Tag Archives: Environment Canada

Synthetic biology: commercialization, Canadian farmers, and public discourse

You may see synthetic biology (or more properly a synthetic organism) referred to as ‘Synthia’. The term was coined (or, for some word play, created) by the ETC Group as they note in their May 20, 2010 news release about J. Craig Venter’s latest accomplishment (noted on this blog here and here),

The construction of this synthetic organism, anticipated and dubbed “Synthia” by the ETC Group three years ago, will stir a firestorm of controversy over the ethics of building artificial life and the implications of the largely unknown field of synthetic biology.

Clearly the ETC Group, which is based in Canada, has been gearing up for a campaign. It’ll be interesting to note whether or not they are successful at making ‘Synthia’ stick. I gather the group was able to capitalize on ‘frankenfoods’ for the campaign on genetically modified foods but someone else coined that phrase for them. (You can read about who coined the phrase in Susan Tyler Hitchcock’s book, Frankenstein; a cultural history.)

The advantage with ‘frankenfoods’ is the reference to an internationally recognized cultural icon, Frankenstein, and all of the associations that naturally follow. With ‘Synthia’, the ETC Group will have to build (link? graft?) the references to/onto the term.

I shouldn’t forget that the ETC Group does make an important point with this,

The team behind today’s announcement, led by controversial scientist and entrepreneur Craig Venter, is associated with a private company, Synthetic Genomics Inc, bankrolled by the US government and energy behemoths BP and Exxon. Synthetic Genomics recently announced a $600 million research and investment deal with Exxon Mobil in addition to a 2007 investment from BP for an undisclosed amount. Venter, who led the private sector part of the human genome project ten years ago, has already applied for patents related to Synthia’s technology.

In a possibly related (to the ETC Group) statement, the National Farmers Union (NFU) had this to say (from the May 22, 2010 news item on CBC News),

The National Farmers Union says the development of a synthetic cell could lead to worrisome, long-term consequences.

“This new technology raises serious concerns about who controls it, what it will be used for, and its potential impact,” [Terry] Boehm [president, NFU] said.

There are two things I want to note. First, the concerns raised by the ETC Group, the NFU, and others in Canada and across the globe are important and require discussion. Second, all of the parties involved business interests, civil society groups, scientists, government agencies, etc. work independently and together (formally and informally) to promote their interests.

In a related note: In a May 23, 2010 CBC news item (published on Sunday during a long weekend),

The government is looking for ways to monitor online chatter about political issues and correct what it perceives as misinformation.

The move started recently with a pilot project on the East Coast seal hunt. A Toronto-based company called Social Media Group has been hired to help counter some information put forward by the anti-sealing movement.

The Department of Foreign Affairs and International Trade has paid the firm $75,000 “to monitor social activity and help identify … areas where misinformation is being presented and repeated as fact,” Simone MacAndrew, a department spokesperson, said in an email.

The firm alerts the government to questionable online comments and then employees in Foreign Affairs or the Department of Fisheries and Oceans, who have recently been trained in online posting, point the authors to information the government considers more accurate.

It appears to be just the beginning. [emphases mine]

(Digression alert! Does this mean I’ll be able to easily get more information about nanotechnology research in Canada, about the national institute, about nanomaterials, about proposed regulatory frameworks, etc.?)

I have to admit to being suspicious about this ‘information initiative’ when the announcement appears to have been made in an email during a holiday weekend. As well, it seems a bit schizoid given the government’s ban (I’ve commented about that here) on direct communication between journalists and scientists working for Environment Canada. So, the government will contact us if they think we have it wrong but a journalist can’t directly approach one of their scientists to ask a question.

Returning to my main focus, the impact that all these groups with their interests, by turns competitive and collegial, will have on the synthetic biology debate is impossible to evaluate at this time. It does seem that much of the framing for the discussion has been predetermined by various interest groups while the rest of us have remained in relative ignorance. I think the ‘pre-framing’ is inevitable given that most of us would not be interested in engaging in a discussion about developments which were largely theoretical, until recently.

For those who are interested in learning about the science and the debates, check out the Oscillator here. She notes that we’ve had some parts of this discussion as early as the 19th century,

My ScienceBlogs colleague PZ Myers compares the synthetic genome to Wöhler’s chemical synthesis of urea in 1828. In the 19th century, scientists debated whether or not the chemicals that make up living cells–organic chemistry–had to be made by a cell possessing a “vital spark” or could be made by humans in a test tube. By synthesizing urea from ammonium cyanate, Wöhler broke down some of the mysticism associated with living cells. From that point on, organic chemistry stopped being magic and became a science.

