Tag Archives: UCSD

Using acoustic waves to move fluids at the nanoscale

A Nov. 14, 2016 news item on ScienceDaily describes research that could lead to applications useful for ‘lab-on-a-chip’ operations,

A team of mechanical engineers at the University of California San Diego [UCSD] has successfully used acoustic waves to move fluids through small channels at the nanoscale. The breakthrough is a first step toward the manufacturing of small, portable devices that could be used for drug discovery and microrobotics applications. The devices could be integrated in a lab on a chip to sort cells, move liquids, manipulate particles and sense other biological components. For example, it could be used to filter a wide range of particles, such as bacteria, to conduct rapid diagnosis.

A Nov. 14, 2016 UCSD news release (also on EurrekAlert), which originated the news item, provides more information,

The researchers detail their findings in the Nov. 14 issue of Advanced Functional Materials. This is the first time that surface acoustic waves have been used at the nanoscale.

The field of nanofluidics has long struggled with moving fluids within channels that are 1000 times smaller than the width of a hair, said James Friend, a professor and materials science expert at the Jacobs School of Engineering at UC San Diego. Current methods require bulky and expensive equipment as well as high temperatures. Moving fluid out of a channel that’s just a few nanometers high requires pressures of 1 megaPascal, or the equivalent of 10 atmospheres.

Researchers led by Friend had tried to use acoustic waves to move the fluids along at the nano scale for several years. They also wanted to do this with a device that could be manufactured at room temperature.

After a year of experimenting, post-doctoral researcher Morteza Miansari, now at Stanford, was able to build a device made of lithium niobate with nanoscale channels where fluids can be moved by surface acoustic waves. This was made possible by a new method Miansari developed to bond the material to itself at room temperature.  The fabrication method can be easily scaled up, which would lower manufacturing costs. Building one device would cost $1000 but building 100,000 would drive the price down to $1 each.

The device is compatible with biological materials, cells and molecules.

Researchers used acoustic waves with a frequency of 20 megaHertz to manipulate fluids, droplets and particles in nanoslits that are 50 to 250 nanometers tall. To fill the channels, researchers applied the acoustic waves in the same direction as the fluid moving into the channels. To drain the channels, the sound waves were applied in the opposite direction.

By changing the height of the channels, the device could be used to filter a wide range of particles, down to large biomolecules such as siRNA, which would not fit in the slits. Essentially, the acoustic waves would drive fluids containing the particles into these channels. But while the fluid would go through, the particles would be left behind and form a dry mass. This could be used for rapid diagnosis in the field.

Here’s a link to and a citation for the paper,

Acoustic Nanofluidics via Room-Temperature Lithium Niobate Bonding: A Platform for Actuation and Manipulation of Nanoconfined Fluids and Particles by Morteza Miansari and James R. Friend. Advanced Functional Materials DOI: 10.1002/adfm.201602425 Version of Record online: 20 SEP 2016
© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

They do have an animation sequence illustrating the work but it could be considered suggestive and is, weirdly, silent,

 

 

Largest database of elemental crystal surfaces and shapes in the world

A Sept. 13, 2016 news item on Nanowerk describes the database,

Nanoengineers at the University of California San Diego [UCSD], in collaboration with the Materials Project at Lawrence Berkeley National Laboratory (Berkeley Lab), have created the world’s largest database of elemental crystal surfaces and shapes to date. Dubbed Crystalium, this new open-source database can help researchers design new materials for technologies in which surfaces and interfaces play an important role, such as fuel cells, catalytic converters in cars, computer microchips, nanomaterials and solid-state batteries.

rystalium is a new open-source database with the largest collection of elemental crystal surfaces and shapes to date. Image courtesy of the Materials Virtual Lab at UC San Diego

Crystalium is a new open-source database with the largest collection of elemental crystal surfaces and shapes to date. Image courtesy of the Materials Virtual Lab at UC San Diego

A Sept. 13, 2016 UCSD news release reveals more about the goals for the database and the database itself (Note: Links have been removed),

“This work is an important starting point for studying the material surfaces and interfaces, where many novel properties can be found. We’ve developed a new resource that can be used to better understand surface science and find better materials for surface-driven technologies,” said Shyue Ping Ong, a nanoengineering professor at UC San Diego and senior author of the study.

For example, fuel cell performance is partly influenced by the reaction of molecules such as hydrogen and oxygen on the surfaces of metal catalysts. Also, interfaces between the electrodes and electrolyte in a rechargeable lithium-ion battery host a variety of chemical reactions that can limit the battery’s performance. The work in this study is useful for these applications, said Ong, who is also part of a larger effort by the UC San Diego Sustainable Power and Energy Center to design better battery materials.

“Researchers can use this database to figure out which elements or materials are more likely to be viable catalysts for processes like ammonia production or making hydrogen gas from water,” said Richard Tran, a nanoengineering PhD student in Ong’s Materials Virtual Lab and the study’s first author. Tran did this work while he was an undergraduate at UC San Diego.

The work, published Sept. 13 [2016] in the journal Scientific Data, provides the surface energies and equilibrium crystal shapes of more than 100 polymorphs of 72 elements in the periodic table. Surface energy describes the stability of a surface; it is a measure of the excess energy of atoms on the surface relative to those in the bulk material. Knowing surface energies is useful for designing materials that perform their functions primarily on their surfaces, like catalysts and nanoparticles.

The surface energies of some elements in their crystal form have been measured experimentally, but this is not a trivial task. It involves melting the crystal, measuring the resulting liquid’s surface tension at the melting temperature, then extrapolating that value back to room temperature. This process also requires that the sample have a clean surface, which is challenging because other atoms and molecules (like oxygen and water) can easily adsorb to the surface and modify the surface energy.

