Tag Archives: RMIT University

Do you really want to swallow a ‘smart pill’ to measure intestinal gas or anything else?

Caption: Smart gas sensing pills developed at RMIT University can measure intestinal gases inside the gut and send the data directly to a mobile phone. Credit: RMIT University

Caption: Smart gas sensing pills developed at RMIT University can measure intestinal gases inside the gut and send the data directly to a mobile phone.
Credit: RMIT University

Researchers at RMIT University (Australia) have tested a ‘smart pill’ (or sensor/wireless transmitter) on animals according to a Jan. 12, 2016 news item on ScienceDaily,

Researchers have conducted the first ever trials of smart pills that can measure intestinal gases inside the body, with surprising results revealing some unexpected ways that fiber affects the gut.

Intestinal gases have been linked to colon cancer, irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD), but their role in health is poorly understood and there is currently no easy and reliable tool for detecting them inside the gut.

The first animal trials of smart gas sensing pills developed at Australia’s RMIT University — which can send data from inside the gut directly to a mobile phone — have examined the impact of low and high-fibre diets on intestinal gases and offer new clues for the development of treatments for gut disorders.

Lead investigator Professor Kourosh Kalantar-zadeh, from the Centre for Advanced Electronics and Sensors at RMIT, said the results reversed current assumptions about the effect of fibre on the gut.

A Jan. 12, 2016 RMIT University news release on EurekAlert, which originated the news item, expands on the theme,

“We found a low-fibre diet produced four times more hydrogen in the small intestine than a high-fibre diet,” Kalantar-zadeh said.

“This was a complete surprise because hydrogen is produced through fermentation, so we naturally expected more fibre would equal more of this fermentation gas.

“The smart pills allow us to identify precisely where the gases are produced and help us understand the microbial activity in these areas – it’s the first step in demolishing the myths of food effects on our body and replacing those myths with hard facts.

“We hope this technology will in future enable researchers to design personalised diets or drugs that can efficiently target problem areas in the gut, to help the millions of people worldwide that are affected by digestive disorders and diseases.”

The trials revealed different levels of fibre in a diet affected both how much gas was produced and where it was concentrated in the gut – in the stomach, small intestine or large intestine.

The smart pills were trialled on two groups of pigs – whose digestive systems are similar to humans – fed high and low-fibre diets. The results indicate the technology could help doctors differentiate gut disorders such as IBS, showing:

  • high-fibre diets produce more methane gas in the large intestine than the low-fibre diet, suggesting that painful gut gas retention could be avoided by cutting back on high-fibre food
  • low-fibre diets produced four times more hydrogen gas in the small intestine than high-fibre, indicating a high-fibre regimen could be better for patients with IBS caused by bacterial overgrowth in small intestine
  • the ratio of carbon dioxide and methane gases remained the same in the large intestine for both diets, suggesting that neither diet would be helpful for people suffering IBS diseases associated with excess methane concentration

Here’s a link to and a citation for the paper,

Intestinal Gas Capsules: A Proof-of-Concept Demonstration by Kourosh Kalantar-zadeh, Chu K. Yao, Kyle J. Berean, Nam Ha, Jian Zhen Ou, Stephanie A. Ward, Naresh Pillai, Julian Hill, Jeremy J. Cottrell, Frank R. Dunshea, Chris McSweeney, Jane G. Muir, and  Peter R. Gibson. Gastroenterology January 2016Volume 150, Issue 1, Pages 37–39 DOI: http://dx.doi.org/10.1053/j.gastro.2015.07.072

This article appears to be open access.

Getting back to my question, will people be willing to swallow these things? The study indicates that four pigs, in total, were tested and killed afterwards. The ‘smart pill’ measurements were compared to others made with standard technologies to assure researchers the new technology was viable. This particular study seems to have served as a proof of concept rather than an in-depth analysis of intestinal gases. As to whether or not anyone will ever be asked to swallow one of these ‘smart pills’ (sensor/wireless transmitter), the scientists did not share any plans for human clinical trials. I guess one of the big questions would be, what happens to the pill (stay in your gut or expelled) once you’ve gotten your measurements?

Memristor, memristor, you are popular

Regular readers know I have a long-standing interest in memristor and artificial brains. I have three memristor-related pieces of research,  published in the last month or so, for this post.