Does the Venter Institute’s achievement show that life is just chemicals? I don’t think so …

Comparing nanomaterials definitions: US and Canada

In light of yesterday’s (April 26, 2010) posting about Health Canada and their nanomaterials definition, Andrew Maynard’s April 23, 2010 post at 2020 Science (blog) is quite timely. Andrew has some details about new nanomaterials definitions being proposed in the both the US Senate and House of Representatives so that their Toxic Substances Control Act can be amended. From Andrew’s posting, an excerpt about the proposed House bill,

The House draft document is a little more explicit. It recommends amending section 3(2) of the original act with:

“(C) For purposes of this Act, such term may include more than 1 form of a substance with a particular molecular identity as described in sub-paragraph (A) if the Administrator has determined such forms to be different substances, based on variations in the substance characteristics. New forms of existing chemical substances so determined shall be considered new chemical substances.” (page 6)

with the clarification that

“The term ‘substance characteristic’ means, with respect to a particular chemical substance, the physical and chemical characteristics that may vary for such substance, and whose variation may bear on the toxicological properties of the chemical substance, including—

(A) chemical structure and composition

(B) size or size distribution

(C) shape

(D) surface structure

(E) reactivity; and

(F) other characteristics and properties that may bear on toxicological properties” (page 11)

Both the Senate bill and the House discussion document provide EPA with the authority to regulate any substance that presents a new or previously unrecognized risk to human health as a new substance. This is critical to ensuring the safety of engineered nanomaterials, where risk may depend on more than just the chemistry of the substance. But it also creates a framework for regulating any new material that presents a potential risk – whether it is a new chemical, a relatively simple nanomaterial, a more complex nanomaterial – possibly one that changes behavior in response to its environment, or a novel material that has yet to be invented. In other words, these provisions effectively future-proof the new regulation.

I prefer the definition in the draft House of Representatives bill to Health Canada’s because of its specificity and its future-oriented approach. Contrast their specificity with this from the Interim Policy Statement on Health Canada’s Working Definition for Nanomaterials:

Health Canada considers any manufactured product, material, substance, ingredient, device, system or structure to be nanomaterial if:

1. It is at or within the nanoscale in at least one spatial dimension, or;

2. It is smaller or larger than the nanoscale in all spatial dimensions and exhibits one or more nanoscale phenomena.

For the purposes of this definition:

* The term “nanoscale” means 1 to 100 nanometres, inclusive;

* The term “nanoscale phenomena” means properties of the product, material, substance, ingredient, device, system or structure which are attributable to its size [emphasis mine] and distinguishable from the chemical or physical properties of individual atoms, individual molecules and bulk material; and,

* The term “manufactured” includes engineering processes and control of matter and processes at the nanoscale.

You’ll notice the House of Representatives’ draft bill offers five elements to the description (chemical composition, size or size distribution [emphasis mine], shape, surface structure, reactivity, and other characteristics and properties that may bear on toxicological properties). So in the US they include elements that have been identified as possibly being a problem and leave the door open for future discovery.

The proposed legislation has another feature, Andrew notes that,

Both the Senate bill and the House discussion document provide EPA with the authority [emphasis mine] to regulate any substance that presents a new or previously unrecognized risk to human health as a new substance. This is critical to ensuring the safety of engineered nanomaterials, where risk may depend on more than just the chemistry of the substance. But it also creates a framework for regulating any new material that presents a potential risk – whether it is a new chemical, a relatively simple nanomaterial, a more complex nanomaterial – possibly one that changes behavior in response to its environment, or a novel material that has yet to be invented. In other words, these provisions effectively future-proof the new regulation.

As far as I can recall, Peter Julian’s (MP – NDP) tabled draft bill for nanotechnology regulation in Canada does not offer this kind of ‘future-proofing’ although it could be added if it is ever brought forward for debate in the House of Commons. Given the quantity of public and political discussion on nanotechnology (and science, in general) in Canada, I doubt any politician could offer those kinds of amendments to Julian’s proposed bill.

As for Canada’s proposed nanomaterials reporting plan/inventory/scheme, Health Canada’s proposed definition’s vagueness makes compliance difficult. Let me illustrate what I mean while I explain why I highlighted ‘size distribution’ in the House of Representatives draft bill by first discussing Michael Berger’s article on Nanowerk about environment, health and safety (EHS) research into the toxicological properties of nanomaterials. From Berger’s article,

” What we found in our work is that nanomaterials purchased from commercial sources may not be as well characterized as indicated by the manufacturer,” Vicki H. Grassian, a professor in the Department of Chemistry at the University of Iowa, tells Nanowerk. “For example, it might be stated that a certain nanoparticle is being sold as 30 nm in diameter and, although ’30 nm’ might be close to the average diameter, there is usually a range of particle sizes that can extend from as much as small as 5 nm to as large as 300 nm. [emphases mine]”

That’s size distribution and it reveals two problems with a reporting plan/inventory/scheme that uses a definition that sets the size within a set range. (Julian’s bill has the same problem although his range is 1 to 1000 nm.) First, what happens if you have something that’s 1001 nm? This inflexible and unswerving focus on size will frustrate the intent both of the reporting plan and of Julian’s proposed legislation. Second, how can a business supply the information being requested when manufacturers offer such a wide distribution of sizes in  products where a uniform size is claimed? Are businesses going to be asked to measure the nanomaterials? Two or three years or more after they received the products? [Aug.4.10 Note: Some grammatical changes made to this paragraph so it conveys my message more clearly.]