Surface energies obtained by this method are averaged values that lack the facet-specific resolution that is necessary for design, Ong said. “This is one of the areas where the ’virtual laboratory’ can create the most value—by allowing us to precisely control the models and conditions in a way that is extremely difficult to do in experiments.”

Also, the surface energy is not just a single number for each crystal because it depends on the crystal’s orientation. “A crystal is a regular arrangement of atoms. When you cut a crystal in different places and at different angles, you expose different facets with unique arrangements of atoms,” explained Ong, who teaches the course NANO106 – Crystallography of Materials at UC San Diego.

To carry out this ambitious project, Ong and his team developed highly sophisticated automated workflows to calculate surface energies from first principles. These workflows are built on the popular open-source Python Materials Genomics library and FireWorks workflow codes of the Materials Project, which were co-authored by Ong.

“The techniques for calculating surface energies have been known for decades. The major accomplishment is the codification of how to generate surface models and run these complex calculations in a robust and efficient manner,” Tran said. The surface model generation software code developed by the team has already been extended by others to study substrates and interfaces. Powerful supercomputers at the San Diego Supercomputer Center and the National Energy Research Scientific Computing Center at the Lawrence Berkeley National Lab were used for the calculations.

Ong’s team worked with researchers from the Berkeley Lab’s Materials Project to develop and construct Crystalium’s website. Co-founded and directed by Berkeley Lab scientist Kristin Persson, the Materials Project is a Google-like database of material properties calculated by supercomputers.

“The Materials Project was designed to be an open and accessible tool for scientists and engineers to accelerate materials innovation,” Persson said. “In five years, it has attracted more than 20,000 users working on everything from batteries to photovoltaics to thermoelectrics, and it’s extremely gratifying to see scientists like Ong providing lots of high quality computed data of high interest and making it freely available and easily accessible to the public.”

The researchers pointed out that their database is the most extensive collection of calculated surface energies for elemental crystalline solids to date. Compared to previous compilations, Crystalium contains surface energies for far more elements, including both metals and non-metals, and for more facets in each crystal. The elements that have been excluded from their calculations are gases and radioactive elements. Notably, Ong and his team have validated their calculated surface energies with those from experiments, and the values are in excellent agreement.

Moving forward, the team will work on expanding the scope of the database beyond single elements to multi-element compounds like alloys, which are made of two or more different metals, and binary oxides, which are made of oxygen and one other element. Efforts are also underway to study the effect of common adsorbates, such as hydrogen, on surface energies, which is key to understanding the stability of surfaces in aqueous media.

“As we continue to build this database, we hope that the research community will see it as a useful resource for the rational design of target surface or interfacial properties,” said Ong,

Here’s a link to and a citation for the paper,

Surface energies of elemental crystals by Richard Tran, Zihan Xu, Balachandran Radhakrishnan, Donald Winston, Wenhao Sun, Kristin A. Persson, & Shyue Ping Ong.  Scientific Data 3, Article number: 160080 (2016)  doi:10.1038/sdata.2016.80 Published online: 13 September 2016

This paper is open access.

Here, too, is a link to Crystalium.

X-ray of a butterfly’s wing reveals structural colour secrets

Over millions of years, butterflies evolved sophisticated cellular mechanisms to produce brightly colored wings for mating and camouflage. iStock photo by Borut Trdina

Over millions of years, butterflies evolved sophisticated cellular mechanisms to produce brightly colored wings for mating and camouflage. iStock photo by Borut Trdina

A June 13, 2016 news item on Nanowerk announced a discovery about the physics of colour,

A team of physicists that visualized the internal nanostructure of an intact butterfly wing has discovered two physical attributes that make those structures so bright and colorful.

“Over millions of years, butterflies have evolved sophisticated cellular mechanisms to grow brightly colored structures, normally for the purpose of camouflage as well as mating,” says Oleg Shpyrko, an associate professor of physics at UC San Diego, who headed the research effort. “It’s been known for a century that the wings of these beautiful creatures contain what are called photonic crystals, which can reflect light of only a particular color.”

But exactly how these complex optical structures are assembled in a way that make them so bright and colorful remained a mystery.

A June 10, 2016 University of California at San Diego news release (also on EurekAlert), which originated the news item, describes how the mystery was solved,

In an effort to answer that question, Shpyrko and Andrej Singer, a postdoctoral researcher in his laboratory, went to the Advanced Photon Source at the Argonne National Laboratory in Illinois, which produces coherent x-rays very much like an optical laser

By combining these laser-like x-rays with an advanced imaging technique called “ptychography,” the UC San Diego physicists, in collaboration with physicists at Yale University and the Argonne National Laboratory, developed a new microscopy method to visualize the internal nanostructure of the tiny “scales” that make up the butterfly wing without the need to cut them apart.

The researchers report in the current issue of the journal Science Advances that their examination of the scales of the Emperor of India butterfly, Teinopalpus imperialis, revealed that these tiny wing structures consist of “highly oriented” photonic crystals.

“This explains why the scales appear to have a single color,” says Singer, the first author of the paper. “We also found through careful study of the high-resolution micrographs tiny crystal irregularities that may enhance light-scattering properties, making the butterfly wings appear brighter.”

These crystal dislocations or defects occur, the researchers say, when an otherwise perfectly periodic crystal lattice slips by one row of atoms. “Defects may have a negative connotation, but they are actually very useful in improving materials,” explains Singer. “For example, blacksmiths have learned over centuries how to purposefully induce defects into metals to make them stronger. ‘Defect engineering’ is also a focus for many research teams and companies working in the semiconductor field. In photonic crystals, defects can enhance light-scattering properties through an effect called light localization.”

