elegans. Measuring the nanoparticles that actually make it into an organism is considered a more relevant indicator of potential toxicity than just the amount of ENPs to which the worms are exposed.

Traditional methods for counting ingested ENPs have produced questionable results. Currently, researchers expose C. elegans to metal ENPs such as silver or gold in solution, then rinse the excess particles away with water followed by centrifugation and freeze-drying. A portion of the “cleaned” sample produced is then typically examined by a technique that determines the amount of metal present, known as inductively coupled plasma mass spectrometry (ICP-MS). It often yields ENP counts in the tens of thousands per worm; however, those numbers always seem too high to NIST researchers working with C. elegans.

“Since ICP-MS will detect all of the nanoparticles associated with the worms, both those ingested and those that remain attached externally, we suspect that the latter is what makes the ‘ENPs’ per-worm counts so high,” said NIST analytical chemist Monique Johnson (link sends e-mail), the lead author on the ACS Nano paper. “Since we only wanted to quantify the ingested ENPs, a more robust and reliable separation method was needed.”

Luckily, the solution to the problem was already in the lab.

Cross section of the roundworm C. elegans

Scanning electron micrograph showing a cross section of the roundworm C. elegans with two ingested engineered nanoparticles (red dots just right of center). Images such as this provided NIST researchers with visual confirmation that nanoparticle consumption actually occurred. Credit: K. Scott/NIST

In the course of culturing C. elegans for ENP-exposure experiments, Johnson and her colleagues had used sucrose density gradient centrifugation, a decades-old and established system for cleanly separating cellular components, to isolate the worms from debris and bacteria. “We wondered if the same process would allow us to perform an organism-from-ENP separation as well, so I designed a study to find out,” Johnson said.

In their experiment, the NIST researchers first exposed separate samples of C. elegans to low and high concentrations of two sizes of gold nanospheres, 30 and 60 nanometers in diameter. The researchers put each of the samples into a centrifuge and removed the supernatant (liquid portion), leaving the worms and ENPs in the remaining pellets. These were centrifuged twice in a salt solution (rather than just water as in previous separation methods), and then centrifuged again, but this time, through a uniquely designed sucrose density gradient.

“From top to bottom, our gradient consisted of a salt solution layer to trap excess ENPs and three increasingly dense layers of sucrose [20, 40 and 50 percent] to isolate the C. elegans,” Johnson explained. “We followed up the gradient with three water rinses and with centrifugations to ensure that only worms with ingested ENPs, and not the sucrose separation medium with any excess ENPs, would make it into the final pellet.”

Analyzing the range of masses in the ultrapurified samples indicated gold levels more in line with what the researchers expected would be found as ingested ENPs. Experimental validation of the NIST separation method’s success came when the worms were examined in detail under a scanning electron microscope (SEM).

“For me, the eureka moment was when I first saw gold ENPs in the cross section images taken from the C. elegans samples that had been processed through the sucrose density gradient,” Johnson said. “I had been dreaming about finding ENPs in the worm’s digestive tract and now they were really there!”

The high-resolution SEM images also provided visual evidence that only ingested ENPs were counted. “No ENPs were attached to the cuticle, the exoskeleton of C. elegans, in any of the sucrose density gradient samples,” Johnson said. “When we examined worms from our control experiments [processed using the traditional no-gradient, water-rinse-only separation method], there were a number of nanospheres found attached to the cuticle.

Now that it has been successfully demonstrated, the NIST researchers plan to refine and further validate their system for evaluating the uptake of ENPs by C. elegans. “Hopefully, our method will become a useful and valuable tool for reducing the measurement variability and sampling bias that can plague environmental nanotoxicology studies,” Johnson said.

They’ve tested this technique on gold nanoparticles, which begs the question, What kinds of nanoparticles can this technique be used for? Metal nanoparticles only or all nanoparticles?

I’m sure the researchers have already asked these questions and started researching the answers. While the rest of us wait, here’s a link to and a citation for the paper about this promising new technique,

Separation, Sizing, and Quantitation of Engineered Nanoparticles in an Organism Model Using Inductively Coupled Plasma Mass Spectrometry and Image Analysis by Monique E. Johnson, Shannon K. Hanna, Antonio R. Montoro Bustos, Christopher M. Sims, Lindsay C. C. Elliott, Akshay Lingayat, Adrian C. Johnston, Babak Nikoobakht, John T. Elliott, R. David Holbrook, Keana C. K. Scott, Karen E. Murphy, Elijah J. Petersen, Lee L. Yu, and Bryant C. Nelson. ACS Nano, 2017, 11 (1), pp 526–540 DOI: 10.1021/acsnano.6b06582 Publication Date (Web): December 16, 2016

Copyright This article not subject to U.S. Copyright. Published 2016 by the American Chemical Society

This paper is behind a paywall.