Then Berger’s article moves onto another issue,

Reporting their findings in a recent paper in Environmental Toxicology and Chemistry (“Commercially manufactured engineered nanomaterials for environmental and health studies: Important insights provided by independent characterization”), among other problems Grassian and first author Heaweon Park also discuss the issue of batch-to-batch variability during the production of nanoparticles and that some nanomaterials which were being sold as having spherical morphology could contain mixed morphologies such as spheres and rods [emphases mine].

That’s right, you may not be getting the same shape of nanoparticle in your batch. This variability should not pose a problem for the proposed reporting plan/inventory/scheme since shape is not mentioned in Health Canada’s definition but it could bear on toxicology issues which is why a plan/inventory/scheme is being proposed in the first place.

Interestingly, the only ‘public consultation’ meeting that Health Canada/Environment Canada has held appears to have taken place in 2007 with none since and none planned for the future (see my April 26, 2010 posting).

Apparently, 3000 stakeholders have been contacted and asked for responses. I do wonder if an organization like Nano Quebec has been contacted and counted not as a single stakeholder but as representing its membership numbers (e.g. 500 members = 500 stakeholders?) whatever they may be. There is, of course, a specific Health Canada website for this interim definition where anyone can offer comments. It takes time to write a submission and I’m not sure how much time anyone has to devote to it which is why meetings can be very effective for information gathering especially in a field like nanotechnology where the thinking changes so quickly. 2007 seems like a long time ago.

Finally, Dexter Johnson on his Nanoclast blog is offering more perspective on the recent Andrew Schneider/National Nanotechnology Initiative dust up. Yes, he gave me a shout out (and I’m chuffed) and he puts the issues together to provide a different perspective on journalistic reporting environment, health and safety issues as they relate to nanotechnology along with some of the issues associated with toxicology research.

Health Canada answers questions about a nanomaterials reporting plan/inventory and about its interim policy definition of nanomaterials; news flash: IBM & a plot to bomb their nanotech facility in Switzerland

I’ve been tracking down information about Canada’s manomaterials reporting plan/inventory/scheme since January 2009 when it was first announced publicly, i.e. somewhere other than a government report or government website. Here’s my most recent posting where I detail information found in a Feb. 2010 OECD (Organization for Economic Cooperation and Development) report. In my searches I also found a notice of a a request for comments (closing date: Aug. 31, 2010) about an Interim Policy Statement for Health Canada’s Working Definition for Nanomaterials . I gather this request for feedback/public consultation is being held prior to developing the ‘nanomaterials reporting plan’ for Canadian businesses to provide information about the nanomaterials in their products circa 2008.

The whole endeavour has been a bit puzzling so I emailed Health Canada with some questions which Christelle Legault, Media Relations Officer | Agente des relations avec les médias, Regulatory Communications and Media Relations Division | Division des communications réglementaires et des relations avec les médias, Public Affairs, Consultation and Communications Branch | Direction générale des affaires publiques, de la consultation et des communication, Health Canada | Santé Canada, very kindly answered. (Her business card must be very crowded.)

Q1 – Is information about this reporting plan/inventory/scheme publicly available other than in OECD documents? Where would the average Canadian be able to locate this info?

Plans to develop an information gathering initiative for nanomaterials were discussed as part of a previous multi-stakeholder workshop. Background information on this initiative is provided in the document entitled “Proposed Regulatory Framework for Nanomaterials under the Canadian Environmental Protection Act, 1999” available under “Nanomaterials” on Environment Canada’s New Substances Website at:

http://www.ec.gc.ca/subsnouvelles-newsubs

The New Substances Website is used to communicate information to stakeholders on the regulatory program for nanomaterials under the Canadian Environment Protection Act, 1999 (CEPA 1999).

Q2 – When is the projected date for the proposed reporting plan/inventory/scheme to take place? Will it be 2011?

Information gathering initiatives for nanomaterials are currently under consideration by the Government. At this time, there are no confirmed timelines.

Q3 – How did you promote this ‘Interim statement’ consultation so there’d be some response?

The Policy Statement on Health Canada’s Working Definition for Nanomaterials was distributed to over 3,000 stakeholders in Canada and internationally via e-mail, as well as being posted on Health Canada’s website:

http://www.hc-sc.gc.ca/sr-sr/consult/_2010/nanomater/index-eng.php

Q4 – Were you aware that your adopted definition for nanomaterials is not harmonious with the 2007 definition being used by Environment Canada where nano titanium dioxide (a very commonly used nanoparticle in many products) is explicitly excluded.

The New Substances Advisory Note that was published in 2007, entitled: Requirements for Nanomaterials under the New Substances Notification Regulations (Chemicals and Polymers), relates to existing legislation for nanomaterials under CEPA 1999. The Advisory Note does not define nanomaterials, rather it describes the requirements of existing legislation to notify new nanomaterials to the Government for assessment prior to import or manufacture.