“In the evolution of butterfly wings,” he adds, “it appears nature learned how to engineer these defects on purpose.”

The researchers have made this image illustrating their work available,

Scales from the wings of the Emperor of India butterfly consist of “highly oriented” photonic crystals. Photos by Andrej Singer, UC San Diego

Scales from the wings of the Emperor of India butterfly consist of “highly oriented” photonic crystals. Photos by Andrej Singer, UC San Diego

Here’s a link to and a citation for the paper,

Domain morphology, boundaries, and topological defects in biophotonic gyroid nanostructures of butterfly wing scales by Andrej Singer, Leandra Boucheron, Sebastian H. Dietze, Katharine E. Jensen, David Vine, Ian McNulty, Eric R. Dufresne, Richard O. Prum, Simon G. J. Mochrie, and Oleg G. Shpyrko. Science Advances  10 Jun 2016: Vol. 2, no. 6, e1600149 DOI: 10.1126/sciadv.1600149

This paper is open access.

How tarantulas get blue

Cobalt Blue Tarantula [downloaded from http://www.tarantulaguide.com/tarantula-pictures/cobalt-blue-tarantula-4/]

Cobalt Blue Tarantula [downloaded from http://www.tarantulaguide.com/tarantula-pictures/cobalt-blue-tarantula-4/]

That’s a stunning shade of blue on the tarantula and now scientists can explain why these and other ‘spiders’ are sometimes blue, from a Nov. 30, 2015 news item on ScienceDaily,

Scientists recently discovered that tiny, multilayer nanostructures inside a tarantula’s hair are responsible for its vibrant color. The science behind how these hair-raising spiders developed their blue hue may lead to new ways to improve computer or TV screens using biomimicry.

A Nov. 30, 2015 University of California at San Diego news release by Annie Reisewitz, which originated the news item, explains more,

Researchers from Scripps Institution of Oceanography at UC San Diego and University of Akron found that many species of tarantulas have independently evolved the ability to grow blue hair using nanostructures in their exoskeletons, rather than pigments. The study, published in the Nov. 27 issue of Science Advances, is the first to show that individual species evolved separately to make the same shade of a non-iridescent color, one that doesn’t change when viewed at different angles.

Since tarantulas’ blue color is not iridescent, the researchers suggest that the same process can be applied to make pigment replacements that never fade and help reduce glare on wide-angle viewing systems in phones, televisions, and other devices.

“There is strikingly little variety in the shade of blue produced by different species of tarantulas,” said Dimitri Deheyn, a Scripps Oceanography researcher studying marine and terrestrial biomimicry and coauthor of the study. “We see that different types of nanostructures evolved to produce the same ‘blue’ across distant branches of the tarantula family tree in a way that uniquely illustrates natural selection through convergent evolution.”

Unlike butterflies and birds that use nanostructures to produce vibrant colors to attract the attention of females during display courtship, tarantulas have poor vision and likely evolved this trait for a different reason. While the researchers still don’t understand the benefits tarantulas receive from being blue, they are now investigating how to reproduce the tarantula nanostructures in the laboratory.

The tarantula study is just one example of the biomimicry research being conducted in the Deheyn lab at Scripps Oceanography. In a cover article in the Nov. 10 of Chemistry of Materials, Deheyn and colleagues published new findings on the nanostructure of ragweed pollen, which shows interesting optical properties and has possible biomimicry applications. By transforming the pollen into a magnetic material with a specialized coating to give it more or less reflectance, the particle could adhere in a similar way that pollen does in nature while being able to adjust its visibility. The researchers suggest this design could be applied to create a new type of tagging or tracking technology.

Using a high-powered microscope, known as a hyperspectral imaging system, Deheyn is able to map a species’ color field pixel by pixel, which correlates to the shape and geometry of the nanostructures and gives them their unique color.

“This unique technology allows us to associate structure with optical property,” said Deheyn. “Our inspiration is to learn about how nature evolves unique traits that we could mimic to benefit future technologies.”

Here’s a link to and a citation for the paper,

Blue reflectance in tarantulas is evolutionarily conserved despite nanostructural diversity by Bor-Kai Hsiung, Dimitri D. Deheyn, Matthew D. Shawkey, and Todd A. Blackledge. Science Advances  27 Nov 2015: Vol. 1, no. 10, e1500709 DOI: 10.1126/sciadv.1500709

This paper appears to be open access.

Clearing nanoparticles from blood using electric fields

With all the excitement about using nanoparticles to deliver medication (drugs), there hasn’t been much mention of removing these nanoparticles once they’ve served their purpose. Apparently, there is a new technique which makes removal much easier.

 Caption An artist's representation of the nanoparticle removal chip developed by researchers in Professor Michael Heller's lab at the UC San Diego Jacobs School of Engineering. An oscillating electric field (purple arcs) separates drug-delivery nanoparticles (yellow spheres) from blood (red spheres) and pulls them towards rings surrounding the chip's electrodes. The image is featured as the inside cover of the Oct. 14 issue of the journal Small. Credit: Stuart Ibsen and Steven Ibsen.

Caption: An artist’s representation of the nanoparticle removal chip developed by researchers in Professor Michael Heller’s lab at the UC San Diego Jacobs School of Engineering. An oscillating electric field (purple arcs) separates drug-delivery nanoparticles (yellow spheres) from blood (red spheres) and pulls them towards rings surrounding the chip’s electrodes. The image is featured as the inside cover of the Oct. 14 issue of the journal Small. Credit: Stuart Ibsen and Steven Ibsen.