First, there’s some research into nano memory at RMIT University, Australia, and the University of California at Santa Barbara (UC Santa Barbara). From a May 12, 2015 news item on ScienceDaily,

RMIT University researchers have mimicked the way the human brain processes information with the development of an electronic long-term memory cell.

Researchers at the MicroNano Research Facility (MNRF) have built the one of the world’s first electronic multi-state memory cell which mirrors the brain’s ability to simultaneously process and store multiple strands of information.

The development brings them closer to imitating key electronic aspects of the human brain — a vital step towards creating a bionic brain — which could help unlock successful treatments for common neurological conditions such as Alzheimer’s and Parkinson’s diseases.

A May 11, 2015 RMIT University news release, which originated the news item, reveals more about the researchers’ excitement and about the research,

“This is the closest we have come to creating a brain-like system with memory that learns and stores analog information and is quick at retrieving this stored information,” Dr Sharath said.

“The human brain is an extremely complex analog computer… its evolution is based on its previous experiences, and up until now this functionality has not been able to be adequately reproduced with digital technology.”

The ability to create highly dense and ultra-fast analog memory cells paves the way for imitating highly sophisticated biological neural networks, he said.

The research builds on RMIT’s previous discovery where ultra-fast nano-scale memories were developed using a functional oxide material in the form of an ultra-thin film – 10,000 times thinner than a human hair.

Dr Hussein Nili, lead author of the study, said: “This new discovery is significant as it allows the multi-state cell to store and process information in the very same way that the brain does.

“Think of an old camera which could only take pictures in black and white. The same analogy applies here, rather than just black and white memories we now have memories in full color with shade, light and texture, it is a major step.”

While these new devices are able to store much more information than conventional digital memories (which store just 0s and 1s), it is their brain-like ability to remember and retain previous information that is exciting.

“We have now introduced controlled faults or defects in the oxide material along with the addition of metallic atoms, which unleashes the full potential of the ‘memristive’ effect – where the memory element’s behaviour is dependent on its past experiences,” Dr Nili said.

Nano-scale memories are precursors to the storage components of the complex artificial intelligence network needed to develop a bionic brain.

Dr Nili said the research had myriad practical applications including the potential for scientists to replicate the human brain outside of the body.

“If you could replicate a brain outside the body, it would minimise ethical issues involved in treating and experimenting on the brain which can lead to better understanding of neurological conditions,” Dr Nili said.

The research, supported by the Australian Research Council, was conducted in collaboration with the University of California Santa Barbara.

Here’s a link to and a citation for this memristive nano device,

Donor-Induced Performance Tuning of Amorphous SrTiO3 Memristive Nanodevices: Multistate Resistive Switching and Mechanical Tunability by  Hussein Nili, Sumeet Walia, Ahmad Esmaielzadeh Kandjani, Rajesh Ramanathan, Philipp Gutruf, Taimur Ahmed, Sivacarendran Balendhran, Vipul Bansal, Dmitri B. Strukov, Omid Kavehei, Madhu Bhaskaran, and Sharath Sriram. Advanced Functional Materials DOI: 10.1002/adfm.201501019 Article first published online: 14 APR 2015

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

The second published piece of memristor-related research comes from a UC Santa Barbara and  Stony Brook University (New York state) team but is being publicized by UC Santa Barbara. From a May 11, 2015 news item on Nanowerk (Note: A link has been removed),

In what marks a significant step forward for artificial intelligence, researchers at UC Santa Barbara have demonstrated the functionality of a simple artificial neural circuit (Nature, “Training and operation of an integrated neuromorphic network based on metal-oxide memristors”). For the first time, a circuit of about 100 artificial synapses was proved to perform a simple version of a typical human task: image classification.

A May 11, 2015 UC Santa Barbara news release (also on EurekAlert)by Sonia Fernandez, which originated the news item, situates this development within the ‘artificial brain’ effort while describing it in more detail (Note: A link has been removed),

“It’s a small, but important step,” said Dmitri Strukov, a professor of electrical and computer engineering. With time and further progress, the circuitry may eventually be expanded and scaled to approach something like the human brain’s, which has 1015 (one quadrillion) synaptic connections.