Whereas, the Interim Policy Statement on Health Canada’s Working Definition for Nanomaterials is intended to provide guidance to stakeholders on the broad scope of what is considered a nanomaterial. The working definition establishes a working means of identifying nanomaterials that will support the administration of the various laws and regulations (including CEPA 1999) that the Government uses to regulate nanomaterials. The scope of the working definition is intended to be broad so that all Government legislative and regulatory programs are captured. In some cases, the scope of nanomaterials for specific regulatory programs may be narrower than that of Health Canada’s Working Definition.

Q5 – Are there plans for public outreach/dialogue/engagement events on the topic of nanomaterials and other nanotechnology issues?

HC will be providing feedback to stakeholders after the Interim Policy Statement consultation period is completed. Depending on the result of the consultation, HC will decide on the need to further engage the stakeholders.

Q6 – Is there going to be another multi-stakeholder meeting as there was in 2007, as per the OECD report?

There are currently no scheduled multi-stakeholder meeting concerning the Environment Canada-Health Canada nanomaterial regulatory program. However, the Government is committed to holding meaningful consultations with interested stakeholders as it further develops its nanomaterial regulatory program.

Q7 – If there will be another multi-stakholder meeting, do you have details about which civil society groups, academics, business interests, policy watchdogs, and other interested parties will be invited and when it will take place?

The consultation workshop held in 2007 had representation from a wide range of stakeholders including several industry associations and small and medium enterprises (SMEs), environmental and health NGOs as well as Canadian university researchers. Regulatory authorities from other jurisdictions and other Canadian federal government departments were also part of the consultative process. For future consultations, stakeholder participation will consist of similar representation and will also include other identified interested parties as nanotechnology activity in Canada increases.

Q8 – Is there a launch date (as opposed to the vague Spring 2010) for the proposed NanoPortal mentioned in the OECD report (no. 20, Feb. 2010) of the Working Party on Nanomaterials?

Health Canada’s NanoPortal is at the last stage of development. Health Canada is now working on the final details and will provide a launch date in the near future.

Thank you Ms. Legault for providing answers to my questions.

Plot to bomb IBM nanotech facility in Switzerland

There aren’t many details so I’m not sure how solid this information is but it seems that a small group of one woman and two men were arrested. April 15, 2010, in an apparent plot to bomb an IBM nanotech facility being built in Rueschlikon (near Zurich). You can read slightly more here. The news seems to have been broken just hours ago.

Peter Julian’s interview about proposing Canada’s first nanotechnology legislation (part 2 of 3); more on the UK Nanotechnologies Strategy; Dylan Thomas, neuroscience and an open reading

This is part 2 of an interview with Member of Parliament, Peter Julian, NDP (New Democrat Party) who tabled the first Canadian bill to regulate nanotechnology. Yesterday’s part of the interview featured some biographical notes about Mr. Julian and his answers to questions about why he, in particular, tabled the bill; the NDP’s shadow science minister’s (Jim Malloway) involvement; and the NDP’s commitment to science policy. Today, Julian explains why he favours the application of the precautionary principle to nanotechnology, notes the research he used before writing his bill, and comments on a national inventory scheme. NOTE: As some folks may prefer other media or summaries/commentaries on these reports, in situations where I have additional material, I’ve taken the liberty of giving links, clearly marking my additions.

Why do you favour applying the precautionary principle which has received some criticism as it favours the status quo?

I believe that the precautionary principle does not favour the status quo. The status quo hinders appropriate applications of precaution. Environmental, health, and safety gaps in the application of Nanotechnology are a shared concern between countries, as reflected in recent reports to Congress and the EU and at the OECD. Precaution towards discovery, product, production, use and eventual disposal is simple common sense.

The precautionary principle deters action without reflection. When a product is massively put on the market we have to be sure that it will not have adverse effects on health and the environment, and not just a short lived positive effect on the bottom line.

What research materials support your (BILL) and are these materials that you would recommend interested citizens read?

I have a list of links concerning these materials:

ED. NOTE:  I offered some commentary here and links to other commentaries here about this report.

  • The Chatham House briefing paper, Regulating Nanomaterials: A Transatlantic Agenda (September 2009) an excellent eight page read:

http://www.chathamhouse.org.uk/publications/papers/view/-/id/774/

ED. NOTE: There is a Project on Emerging Nanotechnologies (PEN)webcast of a presentation by the folks who authored the report. The webcast and speaker presentations can be found here and my commentary on the webcast here.

ED. NOTE: PEN webcast a presentation by J. Clarence Davies on Oversight of Next Generation Nanotechnology available here along with a speaker’s presentation and additional materials.

  • The National Nanotechnology Initiative document lays out a substantive, and sound, research program. Canada’s strategy remains limited in scope and vision.

http://www.nano.gov/NNI_EHS_Research_Strategy.pdf

I noticed mention of a public inventory for nanomaterials and it reminded me of a proposed Environment Canada nanomaterials inventory or reporting plan that was announced in January 2008. Do you know if this inventory ever took place or what its current status is?

The inventory is not completed yet. The bill develops a mandatory requirement for an inventory and there have been no prior operational inventories regarding nanotechnology products, which is why this bill is so important.