Engineers at the University of California at San Diego (UCSD) provide a description of the new technology and the problems with current techniques for removing nanoparticles in a Nov. 20, 2015 UCSD news release (also on EurekAlert but dated Nov. 23, 2015),

Engineers at the University of California, San Diego developed a new technology that uses an oscillating electric field to easily and quickly isolate drug-delivery nanoparticles from blood. The technology could serve as a general tool to separate and recover nanoparticles from other complex fluids for medical, environmental, and industrial applications.

Nanoparticles, which are generally one thousand times smaller than the width of a human hair, are difficult to separate from plasma, the liquid component of blood, due to their small size and low density. Traditional methods to remove nanoparticles from plasma samples typically involve diluting the plasma, adding a high concentration sugar solution to the plasma and spinning it in a centrifuge, or attaching a targeting agent to the surface of the nanoparticles. These methods either alter the normal behavior of the nanoparticles or cannot be applied to some of the most common nanoparticle types.

“This is the first example of isolating a wide range of nanoparticles out of plasma with a minimum amount of manipulation,” said Stuart Ibsen, a postdoctoral fellow in the Department of NanoEngineering at UC San Diego and first author of the study published October in the journal Small. “We’ve designed a very versatile technique that can be used to recover nanoparticles in a lot of different processes.”

This new nanoparticle separation technology will enable researchers — particularly those who design and study drug-delivery nanoparticles for disease therapies — to better monitor what happens to nanoparticles circulating in a patient’s bloodstream. One of the questions that researchers face is how blood proteins bind to the surfaces of drug-delivery nanoparticles and make them less effective. Researchers could also use this technology in the clinic to determine if the blood chemistry of a particular patient is compatible with the surfaces of certain drug-delivery nanoparticles.

“We were interested in a fast and easy way to take these nanoparticles out of plasma so we could find out what’s going on at their surfaces and redesign them to work more effectively in blood,” said Michael Heller, a nanoengineering professor at the UC San Diego Jacobs School of Engineering and senior author of the study.

The device used to isolate the drug-delivery nanoparticles was a dime-sized electric chip manufactured by La Jolla-based Biological Dynamics, which licensed the original technology from UC San Diego. The chip contains hundreds of tiny electrodes that generate a rapidly oscillating electric field that selectively pulls the nanoparticles out of a plasma sample. Researchers inserted a drop of plasma spiked with nanoparticles into the electric chip and demonstrated nanoparticle recovery within 7 minutes. The technology worked on different types of drug-delivery nanoparticles that are typically studied in various labs.

The breakthrough in the technology relies on designing a chip that can work in the high salt concentration of blood plasma. The chip’s ability to pull the nanoparticles out of plasma is based on differences in the material properties between the nanoparticles and plasma components. When the chip’s electrodes apply an oscillating electric field, the positive and negative charges inside the nanoparticles reorient themselves at a different speed than the charges in the surrounding plasma. This momentary imbalance in the charges creates an attractive force between the nanoparticles and the electrodes. As the electric field oscillates, the nanoparticles are continually pulled towards the electrodes, leaving the rest of the plasma behind. Also, the electric field is designed to oscillate at just the right frequency: 15,000 times per second.

“It’s amazing that this method works without any modifications to the plasma samples or to the nanoparticles,” said Ibsen.

Here’s a link to and a citation for the paper,

Recovery of Drug Delivery Nanoparticles from Human Plasma Using an Electrokinetic Platform Technology by Stuart Ibsen, Avery Sonnenberg, Carolyn Schutt, Rajesh Mukthavaram, Yasan Yeh, Inanc Ortac, Sareh Manouchehri, Santosh Kesari, Sadik Esener, and Michael J. Heller. Small Volume 11, Issue 38, pages 5088–5096, October 14, 2015 DOI: 10.1002/smll.201500892 Article first published online: 14 AUG 2015

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

That’s quite a gap between the publication date and promotion of the study. Presumably this is the second time around for the promotion efforts. In any event, the paper is behind a paywall.

Cleaning up carbon dioxide pollution in the oceans and elsewhere

I have a mini roundup of items (3) concerning nanotechnology and environmental applications with a special focus on carbon materials.

Carbon-capturing motors

First up, there’s a Sept. 23, 2015 news item on ScienceDaily which describes work with tiny carbon-capturing motors,

Machines that are much smaller than the width of a human hair could one day help clean up carbon dioxide pollution in the oceans. Nanoengineers at the University of California, San Diego have designed enzyme-functionalized micromotors that rapidly zoom around in water, remove carbon dioxide and convert it into a usable solid form.

The proof of concept study represents a promising route to mitigate the buildup of carbon dioxide, a major greenhouse gas in the environment, said researchers. …

A Sept 22, 2015 University of California at San Diego (UCSD) news release by Liezel Labios, which originated the news release, provides more details about the scientists’ hopes and the technology,

“We’re excited about the possibility of using these micromotors to combat ocean acidification and global warming,” said Virendra V. Singh, a postdoctoral scientist in Wang’s [nanoengineering professor and chair Joseph Wang] research group and a co-first author of this study.

In their experiments, nanoengineers demonstrated that the micromotors rapidly decarbonated water solutions that were saturated with carbon dioxide. Within five minutes, the micromotors removed 90 percent of the carbon dioxide from a solution of deionized water. The micromotors were just as effective in a sea water solution and removed 88 percent of the carbon dioxide in the same timeframe.

“In the future, we could potentially use these micromotors as part of a water treatment system, like a water decarbonation plant,” said Kevin Kaufmann, an undergraduate researcher in Wang’s lab and a co-author of the study.

The micromotors are essentially six-micrometer-long tubes that help rapidly convert carbon dioxide into calcium carbonate, a solid mineral found in eggshells, the shells of various marine organisms, calcium supplements and cement. The micromotors have an outer polymer surface that holds the enzyme carbonic anhydrase, which speeds up the reaction between carbon dioxide and water to form bicarbonate. Calcium chloride, which is added to the water solutions, helps convert bicarbonate to calcium carbonate.