For all its errors and potential for faultiness, the human brain remains a model of computational power and efficiency for engineers like Strukov and his colleagues, Mirko Prezioso, Farnood Merrikh-Bayat, Brian Hoskins and Gina Adam. That’s because the brain can accomplish certain functions in a fraction of a second what computers would require far more time and energy to perform.

… As you read this, your brain is making countless split-second decisions about the letters and symbols you see, classifying their shapes and relative positions to each other and deriving different levels of meaning through many channels of context, in as little time as it takes you to scan over this print. Change the font, or even the orientation of the letters, and it’s likely you would still be able to read this and derive the same meaning.

In the researchers’ demonstration, the circuit implementing the rudimentary artificial neural network was able to successfully classify three letters (“z”, “v” and “n”) by their images, each letter stylized in different ways or saturated with “noise”. In a process similar to how we humans pick our friends out from a crowd, or find the right key from a ring of similar keys, the simple neural circuitry was able to correctly classify the simple images.

“While the circuit was very small compared to practical networks, it is big enough to prove the concept of practicality,” said Merrikh-Bayat. According to Gina Adam, as interest grows in the technology, so will research momentum.

“And, as more solutions to the technological challenges are proposed the technology will be able to make it to the market sooner,” she said.

Key to this technology is the memristor (a combination of “memory” and “resistor”), an electronic component whose resistance changes depending on the direction of the flow of the electrical charge. Unlike conventional transistors, which rely on the drift and diffusion of electrons and their holes through semiconducting material, memristor operation is based on ionic movement, similar to the way human neural cells generate neural electrical signals.

“The memory state is stored as a specific concentration profile of defects that can be moved back and forth within the memristor,” said Strukov. The ionic memory mechanism brings several advantages over purely electron-based memories, which makes it very attractive for artificial neural network implementation, he added.

“For example, many different configurations of ionic profiles result in a continuum of memory states and hence analog memory functionality,” he said. “Ions are also much heavier than electrons and do not tunnel easily, which permits aggressive scaling of memristors without sacrificing analog properties.”

This is where analog memory trumps digital memory: In order to create the same human brain-type functionality with conventional technology, the resulting device would have to be enormous — loaded with multitudes of transistors that would require far more energy.

“Classical computers will always find an ineluctable limit to efficient brain-like computation in their very architecture,” said lead researcher Prezioso. “This memristor-based technology relies on a completely different way inspired by biological brain to carry on computation.”

To be able to approach functionality of the human brain, however, many more memristors would be required to build more complex neural networks to do the same kinds of things we can do with barely any effort and energy, such as identify different versions of the same thing or infer the presence or identity of an object not based on the object itself but on other things in a scene.

Potential applications already exist for this emerging technology, such as medical imaging, the improvement of navigation systems or even for searches based on images rather than on text. The energy-efficient compact circuitry the researchers are striving to create would also go a long way toward creating the kind of high-performance computers and memory storage devices users will continue to seek long after the proliferation of digital transistors predicted by Moore’s Law becomes too unwieldy for conventional electronics.

Here’s a link to and a citation for the paper,

Training and operation of an integrated neuromorphic network based on metal-oxide memristors by M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins, G. C. Adam, K. K. Likharev,    & D. B. Strukov. Nature 521, 61–64 (07 May 2015) doi:10.1038/nature14441

This paper is behind a paywall but a free preview is available through ReadCube Access.

The third and last piece of research, which is from Rice University, hasn’t received any publicity yet, unusual given Rice’s very active communications/media department. Here’s a link to and a citation for their memristor paper,

2D materials: Memristor goes two-dimensional by Jiangtan Yuan & Jun Lou. Nature Nanotechnology 10, 389–390 (2015) doi:10.1038/nnano.2015.94 Published online 07 May 2015

This paper is behind a paywall but a free preview is available through ReadCube Access.

Dexter Johnson has written up the RMIT research (his May 14, 2015 post on the Nanoclast blog on the IEEE [Institute of Electrical and Electronics Engineers] website). He linked it to research from Mark Hersam’s team at Northwestern University (my April 10, 2015 posting) on creating a three-terminal memristor enabling its use in complex electronics systems. Dexter strongly hints in his headline that these developments could lead to bionic brains.