I would like to stress that in addition to the precautionary principle, Bill C-494 is built on a definition of Nanotechnology that adopts a broader and more inclusive definition of nanomaterials. This is consistent with the findings of the UK House of Lords Science and Technology Committee:

  • We recommend that the Government should work towards ensuring that any regulatory definition of nanomaterials proposed at a European level, in particular in the Novel Foods Regulation, should not include a size limit of 100nm but instead refer to ‘the nanoscale’ to ensure that all materials with a dimension under 1000nm are considered.A change in functionality, meaning how a substance interacts with the body, should be the factor that distinguishes a nanomaterial from its larger form within the nanoscale.

UK House of Lords Science and Technology Committee
Nanotechnologies and Food (8 January 2010)
Recommendation 12, p.76

http://www.publications.parliament.uk/pa/ld/ldsctech.htm

This is in contrast with Health Canada policy which looks at narrow definition of nanomaterials:

  • Health Canada’s Science Policy Directorate announced the adoption of the Interim Policy Statement on Health Canada’s Working Definition for Nanomaterials and its posting on the Health Canada website 2 March 2010. This Government of Canada policy adopts a 1-100nm “inclusive” regulatory benchmark, effective immediately, with a public comment period underway.

http://www.hc-sc.gc.ca/sr-sr/consult/_2010/nanomater/index-eng.php

ED. NOTE: I made an error in my question, the proposed nano inventory by Environment Canada was announced in Jan. 2009. My postings on the announcement are here and here. The odd thing about the announcement was that it was made initially by PEN which is located in Washington, DC and subsequently picked up by Canadian news media. As far as I know, Environment Canada has never offered comment about its 2009 plan for a nanotechnology inventory.

Tomorrow Julian wraps up with answers to questions about why someone who’s shadow portfolio includes international trade is interested in nanotechnology and the potential costs for his proposed legislation.

Peter Julian interview Part 1, Part 3, Comments: Nano Ontario, Comments: nanoAlberta

More on the UK 2010 Nanotechnologies Strategy Report

Dexter Johnson over on Nanoclast has done some detective work in a bid to understand why the market numbers used in the report differ wildly from anyone else’s. From Dexter’s posting,

It [the report] quotes market numbers for nano-enabled products that are such a drastic departure from most estimates that it leaves one questioning why tens of billions of dollars are being poured in by governments around the world to fund research.

If you have it, do take the time to follow along as Dexter  trails the company that the UK government used as its source for their market numbers. Amongst other names, I recognized one, ObservatoryNANO. (It was an organization I followed briefly and dismissed as being frivolous.)

One other commenter has emerged, Tim Harper. Now as the  principle of a nanotechnology business consulting company (Cientifica) some might be inclined to dismiss his comments but they have the ring of honest frustration and a sincere desire to contribute. From Harper’s posting,

Every UK nanotech report to date has excluded any data provided by UK companies. Even offers of free copies of our market research to government committees looking into various bits of nanotechnology provoke the same response as if we’d offered them a fresh dog turd wrapped in newspaper.

And now for a complete change of pace,

Dylan Thomas and neuroscience

There‘s an event tonight  (Thursday, March 25, 2010) in Vancouver being put on by the Dylan Thomas Circle (he lived in North Vancouver for a time as he worked on Under the volcano). It’s being held at the Red Dragon Pub at the Cambrian Hall on 17th & Main St.  Doors open at 6:45 pm and the presentation starts at 7:30 pm followed by an open reading. From the news release,

THE DYLAN THOMAS CIRCLE OF VANCOUVER presents

“Dylan Thomas, Creativity and Neuroscience”

Ariadne Sawyer will lead an exploration into creativity and the creative process as manifest through the works and the life of Dylan Thomas. She will investigate why we are creative, what happens during the creative process and what effect it has upon us.

This will be followed by an intermission and an: ‘OPEN READING’: an invitation to everyone who is interested to read aloud a poem or literary excerpt of their choice. This can be your own work, Dylan’s work or any other writer’s material. Most importantly, it is our chance to indulge in a little of our own creativity and to do it in a relaxed and in a friendly atmosphere.

About Ariadne Sawyer:

Ariadne has done on line Performance Plus Coaching with trainees from England, France, Canada and the United States for the last two years. She has received the Award of Excellence given by McLean-Hunter for the Brain Bulletin Series. Ariadne publishes an electronic newsletter called: Ariadne’s Performance Plus Newsletter along with Performance Plus Tips which are sent to all the participating trainees. She also co-hosts a weekly radio program on CFRO 102.7 FM, which has been on the air for the past two years. The Performance Plus Mini Course has been presented on the show with astounding success. She has two electronic courses available soon on the Internet. Performance Plus Level One and the Performance Plus Diplomacy Course. Ariadne has worked with trainees from Europe, the US and across Canada.

Science communication in Canada (part 4b); NanoArt 2009; future nanoelectronics

Most science public relations (pr) and marketing efforts (including public engagement) in Canada are made by government agencies.  There is a communications officer (actually, it’s usually a team of communications officers) in every government-funded science-oriented agency (e.g. National Research Council, the National of Institute of Nanotechnology, Natural Sciences and Engineering Research Council, Canadian Institutes of Health Research, etc.)