The fast and continuous motion of the micromotors in solution makes the micromotors extremely efficient at removing carbon dioxide from water, said researchers. The team explained that the micromotors’ autonomous movement induces efficient solution mixing, leading to faster carbon dioxide conversion. To fuel the micromotors in water, researchers added hydrogen peroxide, which reacts with the inner platinum surface of the micromotors to generate a stream of oxygen gas bubbles that propel the micromotors around. When released in water solutions containing as little as two to four percent hydrogen peroxide, the micromotors reached speeds of more than 100 micrometers per second.

However, the use of hydrogen peroxide as the micromotor fuel is a drawback because it is an extra additive and requires the use of expensive platinum materials to build the micromotors. As a next step, researchers are planning to make carbon-capturing micromotors that can be propelled by water.

“If the micromotors can use the environment as fuel, they will be more scalable, environmentally friendly and less expensive,” said Kaufmann.

The researchers have provided an image which illustrates the carbon-capturing motors in action,

Nanoengineers have invented tiny tube-shaped micromotors that zoom around in water and efficiently remove carbon dioxide. The surfaces of the micromotors are functionalized with the enzyme carbonic anhydrase, which enables the motors to help rapidly convert carbon dioxide to calcium carbonate. Image credit: Laboratory for Nanobioelectronics, UC San Diego Jacobs School of Engineering.

Nanoengineers have invented tiny tube-shaped micromotors that zoom around in water and efficiently remove carbon dioxide. The surfaces of the micromotors are functionalized with the enzyme carbonic anhydrase, which enables the motors to help rapidly convert carbon dioxide to calcium carbonate. Image credit: Laboratory for Nanobioelectronics, UC San Diego Jacobs School of Engineering.

Here’s a link to and a citation for the paper,

Micromotor-Based Biomimetic Carbon Dioxide Sequestration: Towards Mobile Microscrubbers by Murat Uygun, Virendra V. Singh, Kevin Kaufmann, Deniz A. Uygun, Severina D. S. de Oliveira, and oseph Wang. Angewandte Chemie DOI: 10.1002/ange.201505155 Article first published online: 4 SEP 2015

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This article is behind a paywall.

Carbon nanotubes for carbon dioxide capture (carbon capture)

In a Sept. 22, 2015 posting by Dexter Johnson on his Nanoclast blog (located on the IEEE [Institute for Electrical and Electronics Engineers] website) describes research where carbon nanotubes are being used for carbon capture,

Now researchers at Technische Universität Darmstadt in Germany and the Indian Institute of Technology Kanpur have found that they can tailor the gas adsorption properties of vertically aligned carbon nanotubes (VACNTs) by altering their thickness, height, and the distance between them.

“These parameters are fundamental for ‘tuning’ the hierarchical pore structure of the VACNTs,” explained Mahshid Rahimi and Deepu Babu, doctoral students at the Technische Universität Darmstadt who were the paper’s lead authors, in a press release. “This hierarchy effect is a crucial factor for getting high-adsorption capacities as well as mass transport into the nanostructure. Surprisingly, from theory and by experiment, we found that the distance between nanotubes plays a much larger role in gas adsorption than the tube diameter does.”

Dexter provides a good and brief summary of the research.

Here’s a link to and a citation for the paper,

Double-walled carbon nanotube array for CO2 and SO2 adsorption by Mahshid Rahimi, Deepu J. Babu, Jayant K. Singh, Yong-Biao Yang, Jörg J. Schneider, and Florian Müller-Plathe. J. Chem. Phys. 143, 124701 (2015); http://dx.doi.org/10.1063/1.4929609

This paper is open access.

The market for nanotechnology-enabled environmental applications

Coincident with stumbling across these two possible capture solutions, I found this Sept. 23, 2015 BCC Research news release,

A groundswell of global support for developing nanotechnology as a pollution remediation technique will continue for the foreseeable future. BCC Research reveals in its new report that this key driver, along with increasing worldwide concerns over removing pollutants and developing alternative energy sources, will drive growth in the nanotechnology environmental applications market.

The global nanotechnology market in environmental applications is expected to reach $25.7 billion by 2015 and $41.8 billion by 2020, conforming to a five-year (2015-2020) compound annual growth rate (CAGR) of 10.2%. Air remediation as a segment will reach $10.2 billion and $16.7 billion in 2015 and 2020, respectively, reflecting a five-year CAGR of 10.3%. Water remediation as a segment will grow at a five-year CAGR of 12.4% to reach $10.6 billion in 2020.

As nanoparticles push the limits and capabilities of technology, new and better techniques for pollution control are emerging. Presently, nanotechnology’s greatest potential lies in air pollution remediation.

“Nano filters could be applied to automobile tailpipes and factory smokestacks to separate out contaminants and prevent them from entering the atmosphere. In addition, nano sensors have been developed to sense toxic gas leaks at extremely low concentrations,” says BCC research analyst Aneesh Kumar. “Overall, there is a multitude of promising environmental applications for nanotechnology, with the main focus area on energy and water technologies.”

You can find links to the report, TOC (table of contents), and report overview on the BCC Research Nanotechnology in Environmental Applications: The Global Market report webpage.