Nanoparticle fertilizer and dreams of a new ‘Green’ revolution

There were hints even while it was happening that the ‘Green Revolution’ of the 1960s was not all it was touted to be. (For those who haven’t come across the term before, the Green Revolution was a better way to farm, a way that would feed everyone on earth. Or, that was the dream.)

Perhaps this time, they’ll be more successful. From a Jan. 15, 2017 news item on ScienceDaily, which offers a perspective on the ‘Green Revolution’ that differs from mine,

The “Green Revolution” of the ’60s and ’70s has been credited with helping to feed billions around the world, with fertilizers being one of the key drivers spurring the agricultural boom. But in developing countries, the cost of fertilizer remains relatively high and can limit food production. Now researchers report in the journal ACS Nano a simple way to make a benign, more efficient fertilizer that could contribute to a second food revolution.

A Jan. 25, 2017 American Chemical Society news release on EurekAlert, which originated the news item, expands on the theme,

Farmers often use urea, a rich source of nitrogen, as fertilizer. Its flaw, however, is that it breaks down quickly in wet soil and forms ammonia. The ammonia is washed away, creating a major environmental issue as it leads to eutrophication of water ways and ultimately enters the atmosphere as nitrogen dioxide, the main greenhouse gas associated with agriculture. This fast decomposition also limits the amount of nitrogen that can get absorbed by crop roots and requires farmers to apply more fertilizer to boost production. However, in low-income regions where populations continue to grow and the food supply is unstable, the cost of fertilizer can hinder additional applications and cripple crop yields. Nilwala Kottegoda, Veranja Karunaratne, Gehan Amaratunga and colleagues wanted to find a way to slow the breakdown of urea and make one application of fertilizer last longer.

To do this, the researchers developed a simple and scalable method for coating hydroxyapatite (HA) nanoparticles with urea molecules. HA is a mineral found in human and animal tissues and is considered to be environmentally friendly. In water, the hybridization of the HA nanoparticles and urea slowly released nitrogen, 12 times slower than urea by itself. Initial field tests on rice farms showed that the HA-urea nanohybrid lowered the need for fertilizer by one-half. The researchers say their development could help contribute to a new green revolution to help feed the world’s continuously growing population and also improve the environmental sustainability of agriculture.

Here’s a link to and a citation for the paper,

Urea-Hydroxyapatite Nanohybrids for Slow Release of Nitrogen by Nilwala Kottegoda, Chanaka Sandaruwan, Gayan Priyadarshana, Asitha Siriwardhana, Upendra A. Rathnayake, Danushka Madushanka Berugoda Arachchige, Asurusinghe R. Kumarasinghe, Damayanthi Dahanayake, Veranja Karunaratne, and Gehan A. J. Amaratunga. ACS Nano, Article ASAP DOI: 10.1021/acsnano.6b07781 Publication Date (Web): January 25, 2017

Copyright © 2017 American Chemical Society

This paper is open access.

Imprinting fibres at the nanometric scale

Switzerland’s École Polytechnique Fédérale de Lausanne (EPFL) announces a discovery in a Jan. 24, 2017 press release (also on EurkeAlert),

Researchers at EPFL have come up with a way of imprinting nanometric patterns on the inside and outside of polymer fibers. These fibers could prove useful in guiding nerve regeneration and producing optical effects, for example, as well as in eventually creating artificial tissue and smart bandages.

Researchers at EPFL’s Laboratory of Photonic Materials and Fibre Devices, which is run by Fabien Sorin, have come up with a simple and innovative technique for drawing or imprinting complex, nanometric patterns on hollow polymer fibers. Their work has been published in Advanced Functional Materials.

The potential applications of this breakthrough are numerous. The imprinted designs could be used to impart certain optical effects on a fiber or make it water-resistant. They could also guide stem-cell growth in textured fiber channels or be used to break down the fiber at a specific location and point in time in order to release drugs as part of a smart bandage.

Stretching the fiber like molten plastic

To make their nanometric imprints, the researchers began with a technique called thermal drawing, which is the technique used to fabricate optical fibers. Thermal drawing involves engraving or imprinting millimeter-sized patterns on a preform, which is a macroscopic version of the target fiber. The imprinted preform is heated to change its viscosity, stretched like molten plastic into a long, thin fiber and then allowed to harden again. Stretching causes the pattern to shrink while maintaining its proportions and position. Yet this method has a major shortcoming: the pattern does not remain intact below the micrometer scale. “When the fiber is stretched, the surface tension of the structured polymer causes the pattern to deform and even disappear below a certain size, around several microns,” said Sorin.