In part 3 of this series (Sept. 21, 2009), I mentioned the impact a gag order placed on Environment Canada scientists in January 2008 has had on Canadian science journalism. It’s fair to assume that the gag order also has had an impact on people whose government agency job is science pr.

My guess is that an already cautious science pr and marketing community has become more controlling and more worried.  Take for example the nanomaterials inventory (mentioned in earlier postings) that was announced not by Environment Canada but, in February 2009, by the Project on Emerging Nanotechnologies based in Washington, DC. It’s somewhat disconcerting to have a Canadian government initiative announced in the US first. It’s possible that there’s no connection to the gag order but I cannot recall any Canadian government initiative being announced in another country first.

I have another example of a science pr oddity but it’s based on memory because I didn’t think to save the article and I can’t find it online. As memory serves, months after the 2008 federal election there was an article in a paper that I read stating that an important Canadian science advance done in conjunction with (US) NASA had been suppressed during the election campaign. The information was announced later in the US (again). The article noted this was the first time that information about an advance attributable to Canadian scientists was suppressed during an election campaign, apparently, due to concerns that the announcement would be prejudicial.

In what universe does someone read about a scientific advance and immediately praise or condemn (depending on how you view the advance) a political party? I cannot recall the last time a local candidate got a boost or fell  in the polls when the government announced a scientific advance. Even a biotechnology advance (with biotech being one of the most contentious science sectors in terms of public perception) would not be likely to have that kind of impact. Note that I said unlikely not impossible and that is where the problem lies. There are risks associated with science pr and marketing.

Whether it’s a government, a business, or a non-for-profit agency, there’s always the risk of embarrassment (your data is incorrect), the risk that popular opinion will rise against you, and/or the risk that someone more persuasive will slant your data to prove the case against you. These risks don’t pertain to science alone but there is a specific problem associated with science. Most of us are intimidated by it and, if you’re not, it’s hard to get information that is slanted for an adult who doesn’t have a science background. (Tomorrow’s installment will feature some current science pr initiatives and it will  be last of this series.)

Now for a couple of quick announcements. Chris Orfescu’s NanoArt 2009 competition  is calling for submissions (from the Azonano news item),

The artists can participate with up to 5 images (artworks). All submitted works will be exhibited on the nanoart21.org site until March 31, 2010, together with artist’s name, a short description of the artistic process, and artist’s web site and e-mail. The top 10 artists will be exhibited on nanoart21.org site for one full year and will be invited to exhibit at the 3rd edition of The International Festival of NanoArt. The previous editions of the festival were held in Finland and Germany.

There are more details on the Azonano website.

Michael Berger (Nanowerk Spotlight) has an article on future nanoelectronics which contradicts much that you may have learned about electricity and electronics in high school. From the article on Nanowerk,

Nanotechnology-enabled electronics of the future will be invisible, i.e. transparent (see “Invisible electronics made with carbon nanotubes”), or flexible, or both. One of the areas [John Rogers’ group at the University of Illlinois] focus on is creating materials and processes that will allow high-performance electronics that are flexible and stretchable (see our previous Spotlight “Gutenberg + nanotechnology = printable electronics”)

That’s it.

Science communication in Canada (part 3)

We have  a lot of science communication programmes and activities in Canada but a huge percentage of them are aimed at children. Once you leave high school you don’t learn much about science any more. Yes, you can read an article in a newspaper or catch a science programme on tv but as I noted in my Friday (Sept. 18, 2009) posting, the media don’t cover  the sciences very often. (I’ll see if I can dig up some data on science coverage in the media.)

There is another issue with science coverage which has an impact on  the media’s willingness to run science stories, legal suits for defamation.  There’s an article on Techdirt, UK Libel Laws, Scientific Criticism, Chilling Effects, Bloggers and The Streisand Effect, which presents the interesting case of Simon Singh (physicist and author of books such as Fermat’s Last Theorem, aka Fermat’s Enigma: The Epic Quest to Solve the Word’s Greatest Mathematical Problem, Big Bang and others) who’s being sued for criticising the evidence for claims by the British Chiropractic Association (BCA) about diseases that chiropractors can cure. The BCA filed a defamation suit against Singh, which is having a chilling effect on science journalism not only in the UK but also in the US (I haven’t found any Canadian commentary). You can find links to other articles on the topic including one from the New York Times in the Techdirt article. Meanwhile, I think this comment from the British Humanist Association (BHA) summarises the issues best,

BHA Chief Executive Hanne Stinson said today, “We’re proud to re-publish Simon’s article here on our website. This is not just an issue about freedom of speech, although that is important in itself. But if legitimate scientific criticism ever leads to a successful libel action, that will not only prevent people speaking out about false claims, it actually threatens scientific progress. Scientific advances almost always involve disagreement and criticism, and scientists have to able to express their views robustly without fear of prosecution. If our courts interpret one ambiguous phrase in a piece labelled ‘Comment’ as defamation, with the result that the writer loses a huge sum of money, then there is something very wrong in the balance between libel and freedom of speech.”