Monitoring your saliva via mouth guard and smart phone

I first came across the notion that saliva instead of blood and urine could be used to assess and monitor health in a presentation abstract for the 2004 American Association for the Advancement of Science (AAAS) annual meeting held in Seattle, Washington (as per my Feb. 15, 2011 posting). There have been a few ‘saliva’ health monitoring projects mentioned here over the years but this proof-of-concept version seems like it has the potential to get to the marketplace. An August 31, 2015 news item on Nanowerk features a ‘saliva’ health monitoring project from the University of California at San Diego (UCSD),

Engineers at the University of California, San Diego, have developed a mouth guard that can monitor health markers, such as lactate, cortisol and uric acid, in saliva and transmit the information wirelessly to a smart phone, laptop or tablet.
The technology, which is at a proof-of-concept stage, could be used to monitor patients continuously without invasive procedures, as well as to monitor athletes’ performance or stress levels in soldiers and pilots. In this study, engineers focused on uric acid, which is a marker related to diabetes and to gout. Currently, the only way to monitor the levels of uric acid in a patient is to draw blood.

An August 31, 2015 UCSD news release (also on EurekAlert), which originated the news item, describes the research and the mouth guard in more detail,

In this study, researchers showed that the mouth guard sensor could offer an easy and reliable way to monitor uric acid levels. The mouth guard has been tested with human saliva but hasn’t been tested in a person’s mouth.

Researchers collected saliva samples from healthy volunteers and spread them on the sensor, which produced readings in a normal range. Next, they collected saliva from a patient who suffers from hyperuricemia, a condition characterized by an excess of uric acid in the blood. The sensor detected more than four times as much uric acid in the patient’s saliva than in the healthy volunteers.

The patient also took Allopurinol, which had been prescribed by a physician to treat their condition. Researchers were able to document a drop in the levels of uric acid over four or five days as the medication took effect. In the past, the patient would have needed blood draws to monitor levels and relied instead on symptoms to start and stop his medication.

Fabrication and design

Wang’s team created a screen-printed sensor using silver, Prussian blue ink and uricase, an enzyme that reacts with uric acid. Because saliva is extremely complex and contains many different biomarkers, researchers needed to make sure that the sensors only reacted with the uric acid. Nanoengineers set up the chemical equivalent of a two-step authentication system. The first step is a series of chemical keyholes, which ensures that only the smallest biochemicals get inside the sensor. The second step is a layer of uricase trapped in polymers, which reacts selectively with uric acid. The reaction between acid and enzyme generates hydrogen peroxide, which is detected by the Prussian blue ink.  That information is then transmitted to an electronic board as electrical signals via metallic strips that are part of the sensor.

The electronic board, developed by Mercier’s team, uses small chips that sense the output of the sensors, digitizes this output and then wirelessly transmits data to a smart phone, tablet or laptop. The entire electronic board occupies an area slightly larger than a U.S. penny.

Next steps

The next step is to embed all the electronics inside the mouth guard so that it can actually be worn. Researchers also will have to test the materials used for the sensors and electronics to make sure that they are indeed completely biocompatible. The next iteration of the mouth guard is about a year out, Mercier estimates.

“All the components are there,” he said. “It’s just a matter of refining the device and working on its stability.”

Wang and Mercier lead the Center for Wearable Sensors at UC San Diego, which has made a series of breakthroughs in the field, including temporary tattoos that monitor glucose, ultra-miniaturized energy-processing chips and pens filled with high-tech inks for Do It Yourself chemical sensors.

Here’s a link to and a citation for the paper,

Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics by Jayoung Kim, Somayeh Imani, William R. de Araujo, Julian Warchall, Gabriela Valdés-Ramírez, Thiago R.L.C. Paixão, Patrick P. Mercier, & Joseph Wang. Biosensors and Bioelectronics Volume 74, 15 December 2015, Pages 1061–1068 doi:10.1016/j.bios.2015.07.039

This paper is behind a paywall.

Here’s an image of UCSD’s proposed mouth guard,

The mouth guard sensor offers an easy and reliable way to monitor uric acid levels in human saliva. Credit: Jacobs School of Engineering, UC San Diego

The mouth guard sensor offers an easy and reliable way to monitor uric acid levels in human saliva. Credit: Jacobs School of Engineering, UC San Diego

ATTACH for smart clothes and personalized heating and cooling

If this research into clothing that can heat or warm you as needed sounds familiar, it is. A team out of Stanford University (US) reported on research they conducted (pun noted) using special cloth coated with metallic nanowires to achieve personalized heating and cooling (my Jan. 9, 2015 post).

Now there is a second US team, also based in southern California, working on personalized heating and cooling. Researchers at the University of California at San Diego (UCSD) have received a $2.6M grant to pursue this goal, from a June 1, 2015 news item on Nanowerk,

Imagine a fabric that will keep your body at a comfortable temperature—regardless of how hot or cold it actually is. That’s the goal of an engineering project at the University of California, San Diego, funded with a $2.6M grant from the U.S. Department of Energy’s Advanced Research Projects Agency – Energy (ARPA-E). Wearing this smart fabric could potentially reduce heating and air conditioning bills for buildings and homes.

The project, named ATTACH (Adaptive Textiles Technology with Active Cooling and Heating), is led by Joseph Wang, distinguished professor of nanoengineering at UC San Diego.

By regulating the temperature around an individual person, rather than a large room, the smart fabric could potentially cut the energy use of buildings and homes by at least 15 percent, Wang noted.

“In cases where there are only one or two people in a large room, it’s not cost-effective to heat or cool the entire room,” said Wang. “If you can do it locally, like you can in a car by heating just the car seat instead of the entire car, then you can save a lot of energy.”

A June 1, 2015 UCSD news release (also on EurekAlert), which originated the news item, describes the team’s hopes and dreams for the technology and provides some biographical information (Note: Some links have been removed),

The smart fabric will be designed to regulate the temperature of the wearer’s skin–keeping it at 93° F–by adapting to temperature changes in the room. When the room gets cooler, the fabric will become thicker. When the room gets hotter, the fabric will become thinner. To accomplish this feat, the researchers will insert polymers that expand in the cold and shrink in the heat inside the smart fabric.