For those who’d like more memristor information, this June 26, 2014 posting which brings together some developments at the University of Michigan and information about developments in the industrial sector is my suggestion for a starting point. Also, you may want to check out my material on HP Labs, especially prominent in the story due to the company’s 2008 ‘discovery’ of the memristor, described on a page in my Nanotech Mysteries wiki, and the controversy triggered by the company’s terminology (there’s more about the controversy in my April 7, 2010 interview with Forrest H Bennett III).

High frequency sound waves enable precision micro- and nanomanufacturing

I have finally moved this item to the top of my playlist: researchers from RMIT University (formerly the Royal Melbourne Institute of Technology) in Australia have developed a technique employing sound waves for greater precision in manufacturing chips at the micro- and nanoscales. From a June 24, 2014 news item on ScienceDaily,

In a breakthrough discovery, researchers at RMIT University in Melbourne, Australia, have harnessed the power of sound waves to enable precision micro- and nano-manufacturing.

The researchers have demonstrated how high-frequency sound waves can be used to precisely control the spread of thin film fluid along a specially-designed chip, in a paper published today in Proceedings of the Royal Society A.

With thin film technology the bedrock of microchip and microstructure manufacturing, the pioneering research offers a significant advance — potential applications range from thin film coatings for paint and wound care to 3D printing, micro-casting and micro-fluidics.

A June 30, 2014 RMIT university news release, which originated the news item (despite the date discrepancy), offers more details (Note: Links have been removed),

Professor James Friend, Director of the MicroNano Research Facility at RMIT, said the researchers had developed a portable system for precise, fast and unconventional micro- and nano-fabrication.

“By tuning the sound waves, we can create any pattern we want on the surface of a microchip,” Professor Friend said.

“Manufacturing using thin film technology currently lacks precision – structures are physically spun around to disperse the liquid and coat components with thin film.

“We’ve found that thin film liquid either flows towards or away from high-frequency sound waves, depending on its thickness.

“We not only discovered this phenomenon but have also unravelled the complex physics behind the process, enabling us to precisely control and direct the application of thin film liquid at a micro and nano-scale.”

Professor Friend led the research team behind the breakthrough, which included Dr Amgad Rezk, from the School of Civil, Environmental and Chemical Engineering, Professor Leslie Yeo, co-Director of the Micro Nanophysics Research Laboratory, and Ofer Manor, from the Israel Institute of Technology.

The research was part of Dr Rezk’s recently completed PhD, in the School of Electrical and Computer Engineering.

The new process, which the researchers have called “acoustowetting”, works on a chip made of lithium niobate – a piezoelectric material capable of converting electrical energy into mechanical pressure.

The surface of the chip is covered with microelectrodes and the chip is connected to a power source, with the power converted to high-frequency sound waves. Thin film liquid is added to the surface of the chip, and the sound waves are then used to control its flow.

The research shows that when the liquid is ultra-thin – at nano and sub-micro depths – it flows away from the high-frequency sound waves.

The flow reverses at slightly thicker dimensions, moving towards the sound waves. But at a millimetre or more in depth, the flow reverses again, moving away.

Here’s a link to and a citation for the paper,

Double flow reversal in thin liquid films driven by megahertz-order surface vibration by Amgad R. Rezk, Ofer Manor, Leslie Y. Yeo, and James R. Friend. Proc. R. Soc. A 8 September 2014 vol. 470 no. 2169 20130765 Published 25 June 2014 doi: 10.1098/rspa.2013.0765

This paper is open access.

The researchers have produced this video illustrating the action of the sound waves,

Australians weigh in on Open Access publication proposal in UK

Misguided is the word used in the June 20, 2012 editorial for The Conversation by Jason Norrie to describe the UK proposal to adopt ‘open access’ publishing, from physorg.com,

The British government has enlisted the services of Wikipedia founder Jimmy Wales in a bid to support open access publishing for all scholarly work by UK researchers, regardless of whether it is also published in a subscription-only journal.

The cost of doing so would range from £50 to £60 million a year, according to an independent study commissioned by the government. Professor Dame Janet Finch, who led the study, said that “in the longer term, the future lies with open access publishing.” Her report says that “the principle that the results of research that has been publicly funded should be freely accessible in the public domain is a compelling one, and fundamentally unanswerable.”