To avoid this problem, the EPFL researchers came up with the idea of sandwiching the imprinted preform in a sacrificial polymer [emphasis mine]. This polymer protects the pattern during stretching by reducing the surface tension. It is discarded once the stretching is complete. Thanks to this trick, the researchers are able to apply tiny and highly complex patterns to various types of fibers. “We have achieved 300-nanometer patterns, but we could easily make them as small as several tens of nanometers,” said Sorin. This is the first time that such minute and highly complex patterns have been imprinted on flexible fiber on a very large scale. “This technique enables to achieve textures with feature sizes two order of magnitude smaller than previously reported,” said Sorin. “It could be applied to kilometers of fibers at a highly reasonable cost.”

To highlight potential applications of their achievement, the researchers teamed up with the Bertarelli Foundation Chair in Neuroprosthetic Technology, led by Stéphanie Lacour. Working in vitro, they were able to use their fibers to guide neurites from a spinal ganglion (on the spinal nerve). This was an encouraging step toward using these fibers to help nerves regenerate or to create artificial tissue.

This development could have implications in many other fields besides biology. “Fibers that are rendered water-resistant by the pattern could be used to make clothes. Or we could give the fibers special optical effects for design or detection purposes. There is also much to be done with the many new microfluidic systems out there,” said Sorin. The next step for the researchers will be to join forces with other EPFL labs on initiatives such as studying in vivo nerve regeneration. All this, thanks to the wonder of imprinted polymer fibers.

I like the term “sacrificial polymer.”

Here’s a link to and a citation for the paper,

Controlled Sub-Micrometer Hierarchical Textures Engineered in Polymeric Fibers and Microchannels via Thermal Drawing by Tung Nguyen-Dang, Alba C. de Luca, Wei Yan, Yunpeng Qu, Alexis G. Page, Marco Volpi, Tapajyoti Das Gupta, Stéphanie P. Lacour, and Fabien Sorin. Advanced Functional Materials DOI: 10.1002/adfm.201605935 Version of Record online: 24 JAN 2017

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

Internship at the Nanotechnology Industries Association in Brussels (Belgium)

The deadline for your resumé is March 12, 2017. Here are the details from the posting in a Nanotechnology Industries Association (NIA) Feb. 15, 2017 press release (also on the EurActiv job site),

The Nanotechnology Industries Association (NIA) is the leading voice of the nanotechnology industries. On behalf of membership across Europe and around the world, we support the development of nanotech innovations that improve the lives of consumers, preserve our environment and advance our world.

NIA and our Members are committed to the safe, sustainable and beneficial use of nanotechnology and nanomaterials across all industries. We believe in fostering a better understanding of nanotechnology’s important role in society and building a positive global environment for nanotech innovation.

Internship

The NIA has an opportunity for a person to join us from March 2017 and play a core role in our Brussels office plus European travel.  The successful candidate will undertake tasks including:

·       Support for our work within regulatory development for the nanotechnology sector

·       Mapping and networking within the Brussels community associated with nanotechnology

·       Support for NIA communications, including website redevelopment, plus event administration

·       Contribute towards the publication of a nanotechnology report in Q3 2017

·       Support for EC [European Commission] project delivery with the NIA team

·       Secondment to Spanish research centre for a minimum of 1 month as part pf EC project – business and regulatory research activities

We offer

The candidate will have the opportunity to join a motivated small team and gain direct, in depth experience with industry actors in the tasks of delivering nanotechnology innovation within a robust regulatory framework.  The candidate will develop a cv with task leadership

Minimum 6 month placement with possibility to renew for an additional 6 months

The internship is reimbursed – details provided on request

Your profile

·       Minimum degree level within nanotechnology or associated discipline

·       Interested in regulatory development within technology sectors

·       Minimum two languages including fluent written and spoken English

·       Self-motivated and able to perform under pressure of deadlines and events

·       Proficient with Microsoft Office, social media and website maintenance

·       Strong work ethic and willingness to work across the NIA team

Interested?

Please send a detailed cv with covering letter to claire.skentelbery@nanotechia.org by March 12.

I found more information on the NIA website’s Who we are page,

The Nanotechnology Industries Association (NIA) is the sector-independent, responsible voice for the industrial nanotechnologies supply chains.

NIA supports the ongoing innovation and commercialisation of the next generation of technologies and promotes their safe and reliable advancement.