“Regardless if the surrounding temperature increases or decreases, the user will still feel the same without having to adjust the thermostat,” said Wang.

“93° F is the average comfortable skin temperature for most people,” added Renkun Chen, assistant professor of mechanical and aerospace engineering at UC San Diego, and one of the collaborators on this project.

Chen’s contribution to ATTACH is to develop supplemental heating and cooling devices, called thermoelectrics, that are printable and will be incorporated into specific spots of the smart fabric. The thermoelectrics will regulate the temperature on “hot spots”–such as areas on the back and underneath the feet–that tend to get hotter than other parts of the body when a person is active.

“This is like a personalized air-conditioner and heater,” said Chen.

Saving energy

“With the smart fabric, you won’t need to heat the room as much in the winter, and you won’t need to cool the room down as much in the summer. That means less energy is consumed. Plus, you will still feel comfortable within a wider temperature range,” said Chen.

The researchers are also designing the smart fabric to power itself. The fabric will include rechargeable batteries, which will power the thermoelectrics, as well as biofuel cells that can harvest electrical power from human sweat. Plus, all of these parts–batteries, thermoelectrics and biofuel cells–will be printed using the technology developed in Wang’s lab to make printable wearable devices. These parts will also be thin, stretchable and flexible to ensure that the smart fabric is not bulky or heavy.

“We are aiming to make the smart clothing look and feel as much like the clothes that people regularly wear. It will be washable, stretchable, bendable and lightweight. We also hope to make it look attractive and fashionable to wear,” said Wang.

In terms of price, the team has not yet concluded how much the smart clothing will cost. This will depend on the scale of production, but the printing technology in Wang’s lab will offer a low-cost method to produce the parts. Keeping the costs down is a major goal, the researchers said.

The research team

Professor Joseph Wang, Department of NanoEngineering

Wang, the lead principal investigator of ATTACH, has pioneered the development of wearable printable devices, such as electrochemical sensors and temporary tattoo-based biofuel cells. He is the chair of the nanoengineering department and the director for the Center for Wearable Sensors at UC San Diego. His extensive expertise in printable, stretchable and wearable devices will be used here to make the proposed flexible biofuel cells, batteries and thermoelectrics.

Assistant Professor Renkun Chen, Department of Mechanical and Aerospace Engineering

Chen specializes in heat transfer and thermoelectrics. His research group works on physics, materials and devices related to thermal energy transport, conversion and management. His specialty in these areas will be used to develop the thermal models and the thermoelectric devices.

Associate Professor Shirley Meng, Department of NanoEngineering

Meng’s research focuses on energy storage and conversion, particularly on battery cell design and testing. At UC San Diego, she established the Laboratory for Energy Storage and Conversion and is the inaugural director for the Sustainable Power and Energy Center. Meng will develop the rechargeable batteries and will work on power integration throughout the smart fabric system.

Professor Sungho Jin, Department of Mechanical and Aerospace Engineering

Jin specializes in functional materials for applications in nanotechnology, magnetism, energy and biomedicine. He will design the self-responsive polymers that change in thickness based on changes in the surrounding temperature.

Dr. Joshua Windmiller, CEO of Electrozyme LLC

Windmiller, former Ph.D. student and postdoc in Wang’s nanoengineering lab, is an expert in printed biosensors, bioelectronics and biofuel cells. He co-founded Electrozyme LLC, a startup devoted to the development of novel biosensors for application in the personal wellness and healthcare domains. Electrozyme will serve as the industrial partner for ATTACH and will lead the efforts to test the smart fabric prototype and bring the technology into the market.

You can find out more about Electrozyme here.

Iridescent bird feathers inspire synthetic melanin for structural color/colour

I’m hoping one day they’ll be able to create textiles that rely on structure rather than pigment or dye for colour so my clothing will no longer fade with repeated washings and exposure to sunlight. There was one such textile, morphotex (named for the Blue Morpho butterfly, no longer produced by Japanese manufacturer Teijin but you can see a photo of the fabric which was fashioned into a dress by Australian designer Donna Sgro in my July 19, 2010 posting.

This particular project at the University of California at San Diego (UCSD), sadly, is not textile-oriented, but has resulted in a film according to a May 13, 2015 news item on ScienceDaily,

Inspired by the way iridescent bird feathers play with light, scientists have created thin films of material in a wide range of pure colors — from red to green — with hues determined by physical structure rather than pigments.

Structural color arises from the interaction of light with materials that have patterns on a minute scale, which bend and reflect light to amplify some wavelengths and dampen others. Melanosomes, tiny packets of melanin found in the feathers, skin and fur of many animals, can produce structural color when packed into solid layers, as they are in the feathers of some birds.

“We synthesized and assembled nanoparticles of a synthetic version of melanin to mimic the natural structures found in bird feathers,” said Nathan Gianneschi, a professor of chemistry and biochemistry at the University of California, San Diego. “We want to understand how nature uses materials like this, then to develop function that goes beyond what is possible in nature.”

A May 13, 2015 UCSD news release by Susan Brown (also on EurekAlert), which originated the news item, describes the inspiration and the work in more detail,

Gianneschi’s work focuses on nanoparticles that can sense and respond to the environment. He proposed the project after hearing Matthew Shawkey, a biology professor at the University of Akron, describe his work on the structural color in bird feathers at a conference. Gianneschi, Shawkey and colleagues at both universities report the fruits of the resulting collaboration in the journal ACS Nano, posted online May 12 [2015].