Norrie’s June 20,2012  editorial can also be found on The Conversation website where he includes responses from academics to the proposal,

Emeritus Professor Colin Steele, former librarian of the Australian National University, said that although report was supportive of the principles of open access, it proposed a strategy that was unnecessarily costly and could not be duplicated in Australia.

“The way they’ve gone about it almost totally focuses, presumably due to publisher pressure, on the gold model of open access,” he said. “As a result of that, the amount of money needed to carry out the transition – the money needed for article processing charges – is very large. It’s not surprising that the publishers have come out in favour of the report, because it will guarantee they retain their profits.

“It certainly wouldn’t work in Australia because there simply isn’t that amount of research council funding available.

Stevan Harnad, a Professor in the Department of Psychology at Université du Québec à Montréal, said the report had scrubbed the green model from the UK policy agenda and replaced it with a “vague, slow evolution toward gold open access publishing, at the publishers’ pace and price. The result would be very little open access, very slowly, and at a high price … taken out of already scarce UK research funds, instead of the rapid and cost-free open access growth vouchsafed by green open access mandates from funders and universities.”

For anyone not familiar with the differences between the ‘green’ and ‘gold models, the Wikipedia essay on Open Access offers a definition (Note: I have removed links and footnotes),

OA can be provided in two ways

  • Green OA Self Archiving – authors publish in any journal and then self-archive a version of the article for free public use in their institutional repository, in a central repository (such as PubMed Central), or on some other OA website What is deposited is the peer-reviewed postprint – either the author’s refereed, revised final draft or the publisher’s version of record. Green OA journal publishers endorse immediate OA self-archiving by their authors. OA self-archiving was first formally proposed in 1994 by Stevan Harnad [emphasis mine]. However, self-archiving was already being done by computer scientists in their local FTP archives in the ’80s, later harvested into Citeseer. High-energy physicists have been self-archiving centrally in arXiv since 1991.
  • Gold OA Publishing – authors publish in an open access journal that provides immediate OA to all of its articles on the publisher’s website. (Hybrid open access journals provide Gold OA only for those individual articles for which their authors (or their author’s institution or funder) pay an OA publishing fee.) Examples of OA publishers are BioMed Central and the Public Library of Science.

I guess that Wikipedia entry explains why Hamad is quoted in Norrie’s editorial.

While money is one of the most discussed issues surrounding the ‘open access publication’ discussion, I am beginning to wonder why there isn’t more mention of the individual career-building, institution science reputation-building and national science reputation-building that the current publication model helps make possible.

I have posted on this topic previously, the May 28, 2012 posting is my most comprehensive (huge) take on the subject.

As for The Conversation, it’s my first encounter with this very interesting Australian experiment in communicating research to the public, from the Who We Are page,

The Conversation is an independent source of analysis, commentary and news from the university and research sector — written by acknowledged experts and delivered directly to the public. Our team of professional editors work with more than 3,100 registered academics and researchers to make this wealth of knowledge and expertise accessible to all.

We aim to be a site you can trust. All published work will carry attribution of the authors’ expertise and, where appropriate, will disclose any potential conflicts of interest, and sources of funding. Where errors or misrepresentations occur, we will correct these promptly.

Sincere thanks go to our Founding Partners who gave initial funding support: CSIRO, Monash University, University of Melbourne, University of Technology Sydney and University of Western Australia.

Our initial content partners include those institutions, Strategic Partner RMIT University and a growing list of member institutions. More than 180 institutions contribute content, including Australia’s research-intensive, Group of Eight universities.

We are based in Melbourne, Australia, and wholly owned by The Conversation Media Trust, a not-for-profit company.

The copyright notice at the bottom of The Conversation’s web pages suggest it was founded in 2010. It certainly seems to have been embraced by Australian academics and other interested parties as per the Home page,

The Conversation is an independent source of analysis, commentary and news from the university and research sector viewed by 350,000 readers each month. Our team of professional editors work with more than 2,900 registered academics and researchers from 200 institutions.

I wonder if there’s any chance we’ll see something like this here in Canada?