I found Singh’s edited (of allegedly libellous comments, apparently Singh used the word ‘bogus’ to describe some of the claims) article on the BHA site and even though I’m late to the party (there was a July 29, 2009 worldwide posting of the article, organized by Sense about Science, I’m going to post it now.

Beware the spinal trap

Some practitioners claim it is a cure-all, but the research suggests chiropractic therapy has mixed results – and can even be lethal, says Simon Singh.

You might be surprised to know that the founder of chiropractic therapy, Daniel David Palmer, wrote that “99% of all diseases are caused by displaced vertebrae”. In the 1860s, Palmer began to develop his theory that the spine was involved in almost every illness because the spinal cord connects the brain to the rest of the body. Therefore any misalignment could cause a problem in distant parts of the body.

In fact, Palmer’s first chiropractic intervention supposedly cured a man who had been profoundly deaf for 17 years. His second treatment was equally strange, because he claimed that he treated a patient with heart trouble by correcting a displaced vertebra.

You might think that modern chiropractors restrict themselves to treating back problems, but in fact some still possess quite wacky ideas. The fundamentalists argue that they can cure anything, including helping treat children with colic, sleeping and feeding problems, frequent ear infections, asthma and prolonged crying – even though there is not a jot of evidence.

I can confidently label these assertions as utter nonsense because I have co-authored a book about alternative medicine with the world’s first professor of complementary medicine, Edzard Ernst. He learned chiropractic techniques himself and used them as a doctor. This is when he began to see the need for some critical evaluation. Among other projects, he examined the evidence from 70 trials exploring the benefits of chiropractic therapy in conditions unrelated to the back. He found no evidence to suggest that chiropractors could treat any such conditions.

But what about chiropractic in the context of treating back problems? Manipulating the spine can cure some problems, but results are mixed. To be fair, conventional approaches, such as physiotherapy, also struggle to treat back problems with any consistency. Nevertheless, conventional therapy is still preferable because of the serious dangers associated with chiropractic.

In 2001, a systematic review of five studies revealed that roughly half of all chiropractic patients experience temporary adverse effects, such as pain, numbness, stiffness, dizziness and headaches. These are relatively minor effects, but the frequency is very high, and this has to be weighed against the limited benefit offered by chiropractors.

More worryingly, the hallmark technique of the chiropractor, known as high-velocity, low-amplitude thrust, carries much more significant risks. This involves pushing joints beyond their natural range of motion by applying a short, sharp force. Although this is a safe procedure for most patients, others can suffer dislocations and fractures.

Worse still, manipulation of the neck can damage the vertebral arteries, which supply blood to the brain. So-called vertebral dissection can ultimately cut off the blood supply, which in turn can lead to a stroke and even death. Because there is usually a delay between the vertebral dissection and the blockage of blood to the brain, the link between chiropractic and strokes went unnoticed for many years. Recently, however, it has been possible to identify cases where spinal manipulation has certainly been the cause of vertebral dissection.

Laurie Mathiason was a 20-year-old Canadian waitress who visited a chiropractor 21 times between 1997 and 1998 to relieve her low-back pain. On her penultimate visit she complained of stiffness in her neck. That evening she began dropping plates at the restaurant, so she returned to the chiropractor. As the chiropractor manipulated her neck, Mathiason began to cry, her eyes started to roll, she foamed at the mouth and her body began to convulse. She was rushed to hospital, slipped into a coma and died three days later. At the inquest, the coroner declared: “Laurie died of a ruptured vertebral artery, which occurred in association with a chiropractic manipulation of the neck.”

This case is not unique. In Canada alone there have been several other women who have died after receiving chiropractic therapy, and Edzard Ernst has identified about 700 cases of serious complications among the medical literature. This should be a major concern for health officials, particularly as under-reporting will mean that the actual number of cases is much higher.
If spinal manipulation were a drug with such serious adverse effects and so little demonstrable benefit, then it would almost certainly have been taken off the market.

Simon Singh is a science writer in London and the co-author, with Edzard Ernst, of Trick or Treatment? Alternative Medicine on Trial. This is an edited version of an article published in The Guardian for which Singh is being personally sued for libel by the British Chiropractic Association.

Personally, I have gone to chiropractors for spinal manipulations and like any other profession (including writing), there’s the good, the bad, the competent, and the mediocre. I also know people who get good results and others for whom chiropractic adjustments do nothing. I think, in common with many others, that the BHA (correction: this should be BCA for British Chiropractic Association) should have responded with evidence and not with a legal suit complaining that they were being criticised.

As for whether or not this legal suit has had any impact on science journalism in Canada, I have no evidence, other than the absence of any discussion in the Canadian media, to back the assertion that follows. Taking into account the federal government’s relatively recent dictum (gag order) that scientists in Environment Canada are not allowed to speak to journalists unless they had received permission from the ministry’s communication department (National Post, Jan. 31, 2008, article by Margaret Munro, other articles can be found via search engines) and our close ties to UK jurisprudence, there is a big chill taking place here that affects both scientists and journalists.

Tomorrow I expect to be looking at public relations/marketing and science.