To mimic natural melanosomes, Yiwen Li, a postdoctoral fellow in Gianneschi’s lab, chemically linked a similar molecule, dopamine, into meshes. The linked, or polydopamine, balled up into spherical particles of near uniform size. Ming Xiao, a graduate student who works with Shawkey and polymer science professor Ali Dhinojwala at the University of Akron, dried different concentrations of the particles to form thin films of tightly packed polydopamine particles.

The films reflect pure colors of light; red, orange, yellow and green, with hue determined by the thickness of the polydopamine layer and how tightly the particles packed, which relates to their size, analysis by Shawkey’s group determined.

The colors are exceptionally uniform across the films, according to precise measurements by Dimitri Deheyn, a research scientist at UC San Diego’s Scripps Institution of Oceanography who studies how a wide variety of organisms use light and color to communicate. “This spatial mapping of spectra also tells you about color changes associated with changes in the size or depth of the particles,” Deheyn said.

The qualities of the material contribute to its potential application. Pure hue is a valuable trait in colorimetric sensors. And unlike pigment-based paints or dyes, structural color won’t fade. Polydopamine, like melanin, absorbs UV light, so coatings made from polydopamine could protect materials as well. Dopamine is also a biological molecule used to transmit information in our brains, for example, and therefore biodegradable.

“What has kept me fascinated for 15 years is the idea that one can generate colors across the rainbow through slight (nanometer scale) changes in structure,” said Shawkey whose interests range from the physical mechanisms that produce colors to how the structures grow in living organisms. “This idea of biomimicry can help solve practical problems but also enables us to test the mechanistic and developmental hypotheses we’ve proposed,” he said.

Natural melanosomes found in bird feathers vary in size and particularly shape, forming rods and spheres that can be solid or hollow. The next step is to vary the shapes of nanoparticles of polydopamine to mimic that variety to experimentally test how size and shape influence the particle’s interactions with light, and therefore the color of the material. Ultimately, the team hopes to generate a palette of biocompatible, structural color.

Here’s a link to and a citation for the paper,

Bio-Inspired Structural Colors Produced via Self-Assembly of Synthetic Melanin Nanoparticles by Ming Xiao, Yiwen Li, Michael C. Allen, Dimitri D. Deheyn, Xiujun Yue, Jiuzhou Zhao, Nathan C. Gianneschi, Matthew D. Shawkey, and Ali Dhinojwala. ACS Nano, Article ASAP DOI: 10.1021/acsnano.5b01298 Publication Date (Web): May 4, 2015

Copyright © 2015 American Chemical Society

This paper is behind a paywall.

For anyone who’d like to explore structural colour further, there’s this Feb. 7, 2013 posting which features excerpts from and a link to an excellent article by Cristina Luiggi for The Scientist.

3D cartographies and histories of the skin

Here’s some ‘skin news’, from a March 30, 2015 University of California at San Diego news release (also on EurekAlert),

Researchers at the University of California, San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences used information collected from hundreds of skin swabs to produce three-dimensional maps of molecular and microbial variations across the body. These maps provide a baseline for future studies of the interplay between the molecules that make up our skin, the microbes that live on us, our personal hygiene routines and other environmental factors. …

The researchers have produced a video illustrating a ‘skin map’,

Credit for 3D mapping and video: Theodore Alexandrov;
Credit for data collection: Christopher Rath

The news release goes on to explain what makes this work special,

“This is the first study of its kind to characterize the surface distribution of skin molecules and pair that data with microbial diversity,” said senior author Pieter Dorrestein, PhD, professor of pharmacology in the UC San Diego Skaggs School of Pharmacy. “Previous studies were limited to select areas of the skin, rather than the whole body, and examined skin chemistry and microbial populations separately.”

To sample human skin nearly in its entirety, Dorrestein and team swabbed 400 different body sites of two healthy adult volunteers, one male and one female, who had not bathed, shampooed or moisturized for three days. They used a technique called mass spectrometry to determine the molecular and chemical composition of the samples. They also sequenced microbial DNA in the samples to identify the bacterial species present and map their locations across the body. The team then used MATLAB software to construct 3D models that illustrated the data for each sampling spot.

Despite the three-day moratorium on personal hygiene products, the most abundant molecular features in the skin swabs still came from hygiene and beauty products, such as sunscreen. According to the researchers, this finding suggests that 3D skin maps may be able to detect both current and past behaviors and environmental exposures. The study also demonstrates that human skin is not just made up of molecules derived from human or bacterial cells. Rather, the external environment, such as plastics found in clothing, diet, hygiene and beauty products, also contribute to the skin’s chemical composition. The maps now allow these factors to be taken into account and correlated with local microbial communities.

“This is a starting point for future investigations into the many factors that help us maintain, or alter, the human skin ecosystem — things like personal hygiene and beauty practices — and how those variations influence our health and susceptibility to disease,” Dorrestein said.

It was somewhat startling to realize clothing becomes part of my skin’s chemical composition rather than protecting it or, where allergies are concerned, affecting it. In effect, this map seems as much history as geography.

Here’s a link to and a citation for the paper,

Molecular cartography of the human skin surface in 3D by Amina Bouslimani, Carla Porto, Christopher M. Rath, Mingxun Wang, Yurong Guo, Antonio Gonzalez, Donna Berg-Lyon, Gail Ackermann, Gitte Julie Moeller Christensen, Teruaki Nakatsuji, Lingjuan Zhang, Andrew W. Borkowski, Michael J. Meehan, Kathleen Dorrestein, Richard L. Gallo, Nuno Bandeira, Rob Knight, Theodore Alexandrov, and Pieter C. Dorrestein. PNAS March 30, 2015 doi: 10.1073/pnas.1424409112 Published online before print March 30, 2015

This is an open access paper.