Through NIA’s constant involvement in a number of international organisations, members of the Nanotechnology Industries Association are represented on globally influential fora, such the OECD Working Party on Manufactured Nanomaterials, and the OECD Working Party on Nanotechnology, as well as national and international advisory groups and standardisation committees, such as ISO/TC 229 and CEN/TC 352.

NIA was formed in 2005 in the UK by a group of companies from a variety of industry sectors, including healthcare, chemicals, automotive, materials processing, and consumer products. In September 2008, the NIA opened its international NIA office in Brussels (Belgium), whilst maintaining an independent UK-national representation through NIA-UK based in London. Globally the only industry-focused trade association in nanotechnology, NIA provides a uniquely consolidated perspective derived from a multi-disciplinary membership which operates across a wide range of markets and industrial sectors.

NIA Membership is made up of many varied companies, all of which at different stages of their commercial existence and with a variety of interests in the large range of technologies that derive their benefit from the nanoscale. In NIA, these companies have a representative association to:

  • create a clear single ‘voice’ on behalf of the industries’ views,
  • to interface with governments,
  • to be a source for consultation on regulation and standards,
  • to engage with the public,
  • to communicate the benefits of nanotechnologies,
  • to interact with the media, and
  • to inform the public debate on nanotechnology.

Good luck!

Detonating (exploding) your way to graphene

Physicists at Kansas State University use controlled detonation to make graphene according to a Jan. 25, 2017 news item on Nanowerk (Note: A link has been removed),

Forget chemicals, catalysts and expensive machinery — a Kansas State University team of physicists has discovered a way to mass-produce graphene with three ingredients: hydrocarbon gas, oxygen and a spark plug.

Their method is simple: Fill a chamber with acetylene or ethylene gas and oxygen. Use a vehicle spark plug to create a contained detonation. Collect the graphene that forms afterward.

Chris Sorensen, Cortelyou-Rust university distinguished professor of physics, is the lead inventor of the recently issued patent, “Process for high-yield production of graphene via detonation of carbon-containing material”. Other Kansas State University researchers involved include Arjun Nepal, postdoctoral researcher and instructor of physics, and Gajendra Prasad Singh, former visiting scientist.

For further reading here’s the Jan. 25, 2017 Kansas State University news release, which originated the news item,

“We have discovered a viable process to make graphene,” Sorensen said. “Our process has many positive properties, from the economic feasibility, the possibility for large-scale production and the lack of nasty chemicals. What might be the best property of all is that the energy required to make a gram of graphene through our process is much less than other processes because all it takes is a single spark.”

Graphene is a single atom-thick sheet of hexagonally coordinated carbon atoms, which makes it the world’s thinnest material. Since graphene was isolated in 2004, scientists have found it has valuable physical and electronic properties with many possible applications, such as more efficient rechargeable batteries or better electronics.

For Sorensen’s research team, the serendipitous path to creating graphene started when they were developing and patenting carbon soot aerosol gels. They created the gels by filling a 17-liter aluminum chamber with acetylene gas and oxygen. Using a spark plug, they created a detonation in the chamber. The soot from the detonation formed aerosol gels that looked like “black angel food cake,” Sorensen said.

But after further analysis, the researchers found that the aerosol gel was more than lookalike dark angel food cake — it was graphene.

“We made graphene by serendipity,” Sorensen said. “We didn’t plan on making graphene. We planned on making the aerosol gel and we got lucky.”

But unlike other methods of creating graphene, Sorensen’s method is simple, efficient, low-cost and scalable for industry.

Other methods of creating graphene involve “cooking” the mineral graphite with chemicals — such as sulfuric acid, sodium nitrate, potassium permanganate or hydrazine — for a long time at precisely prescribed temperatures. Additional methods involve heating hydrocarbons to 1,000 degrees Celsius in the presence of catalysts.

Such methods are energy intensive — and even dangerous — and have low yield, while Sorensen and his team’s method makes larger quantities with minimal energy and no dangerous chemicals.

“The real charm of our experiment is that we can produce graphene in the quantity of grams rather than milligrams,” Nepal said.

Now the research team — including Justin Wright, doctoral student in physics, Camp Hill, Pennsylvania — is working to improve the quality of the graphene and scale the laboratory process to an industrial level. They are upgrading some of the equipment to make it easier to get graphene from the chamber seconds — rather than minutes — after the detonation. Accessing the graphene more quickly could improve the quality of the material, Sorensen said.

The patent was issued to the Kansas State University Research Foundation, a nonprofit corporation responsible for managing technology transfer activities at the university.

I wish they’d filmed one of their graphene explosions even if it meant that all we’d get is the sight of a canister and the sound of a boom. Still, they did show a brief spark from the spark plug.