Ununbium and ‘The Elements’ and an update of science policy doings in Canada and UK

A new element, ununbium, is being added to the periodic table. There’s more about it here on Nanowerk News. Seeing the media release this morning reminded me of Tom Lehrer’s song, ‘The Elements‘ so I searched and found an animated version of the song here. Just scroll down and pick your connection type (dial-up or broadband).

On the science policy front, there was an announcement that a UK parliamentary  Science and Technology Committee has been approved/reinstated last week on the BBC News (online)

The committee will be made up of the same members as the existing Innovation, Universities, Skills, and Science Committee (IUSS).

Some MPs recently raised concerns that government science policy would be marginalised in the new Department for Business, Innovation and Skills (BIS).

I commented on the new department and reporting structure on my blog here earlier this month. This comes at a time when Canada’s Minister of State for Science and Technology, Gary Goodyear, seems to be fading out of the picture. You can read Rob Annan’s post about it here on ‘Don’t leave Canada behind’. As Rob points out, this comes on the heels of the SSHRC (Social Sciences and Humantities Research Council) situation regarding their approved funding for a joint Queen’s University and York University conference titled, ‘Israel/Palestine Mapping Models of Statehood and Paths to Peace‘. Goodyear apparently requested that in addition to the peer-review the proposal had already received before being approved that it be subjected to a second peer-review after the fact. There’s more here on Rob’s blog, starting June 10, 2009 and, for another viewpoint, you can check out Jacob T. Levy’s  blog here.

I got a comment from Andrew Maynard where he clarified a statement he made in his screencast and a few things about the Twitter science visuals that he offered in some of his latest postings. Thanks Andrew.

Yeah, that “classic” sort of crept into the screencast – by the time I had made ten botched attempts to record it, I guess the bubble charts were beginning to look a little old!

To be honest, I’m not sure how widespread they are. I used them here because it’s a convenient way to summarize data covering a large span – because the plotted area is related to the data being visualized, it is easier to compare very large with very small numbers.

In this way, I think the display offers some intuitive insight into what might be relevant. But I’m not convinced it provides much of an analytical insight. Which is one reason why it’s useful to have access to multiple visualizations I suspect. And probably more importantly, why I prefer to allow access to the root data.

My comments are in my June 23 and 24, 2009 postings and Andrew’s posts are here.

Friday, June 26, 2009, I got an update and other comments from Victor Jones (consultant and former chair of Nanotech BC) about Environment Canada’s plan to have Canadian businesses report on the nanomaterials they use in their products.

interesting summary on nanomaterials and yes the Canadian plan is working its way through the bureacracy. Similar issues of definitions and classifications make the effort far from simple. If ever there was a case of the devil in the small details – nano materials has it. Remember to to check out http://www.goodnanoguide.org for a community dedicated to prototcols for the safe handling of nanomaterials. For an intriguing look at this sub micro world check out http://www.gogetpapers.com/Papers/nanomaterials_lecture

Thanks Victor. I haven’t had a chance to check out Victor’s recommendations for other sources of info. but I will report back on them soon. If you are interested, there is a three part interview with Victor on this site, May 14, 15, and 19, 2009.

More about Canada’s nano information-gathering exercise

The last few days have been devoted to the ‘announcement’ by Environment Canada via the Project for Emerging Nanotechnologies (PEN) which is based in Washington, DC. I think I’ve adequately covered the strangeness of hearing about our new government project from a source other than our own government in the previous postings (here and here) so I’m wrapping this up with a brief valentine (of sorts) to David Rejeski, PEN director.

Rejeski has an essay on the Nanowerk website published Feb. 5, 2009 here which explains why Canada is important. I am charmed. So often Americans forget or take Canada for granted, although I am a little concerned that he’s an expat Canadian, in which case the title of the essay and final paragraph are just tacky.(Why are they tacky if he’s an expat? Because too many Canadians go down to the US to explain why Canada is important and, frankly, I think that undercuts our case.)

Rejeski’s essay does explain the reasoning behind the recent move by Environment Canada and places it in a context that includes the US, Britain, and France. I do wish there were more details from Environment Canada but there are those restrictive communication policies that were put in place in Feb. 2008.

Final thoughts on Canadian Wire’s nanotechnology articles written by John Cotter.  The fact that a single article is used uncritically by so many media outlets points to a problem: corporate concentration of ownership. It is not new. My textbooks in the mid-1980s had data from the 1970s at least (memory fails, the trend may have started earlier) showing this trend. Since then it’s only intensified especially since the media conglomerates in Canada (don’t know about anywhere else) can have a single reporter gather info., write it up, and present content to be used in newspapers, radio. and tv. (I think that was a new policy that was adopted sometime after 2000.)

It’s hard to tell that the informatiion ia all coming for the same source (you don’t have to include the byline if it’s coming from a newswire and you’re not using the article in its entirety if it’s being published). To be honest, I never noticed it much until I made a point of chasing down the articles and saw the startling similarity in the texts. (more thoughts about corporate concentration of ownership and diversity of interests in upcoming postings)